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I. Introduction. The June Enumerative Survey 
conducted by the Statistical Reporting Service 
(SRS) at USDA is a multi-purpose probability 
survey for reporting inventory on crops, live- 
stock, and other agricultural items. Samples 
are selected from an area frame. For some items, 
additional June survey is conducted from list 
frame. The area frame is stratified by land use, 
whereas the list frame is stratified by size of 
the farm. Information on the items of interest 
is obtained by personal interview near the end of 
May for the area sample. That from the list 
sample is obtained by mail, telephone, or per- 
sonal visit around the June I reference date. 

Different estimators are often produced for 
the same characteristics. For example, four 
estimators, tract, farm, weighted, and multiple 
frame screening estimators are produced for 
livestock items for each of the i0 major states. 
These I0 states usually account for more than 80 
percent of the U.S. hogs and cattle inventory. 
Three of the estimators are derived from the same 
primary sampling units. Due to different methods 
of associating the farm products with the seg- 
ments (primary sampling units) from the area 
frame, three different estimators are produced. 
The tract estimator counts only the farm inven- 
tory within the segment. The farm estimator 
would include the farm inventory beyond the seg- 
ment, so long as those farm products belong to 
the same operator residing in the segment. The 
weighted estimator uses a formula depending on 
the acreages to prorate the farm inventory to 
tract level. A fourth estimator called multiple 
frame screening estimator is predominantly com- 
puted from data of the list sample. Moreover, a 
small portion of the weighted estimator from the 
area frame is also added to the list estimator to 
compensate for the incompleteness of the list 
frame. 

One of the problems faced by the statistician 
at SRS is finding a method to combine these 
estimators into one. A composite estimation 
model is proposed here. This composite estimator 
is motivated by minimizing the mean squared 
errors of a family of weighted averages of the 
four preliminary estimators. 

Other approaches such as empirical Bayes and 
linear Bayes were also explored by the author to 
solve this problem. Composite estimation has 
been pursued. The strictly frequentist and non- 
parametric features of the composite estimation 
are also shared by that of the classical survey 
sampling. These two features give composite 
estimation the greatest potential for implementa- 
tion by SRS. 

As can be seen from the numerical results in 
Section 6, not only variances but also non- 
negligible biases affect the accuracy of the pre- 
liminary estimators. Consequently, analysis of 
biases has to be incorporated. When all non- 
sampling errors are considered, it is assumed 
that the tract estimator is unbiased, and all 
other estimators are biased. This assumption is 
also supported by Nealon (1984), where discussion 
on the biases of the weighted and multiple frame 
screening estimator can be found. The tract 

estimator by design is unbiased. It is also 
least susceptible to nonsampling errors. An un- 
biased estimator of the bias squared term 
developed in Section 4 is used for the biased 
preliminary estimators. The composite estimation 
developed in this paper provides adjustment for 
component weights depending on biases. 

Mosteller (1948) discusses the desirability of 
pooling the data. He describes several ways of 
pooling data from two samples to estimate the 
mean of one of the populations. He illustrates 
it by using data from the normal distribution, 
but his ideas are applicable in a broader context. 
A stout believer in unbiasedness would only use 
the tract estimator. However, most statisticians 
are willing to accept some bias to reduce the 
mean squared error. This is done by pooling all 
the available data. 

Theoretical work on composite estimation for 
independent observations from the normal dis- 
tribution is given by Graybill and Deal (1959). 
To combine two independent unbiased preliminary 
estimators for the common mean, they show the 
composite estimator has uniformly smaller variance 
than any of the preliminary estimators so long as 
each sample size is greater than i0. Further 
improvement and other related references are 
given by Brown and Cohen (1974). Although the 
situation at SRS is much more complicated, these 
theoretical works shed light on the advantage of 
intelligently combining estimators. 

