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auxiliary variable is available for only a sample 
I. INTRODUCTION of units then it is no longer feasible to 

condition on the sampling outcome since without 
knowledge of the auxiliary variable for all units 

The use of supplementary information to increase in the universe we cannot know which sample was 
the accuracy of estimates made from sample survey selected. That is, inferences in prediction 
data is an important foundation of both theory can condition on the sample because by 
superpopulation prediction theory (also refered to comparing the sample values of the auxiliary 
as model based sampling theory) and composite variable with the nonsample values of the 
estimation. The background for superpopulation auxiliary variable we essentially know which 
prediction theory is covered in papers by Royall, sample was selected. 

Therefore, in a prediction theory approach to 
Cassel, Sarndal, and Wretman in the reference composite estimation, estimators must be analyzed 
list. Composite estimation is discussed in the with respect to both the sampling distribution and 
papers by Wolter and Woodruff. the superpopulation distribution. The 

Composite estimation (as discussed by Wolter, superpopulation distribution will usually suggest 
Woodruff, and others) is used in repeated surveys a best linear unbiased estimator (BLUE) for the 
where data is collected at regular intervals (each updated component of the composite estimator. 
month, quarter, or year). In composite This model based composite estimator which uses 
estimation, sample data from previous time periods the BLUE will in most cases be superior to the 
is used to improve survey estimates for the composite estimators suggested by design .based 
current time. Implicit in the theory which sampling theory alone. 
justifies the use of composite estimation is the Section two of this paper defines a 
assumption that data collected at time t from a superpopulation model, derives a model based 
sample unit is highly correlated with the data composite estimator based on this model, and 
from the same unit at time t-l. This assumption analyzes its theoretical properties. A ratio 
allows an alternate estimate of level at time t to composite estimator founded on design based 
be constructed from an update of the estimate at sampling theory is also proposed as a standard for 
time t-l. This alternate estimate of level at comparison with the model based composite 
time t can then be averaged in an appropriate way 
with the usual survey estimate at time t to get estimator. In section three, these two composite 
what is known as a composite estimator of level at estimators are compared both theoretically and 
time t. This work on composite estimation is empirically and the results of this comparison 
founded on sampling distributions alone and does are tabulated. 
not directly use superpopulation models. The 
theory of survey sampling based on artifical 
randomization in the sample selection process 
(also refered to as design based sampling theory) 
is covered in the texts by Hansen, Hurwitz, & 
Madow, Kish, Raj, and Cochran which appear in the 
reference list. 

In prediction theory a superpopulation model 
based on auxillary information or variables is 
used to improve the accuracy of survey estimates. 
In this case the auxillary information is 
available for each unit in the universe and is 
related to the sample data by the superpopulation 
model. A linear superpopulation model will often 
imply a correlation structure between the survey 
variable and the auxiliary variable which is very 
similar to the correlation between the data from 
adjacent time periods that composite estimation 

depends upon. In this paper we will treat the 
data from the preceding time period as an 
auxiliary variable which is related to the data 
for the current time period by a superpopulation g(Yi ) = ~x.1 for all l<i<N 
model. 

An important difference between superpopulation 2 2 
prediction theory and composite estimation is that ~(Yi ) = o x i for all l<i<_N 
in prediction theory the value of the auxiliary 
variable is known for each unit in the population 
while in composite estimation the correlated data where ~ and c are positive constants independent 
from the preceeding time period is known for only of i, g( ) denotes expectation, and ~( ) denotes 
a sample of units in the population. Another variance. The {Yi } are uncorrelated. 

important difference is that composite estimators Let s be the sample of population units from 
are analyzed with respect to the sampling x 
distribution while in prediction theory the sample which the auxiliary variable, x, is observed and 
is conditioned upon and the analysis is conducted let Sy be the sample of units from which the Y 

with respect to the superpopulation distribution, variable is observed. In terms of a continuing 
The purpose of this paper is to analyze survey y is the variable of interest for the 

composite estimation using not only the sampling current estimate of the population mean and x is 
distribution but also the implicit superpopulation the same variable for the preceeding time period. 
distribution. Another way to think of this is as Thus s is the current sample and s is the sample 
an extension of prediction thoery to situations Y x 
where the auxiliary variable is known for only a for the preceeding time period. We will further 
sample of units from the universe. When the assume that s x is a simple random sample without 

2. SAMPLING SCHEME AND ESTIMATORS 
Let Y. denote a random variable attached to the 

I 
.th 
1 population unit where l<i<_N and N is the size 
of population. Let Yi denote the realization of Yi 

and let U denote this population (universe). In 
this paper we will be concerned with estimating 

the population mean, denoted y, of the {yi }. 