Composite estimation has been used by numerous 
statisticians in applications. Schaible (1978 
and 1979) uses it to estimate small area statis- 
tics for the Health Interview Survey. Brock, 
French, and Peyton (1980) provide an empirical 
evaluation of mean squared errors of composite 
estimators, and suggestions for component esti- 
mators for small area estimation. Cohen and 
Sommers (1984) provide empirical evaluation of 
composite estimation of cost weights for the 
Consumer Price Index. There is also extensive 
literature on composite estimation for the 
Current Population Survey for panel studies and 
rotation designs. See Wolter (1979) for the 
theory, applications, and other references. 

The four preliminary estimators presently in 
use at SRS are described in Section 2. A review 
of composite estimation and its specialization to 
SRS applications are given in Section 3. Esti- 
mation of the second moment term needed in 
composite estimation is discussed in Section 4. 
Variance and mean squared error evaluations of 
the composite estimators are discussed in Section 
5. Numerical results for total hogs and pigs 
inventory from the 1984 June Enumerative Survey 
are given in Section 6. Finally, the conclusion 
is given in Section 7. 

2. Description of Presently Used Estimators. 
As mentioned earlier, both area and list frames 
are used by SRS to select samples for probability 
surveys. 

The area frame for each state used by SRS is 
stratified by land use; for example, more than 
75 percent cultivated, 50-74 percent cultivated, 
15-49 percent cultivated, agriculture mixed with 
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urban, and non-agricultural land. Each stratum 
is further subdivided into more homogeneous geo- 
graphic substrata called paper strata. Segments 
(parcels of land) treated as the primary sampling 
units are selected as a simple stratified sample 
from each paper stratum. A detailed description 
on how the segments are constructed from aerial 
photographs with identifiable boundaries, how 
segment sizes and the number of segments are 
determined, and how the segments are selected via 
count units can be found in Houseman (1975) and 
Geuder (1984). For rotational purposes, the 
first segment selected in each paper stratum is 
designated as replicate i, the second as repli- 
cate 2, etc. Approximately 20 percent of the 
segments are replaced annually on a rotational 
basis. 

The list frame consisting of names of farmers 
is stratified by the size of farms contained in 
the control information. For example, for hogs 
and pigs inventory, typical strata are no hogs, 
1-99 hogs, 100-199 hogs, 200-399 hogs, 400-999 
hogs, 1000-2499 hogs, more than 2500 hogs. 
Systematic sampling from each stratum is usually 
used to select the list sample. See Section 5 of 
June Supervising and< Editing Manual (1984). 

For each area sample, there are three differ- 
ent methods of evaluating the farm inventory. A 
tract is a piece of land within the boundary of 
the segment under one management. A tract may 
be the entire farm if all of it is in the segment, 
or a portion of the farm, if the farm's boundary 
extends to outside of the segment. The area 
tract estimator is expanded by inventory on all 
the tracts of the selected segments. The area 
farm estimator is expanded by inventory on the 
corresponding farms provided the operator who 
resides in the segment. The area weighted 
estimator is computed from each farm inventory 
weighted by the ratio of tract acreage to farm 
acreage, regardless of the residency of the 
operator. There are no such complications for 
the list sample. The list sample uses the entire 
inventory of the farm. 

Three different domains are needed to explain 
the four estimators presently in use. Domain 
DI, the nonoverlap domain, refers to the farms 
not in the list frame. (This domain is auto- 
matically in the area frame, since the area 
frame is complete.) Domain D2 refers to the 
farms in both frames but is not classified as 
"extreme operators." Domain D3 refers to the 
extreme operators in both frames. (Extreme 
operators are farmers with very large livestock 
inventories. The exact definition for the list 
sample in the Domain D3 will be given later.) 