N 1 

Y = -  ~ ,  Yi 
N i : 1  

For  e a c h  o f  t h e s e  random v a r i a b l e s  Y. l e t  x .  be 1 1 
t h e  a u x i l i a r y  v a r i a b l e  such  t h a t  t h e  f o l l o w i n g  
l i n e a r  mode I h o l d s  : 
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replacement and Sy consists of two components as 

follows. The first component is a simple random 
sample without replacement of size m from s and 

x 
the second component is a simple random sample 

N 

without replacement of size n-m from s . Where n 
x 

N 

is the sample size of both s and s . s denotes 
x y x 

the compliment of s in U Note that s is 
x " y 

unconditionally also-a simple random sample 
without replacement although conditional on s Sy 

is a stratified sample, x' 

If the {xi} were known for all units in U then 

the BLUE for Y would be" 

fy + (l-f)~x 
c 

where" ~ = (l/n) ~ (Yi/Xi) , 

iEs 
Y 

xc = (i/(N-n)) ~, x i , 

i~U-s 
Y 

and f = n/N. 
^ 

is unknown but x is, conditional on s , an c c y 

unbiased estimate of x . 
c 

Xc = (I/(n-m)) ~ x. where 
1 

i~s As 
y x 

N 

(Note U-Sy Sy the complement of Sy in U) 

Similarly, ~ is unknown but ~ is, conditional 

on Sy,  an u n b i a s e d  e s t i m a t e  o f  ~. 

where ~ = (l/m) ~, (Yi/Xi) 

i~s ns 
y x 

If we replace ~ and x in the model BLUE with 
c 

their sampling estimates, ~ and Xc' we get an 

estimator for Y with variability which comes from 
both the sampling distribution and the super- 
population distribution. In order to reflect this 
increase in variance we replace f with s where 

s is a real number chosen to minimize E(e - 9) 2 
^ 

where e is our prediction theory composite 
estimator and is defined as- 

C 

Let" 

E 1 = E(~x c - 9) 2 

E 2 = E(y - Y) 

E 3 = E[(~x c - Y)(y - Y)] 

Then E(e - 9) 2 = s2E 2 + (I-=)2EI + 2=(l-s)E 3 and 

the value of ~ that minimizes this expression is 

denoted s ° and is found to be" 

o 
s = (E 1 - E 3)/(E 1 + E 2 - 2E 3) 

Recall that the above expectations are taken 
with respect to the unconditional sampling 
distribution and the superpopulation distribution 

where the {x.: I~iSN} are the auxiliary variables. 
1 

Thus the samples and sample intersections 
contained in this estimator are simple random 
samples without replacement.Therefore, the 
expectations El, E2, and E 3 are: 

E1 = ({c2/m} + ~2)[({i/[n_m]}_{i/N})S2 + ~2] 
x 

2 + ~2({o2/N} + ~2) + ({N-I}/N2)o2S x 

_ 2 ~ 2 ( { o 2 / N  } + ~ 2 ) .  

E 2 = (i/n - I/N)(S2{$ 2 + [(N-I)/N]o 2} + o2X2). 

E 3 = (I/n - I/N)o2X 2 

2 (1/{N-I}) ~, _ ~)2 Where Sx= (x i 

iEU 

and X = (l/N) > x i • 

ieU 

For N sufficiently large these three expectations 
can be closely approximated by" 

E 1 ({o2/m} + B2)(i/[n-m])S 2 + (o2/m)X 2 
x 

• x 

E 2 (i/n)(S {B 2 + 0 2 } + o2X2). 

E 3 (I/n)o2X 2 

E(e - 9) 2 evaluated at s=s ° is equal to" 
2 

(EIE 2 - E3)/(E I + E 2 - 2E3) 

^ 

If y and e are compared as estimators of Y then 
^ 

a m e a s u r e  o f  t h e  r e l a t i v e  i m p r o v e m e n t  o f  e o v e r  y 
is the ratio" 

E ( e  - Y)2/E 2 evaluated at s = s ° 

o 
This ratio along with s are functions of two 

papameters. These papameters are a = o2/B 2 and r = 

S2/X 2.- a measures the dispersion of the data 

generated by the superpopulation model given the 
auxiliary variable and r measures the dispersion 
of the auxiliary variable (x). The approximate 
sampling correlation between the pairs {(xi,Yi)- 

l<i<N} is also a function of a and r. 
Recall that for a simple random sample without 

replacement from which two variables, (z,w), are 
observed for each sample unit we have that the 
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sampling correlation between these variables is" 