The operational tract, farm, and weighted 

estimators denoted by YI' Y2' and Y3 can be 

expressed as follows: 

Yi = YDILJD2,Ai + YD3,L ' 
(2.1) 

where i = I, 2, or 3. 
^ 

The e s t i m a t o r  YDlkJD2,Ai is computed by 

n h 

= ~ eh k E Yi,hk ' (2.2) YDIIJD2,Ai hell =I 

where H = the collection of paper strata, 

e h = the inverse of the probability of 
selection of each segment in the hth 
paper stratum, 

n h = the number of segments sampled in the 
h th paper stratum, 

ghk 

Yl,hk = E m = i thkm6hkm 

ghk 
= E 

Y2 ,hk m=ifhkmdhkmShkm ' 

ghk 

= y fhkm(ahkm/bhkm)~hk m , with Y3,hk m= 1 

thk m the value of the characteristic for the 
th k th  m tract in segment of h th stratum 

fhkm the value of the characteristic for the 
th 

m farm overlap with the k th segment 
th 

of the h stratum, 

ahk m acreage of the hkm th tract 

bhk m = a c r e a g e  o f  the  hkm th  farm,  

ghk = total number of tracts in the hk th 
segment, 

I if the operator of hkm th farm resides 

dhk m in the  hk th  = segment 

0 otherwise , 

1 i f  hkm th farm i s  in D 1LJD 2 

6hkm = 0 otherwise . 

^ 

The estimator YD3,L_ is computed from the list 

samples in the extreme operator (EO) strata: 

n 
^ 

YD3,L = Y'~cEo(N~/n£)kE I= Y~k (2.3) 

where Y%k = the value of the k th farm in the %th 
stratum, 

N~ = the population size of the ~th 
stratum, 

n£ the sample size of the ~th = s t ratum, 
EO = collection of list strata with 

extreme operators. 

The definition of EO strata from the list pop- 
ulation depends on the state. For example, the 
EO strata for Indiana hogs consists of 3 strata 
defined by the size of the farms" 1000-1999 hogs, 
2000-4999 hogs, and more than 5000 hogs. The 
biggest stratum is sampled with probability I. 
The rest of the EO strata are sampled at the rate 
of approximately one-quarter and one-half, 
respectively, for each of the strata. 

The above three estimators are area-oriented. 
The fourth estimator is list-oriented. A version 
of it can be written as 
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: YDI,A3 + P'YD2,A3 + (I-P')YD2,L 

+ PYD3,A3 + (I-P)YD3,L 
^ 

where YDi,A3 d e n o t e s  t he  w e i g h t e d  a r e a  e s t i m a t o r  
^ 

f o r  domain Di ,  and YDi,L d e n o t e s  the  l i s t  e s t i -  

ma to r  f o r  domain Di .  The c o n s t a n t s  p and p '  a r e  
s e t  to  ze ro  in  the  p r e s e n t  p r o c e d u r e s .  T h e r e f o r e ,  
the fourth estimator, called multiple frame 
s c r e e n i n g  e s t i m a t o r ,  i s  g i v e n  by 

Y4 = YDI,A3 + YD2,L + YD3,L (2.4) 
^ 

The component  YD1,A3 i s  d e f i n e d  as 

nh ghk ! 

YD = y' eh Y Y fhkm ( ahkm/bhk m) 6hk m , (2.5) 
1,A3 hell k=l  m=l 

where 
' II0 if hkmth farm e D 1 

6hkm = otherwise 

and all the other terms are defined as before. 
^ ^ 

The component YD2,L is defined as YD3,L in 

equation (2.3) except the summation is over 

e EO c. The set EO c denotes the collection of 
the list strata which are not the EO strata. 

The estimators Y., i = i, 2, or 3, are basical- 
I 

ly derived from the area frame. However, the list 
estimator replaces the area estimator for the 
farmers classified as extreme operators. This 
perhaps could be interpreted as a robust proce- 
dure taken by SRS to reduce the influence of the 
big farms in the area sample. Further study of 
robust estimation in surveys is needed. 

The variances and covariances of the four pre- 

liminary estimators denotes by v.. are estimated 
lJ 

by SRS and given in Kuo (1986a or b). 

3. Composit e EstLimati0n _. In this section, 
composite estimation is explained and is special- 
ized to the SRS situation. A heuristic argument 
for composite estimator for the simplest case is 
given below. 

Let us assume there are two independent and 
for the same pard- unbiased estimators YI and Y2 2 2 

meter Y with known variances o I and 02, respec- 

tively. Let us propose 

: cY I + ( l - c l Y 2  
C 

where c is a constant with values between 0 and I. 
Then 

EY = Y 
c 

22 22 
V(Yc ) = c o I + (l-c) 02 . (3.i) 

To minimize V(Y ), we should choose c to be 
C 

2 2 2 
c o = 02/(01 + 02 ) • 

The minimal variance can be obtained from (3.1)" 

2 2 2 2 
V(Yc ) = °1°2/(°1 + 02) " (3.2) 

0 

Note that the expression of (3.2) is always 

2 2 
smaller than o I and 02 . See Schaible (1982 and 

1979) and Royall (1979, pp. 85-86) for more dis- 
cussion on composite estimation. 

In general, the variances of Y1 and Y2 are 

unknown. However, they can be estimated from the 

data. The estimated variances are denoted by ~2 

°2" Therefore, the composite estimator is and 

given by 

Since the weight for the composite estimator 
is now a function of the data, equation (3.1) 
can no longer be used to evaluate the variance of 
the composite estimator. Nevertheless, the vari- 
ance of the composite estimator can be estimated 
by sample reuse methods such as jackknife, boot- 
strap, random group, and balanced repeated 
replication. 

To generalize the above idea to the situation 
at SRS, let us propose a family of linear com- 
binations of the four preliminary estimators" 

4 
Y = I w.Y. (3.3) 

w i = l  z i 

w h e r e  0 < w.  < 1 f o r  a l l  i and  Y,w. = 1.  
- -  i - -  1 

We search for the one which minimizes the 
mean squared errors (MSE's) of the estimators in 

the linear family. Note that 

f(w) = MSE of Y = E(Y - y)2 
~ 4 w w 

: X w2E(y.-Y) 2 +ZZ w.w.E(Y.-Y)(Y.-Y) (3.4) 
i= I z z i#j z 3 I 3 

where Y denotes the population total. 
Since all the second moment terms are 

unknown, they have to be estimated from the data. 
The estimation of the second moment terms will be 

^ 

treated in the next section. Let m.. denote the 
13 

estimated term E(Y.-Y)(Y.-Y). The composite 
x ^ j 

estimator, denoted by Y is derived from mini- 
w 0 

mizing 4 4 
^ 

f(w) = X Y w.w.m.. (3.5) 
~ i=l j=l z 3 x3 

subject to linear aonstraints 0 < w. < I, for 

i = i to 4, and Y w. = i. 
l 

A further refinement, motivated by the limited 
translation idea in Efron and Morris (1971, 1972) 
and Fay and Herriot (1979), is used to derive the 
final composition estimation. It depends on a 
"safety factor" K, a positive number specified in 
advance. 

I ^ ^ 

Yw0^ , if IYw0-Yll < K.SD(Y I) 

Yf = ]YI-K-SD(YI), if YI-Yw0 > K.SD(Y I) 

~YI+K.SD(YI ), if YI !w0 < -K'SD(YI)' (3.6) 

462 



^ 

where the estimated standard error SD(Y I) is the 
^ 

square root of vii given in Kuo (1986a or b). 

This refinement, limiting the amount that com- 
posite estimator can deviate from the unbiased 
estimator, is employed to guard against instabil- 
ity. One can still achieve substantial gain from 
the composite estimation. 

A program using Lagrange multipliers and the 
PROC MATRIX procedure in SAS (Statistical 
Analysis System) has been written by the author 
to solve equation (3.5), a convex programming 
problem with constraints. See the Appendix for a 
detailed explanation. 

4. Estimation of Second Moments. Development 
of the estimation of the second moment terms which 
incorporates bias analysis is discussed in this 
section. 

As is seen from equation (3.5), there are four 
MSE's and six mixed central moments to be esti- 
mated. To estimate these terms, it is assumed: 

EY. = Y + b.(Y), i = 2, 3, or 4, 
I i 

th 
where b.(Y) denotes the bias of the i estimator. 

i 
To estimate the second moment terms, we use 

the following identity. 

m.. = E(Yi-YI)(Yj-Y I) + Cov(Y 1 Yi ) lj 

+ Cov(YI,Yj) V(Y I) (4.1) 

for all i and j. 

It is verified in Kuo (1986a) by inserting YI in 

the first step and then Y in the second step in 

the expansion of E(Y.-Y)(Y.-Y). i j 
Unbiased estimates of the mixed central moment 

terms, and refinements over the unbiased esti- 
mates of the MSE terms can be obtained as 
follows. 

^2 ^ (4 2) 
mll = vii , 

m.̂ 2. = max{(Yi-Yl)2 + 2Vli _ vii,vii} ' 
ii 

i = 2, 3, or 4, (4.3) 

mlj = Vlj , for j # i, (4.4) 

mij = (Yi-YI)(Yo-YI) + Vli + Vlj - vii, 

for i,j # I, (4.5) 

where relevant v..'s are given in Section 2 of 
lj 

Kuo (1986a or b). 
^2 

The maximum function in m.. is employed to 
Ii 

ensure that the estimators for the bias squared 
terms are nonnegative. 

Equation (4.3) enables us to obtain an unbias- 
ed estimate of the bias squared term b2.(Y), for 

i 

i # i. A refinement over this unbiased estimate 
is given by 

~2 = max{(Y ^ )2 ^ 
i-Yl + 2Vli - vii - vii,O}. (4.6) 

5. Variance and Mean Square d Error Evaluation 
of the ComP.osite Estimator.-- .......... 

5.1 Description of the Jackknife Method in 
General. The Heuristic argument for using com- 
posite estimation has been given. The variance 
and mean squared error estimates for the compos- 
ite estimator are needed to justify the gain in 
using composite estimation. The jackknife method 
is used to estimate variance and mean squared 
error. This method is adopted because of its 
simplicity of explanation and ease of programming. 
See Efron (1982), Wolter (1985)for expositions on 
sample reuse methods. 

Assume the^data are divided into g independent 
groups. Let Y(k) be an estimator derived from the 

data with k th group deleted. The k th pseudo-value 

* = gY - (g-l)Y(k ' where of Y is defined to be Y(k) ) 

is the estimator based on the full sample. 
The jackknife estimator of the variance of Y is 

given by 
~Q) -I I g * -* 2 

vj( = g (g-l)- (Y(k)-Y) (5.1) 
k=l 

where 
_, g , 
Y = Z Y( /g . 

k= I k) 

Y an estimator other than YI' then the If is 

mean squared error of Y can also be estimated by 
the jackknife method. 

MSEj(Y)- = (Y - -YI )2 + 2g-].(g _ i 
)-l 

g . _~* * 
- I (Y( )(YI -~*) (5 2) 
k= I k) (k) " 

--* 2 
-g (g-l)- (k) 

k=l 

* kth $, 
where Yl(k) is the pseudo-value of 11 . 

5.2 Special Construction of the Groups for 
SRS Data. Due to the different constructions by 
SRS of the replication codes of the area and list 
samples, formulations of the groups of data for 
the jackknife method are slightly different 
between the area and the list sample. The repli- 
cation codes in the area sample, which usually run 
from i to i0 or i to 5 for each land use stratum, 
are used. A land use stratum defined at the 
beginning of Section 2 is a collection of paper 
strata. The replication codes for each list 
stratum were generated by the author using random 
numbers. Several (3 or 4) replications are con- 
structed for each list stratum. 

The k th (i < k < d where d < g) jackknife esti- 

mate is computed by deleting the k th replicate of 
each land use stratum (i.e., deleting each segment 
from each paper stratum in the same land use 
stratum). The expansion factor e h is adjusted by 

multiplying the number of replicates and dividing 
by the number of replicates - i in each land use 
stratum. The number d is the total number of 
replicates for all land use strata. 

The k th (d + I < k < g) jackknife estimate is 
computed by deleting each replicate from each list 
stratum sequentially. The adjustment on the 
expansion factor is discussed in Kuo (1986a or b). 
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No data are deleted from the self-representing 
stratum (the largest EO stratum). 

Variance and mean squared error evaluations 
for Indiana and Minnesota are given in this 
paper. The numbers d and g for Indiana are 31 
and 55, i.e., the area sample is divided into 31 
groups, the nonself-representing list sample is 
divided into 24 approximately independent groups 
(6 strata with 4 groups each). The numbers d and 
g for Minnesota are 30 and 60, where 30 approxi- 
mately independent groups from the list sample 
are derived from i0 strata with 3 groups in each 
s t rat um. 

Empirical evaluations for the two states also 
reveal that the variance estimates for the com- 
posite estimators are more sensitive to outliers 
from the pseduo-values. Consequently, the 
Winsorized variance estimates and the mean 
squared error estimates are used here. Ten per- 
cent from each end of the pseudo-values of 
Indiana's data and 15 percent from that of 
Minnesota are Winsorized to obtain the variance 
and covariance estimates. 

6. Numerical Results. The data are from the 
,, 

1984 June Enumerative Survey conducted by SRS. 
Summary statistics for Indiana and Minnesota are 
given in Tables I and 2. Numerical results for 
four more states, Iowa, Kansas, Missouri, and 
Ohio, are given in Kuo (1986a or b). 

^ 

Seven estimates, denoted by Yi' i = 1,...,7, 

are given for the total hogs and pigs inventory. 

The estimates Y., i = I,...,4, are the tract, 
i 

farm, weighted and multiple frame screening 
^ 

estimates defined before. The estimate Y5 is the 

composite estimate defined by (3.6) for any K > I. 
^ ^ 

The estimate Y6 is derived similarly to Y5 except 
^ 

by setting = w 3 = 0. The estimate Y7 denotes 
W 2 

the official CRB statistics published in the 
Livestock Series" Hogs and Pigs (Crop Reporting^ 
Board,-J1984). The opti--mal weights (denoted by w) 

^ 

for the components of Y5 derived from equation 

(3.5) are given in the tables. The optimal 

y weights for 6 are denoted by w. 

All the standard errors and root mean squared 
errors of the four preliminary estimators are 

^ ^2 
obtained by taking square roots of v.. and m... 

ii ii 

These estimates are given in the tables denoted 

and "i~" Two estimates of bias of Yi' by SD. 
i 

i = 2, 3, 4, are given. One is obtained from 
^ 

equation (4.6), i.e., b. or -b.. A second esti- 
l i 

mate is an unbiased estimate of the bias, i.e., 
^ ^ 

b i = Yi - YI" The mean squared error matrix of 
^ 

the four estimators with entries m.. is also 
lj 

given in each of the tables. 
The jackknife method can be used for any esti- 

mators from probability surveys. Therefore, for 

each of the estimators Yi' i = I,...,6, we can 

compute its variance and mean squared error 

estimates as in Section (5.1) with Y replaced by 

Y.. The Winsorized variance estimates and mean 
i 

squared error estimates are used in Tables i and 
2. They are denoted by SDJKR.I and ~-SQJKRi, 

i = 1,...,6. When i = 1,...,4, the quantities 
SDJKR. and M~-SQJKR. could be compared to SD. and 

l i i 

MS~~i , which are computed from the full sample 

using the stratified design, to determine the 
goodness of the variance estimates by the jack-~ 
knife method. All the numbers here except wi, w i 
and m.. are expressed in thousands of heads lJ 

for easier examinations. 
Further research and improvement on the vari- 

ance estimators by sample reused methods will be 
needed. However, the numerical results in each of 
the tables present enough evidence to show that 
the composite estimator performs very well. Exam- 
ining the mean squared errors and mixed moments of 
the preliminary estimators, it can be seen that 
the composite estimate is very effective in se- 
lecting the desirable components, i.e., the com- 
ponents with small mean squared errors or the 
components which are negatively correlated. 
Numerical results for four more states given in 
Kuo (1986a or b) also reveal similar performances 
for the composite estimator. 

7. Conclusion. This paper provides a com- 
posite estimation methodology which combines the 
different preliminary estimators used by SRS into 
one by minimizing the mean squared errors of the 
combined estimators. Some numerical results from 
the 1984 June Enumerative Survey are presented. 
Further research on related topics is discussed 
in Kuo (1986a or b). 

APPENDIX" Convex Prosramming to Search for Com- 
~osjite Weights. From equation (3.5) in the text, 
we need to minimize 

f(w) = ZY.w.w.m.. (A.I) 
~ i j lj 4 

subject to 0 < w. < I for all i, and Y.w. = I. 
-- i-- i= I i 

Let the inequality constraint functions be denoted 
by gi(w) = w. for all i. The Lagrange multiplier 

~ i 

technique is applied. A necessary and sufficient 
condition for the minimum to exist is as follows 
(see Avriel (1976))" There exists u, w i and posi- 
tive constants %., i = I,...,4, such that 

i 

%igi(w) = 0 for all i 
(A.2) 

Vf(w) - E%iVgi(w) - uV(gw.-l) = 0 
• ~ i ' 

1 

and the w's satisfy the constraints of (A.I). 
There are nine equations with nine variables 
(four w's, four X's, and one u) in equation (A.2) 
to be solved simultaneously. The function SOLVE 
in the PROC MATRIX procedure is used to solve them. 
Basically, the program searches for the minimal 
value of (A.I) among all cases of the possible 
combinations of the preliminary estimators: com- 
bination of all the four, three at a time, two at 
a time, and just the preliminary estimators. A 
more detailed programming explanation is given in 
Kuo (1986a or b). 
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Table 1. ~ r y  S t a t i s t i c s  for  Indiana 

(1,000) 
- i  - i  svl sDJ-1 ~ ~ ~,, bi 

(1,ooo) (i.o0o) ( i , o o o )  (1 ,ooo )  ( i , o o o )  ( t , o o o )  (1 ,0oo)  

A 

mlj 

l 2 3 4 

1 3,367 0 0.829 613 369 413 369 0 

2 3,197 0 610 507 588 568 352 

3 3,616 1 249 205 249 205 0 

6 6,331 0 0.171 178 183 886 909 866 

5 3,616 253 219 

6 3,532 677 486 

7 4,300 

0 1 .703g l l  

430 1 .654g l l  3.454E11 

269 7.007E10 1.723E11 6.213R10 

964 1,171KIO 6.212EII 1.516EII 7.819~II 

I . . . . . . .  III . . . . . . . . . . . . . . . . . . . .  I I  I l I I l l .  I l I I I J i - J . . . .  i . . . . . . . . . . . .  - ' ' ~  ' ~  'm i  

Table 2. Summary S t a t i s t i c s  for Hlnneaota ^ 

mlJ 
M 

(1,ooo) (1,ooo) (1,ooo) (t,ooo) (1,ooo) (1,ooo) (1,ooo) 

! 4,899 0 0.652 699 551 699 551 

2 5,226 0.233 716 765 733 763 

$ 4 ,645 0.563 395 483 393 483 

t 3,753 0.204 0.348 237 279 941 1,054 

5 4,598 665 710 

6 4,500 686 777 

7 3,870 

0 

234 

0 

-911 

0 4.883EII 

328 4.741~II 5.673EII 

-254 2.151KII 1.179EII 1.559BII 

-1 ,145  3,116K10 -3.581~11 4.600B10 8.862111 
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