22½ 
Pzw = Szw/[ SzSw] 

Where Szw = (1/[N-I]) ~ (z i - Z)(w i ~) 

itU 

If the variables z and w are replaced in the 
above expression by x and y then the sampling 
correlation between the auxiliary variables {x i} 

and the realizations of the random variables {Yi } 

is obtained. Denote this sampling correlation as 

S . Then S 2 and S (where S 2 is defined as S ) 
xy y xy y yy 

are themselves random variables through the 
superpopulation distribution on the set {Y." i 

l<i<N}. If S and S 2 are replaced with their 
xy y 

expected values in the formula for the sampling 
correlation, Pxy' and N is sufficiently large so 

that (N-I)/N i, then this correlation can be 
approximated as : 

• 

Pxy BS /(S4[B2x + 02] + °2X2S2)½x 

Rewriting Pxy in terms of a and r we get" 

= {I + a + a/r} -½ Pxy 
This measure of sampling correlation will be 

useful later on for comparing the model based 
approach to composite estimation with the usual 
approach where only sampling variability is 
considered. 

The optimal value of ~, the relative gain, and 
the optimal value for the size of the overlap, m, 
will now be written as functions of a and r. Let 
L=a(i/m - l/n) + r(i/{n-m}) + ar(i/{m[n-m]}) Then 

O = L/(L + r/n + ar/n) The relative gain of the 
composite estimator was defined as the ratio of 

the expected squared error of y to the expected 
^ 

squared error of e evaluated at s ° and this is" 

E(e - Y)2/E(y - ~)2 = 

[GH - a2/n2]/[H(G + r/n - a/n + ar/n)] 

Where G = a/m + r/(n-m) + ar/{m(n-m)} and 
H = (i/n)(r + ar +a) 

The value of m that minimizes this ratio is found 
to be" 

O ! m =[-a(r + n) + {ra[r + n][a + n]}2]/[r-a] 

This largely completes the theoretical analysis 
^ 

of e with respect to the superpopulation model. 
^ 

Next we will compare e to the usual composite 
estimator for a sampling problem where a ratio 
estimator of change between adjacent time periods 
is suggested by the sampling correlation. This 

estimator is denoted d and is defined as follows" 

o_ 

= Xy + (1-X)~x 

Where 0 < X < I, x=(i/n) ~ x i , 

its 
x 

and ~= [ ~, yi]I ~ xi]-i 

i~s ns its As 
x y x y 

The optimal value of X for minimizing E (d - 9) 2 
S 

where E s denotes the expectation with respect to 

the sampling distribution, is" 

X = X ° = (A I - A3)/(A 1 + A 2 -2A3) 

o_ 

Where A I = E s(Bx - 9) 2 

A2 = Es(Y _ ~)2 

A 3 = E s(y - <f)(~x - ~f) 

Note that as with design based finite population 
sampling theory the stochastic structure comes 
from the sampling distribution only. Thus the 
optimal value for k is evaluated with respect to 
the sampling distribution and conditional on the 
outcome of the superpopulation distribution. 

V---n 

Let R = Y/X , where X =(l/N) > x~ , then" 
L_.____J 

itU 

A 1 = ({i/m} - {I/N})S 2 + ({i/m} - {I/n})R2S 2 
y x 

+ 2({I/n} - {1/m})RS 
xy 

A 2 = ({l/n} - {I/N})S 2 
Y 

A3 = ({l/n} - {1/N})S 2 + RS ({m/n 2} - {l/n}) 
y xy 

Note that all three of these quantities are 
functions of things that are random variables with 
respect to the superpopulation model and therefore 

A1, A 2,  and  A 3 a r e  random u n d e r  t h e  m o d e l .  T h i s  

will present a small problem when we try to 
^ 

compare e and d. 
In order to slightly simplify a composite 

estimator like d it is often assumed that S 2 = S 2 
x y 

= S 2 and if this is done in the case of d, %o can 
be written as: 

k ° = w/z 

Where w = [i + R2- (2- {m/n})RPxy ] 

and z = [i + R2- (2- {2m/n})RPxy ] 

With this value of X ° Es(d ~)2 . , - Is minimized 

for each outcome of the superpopulation model (YI' 

Y2' "''" yN ). Note that X ° is itself a random 

variable through the superpopulation model. Thus 
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E(d - ?)2 = gE(d - ~)2 is minimized for these 

values of ko which are dependent on (YI' Y2' 

...... yN). In practice the composite estimator 

is relatively robust against misspecification of 

~o and the variability of ~o over the different 
superpopulation outcomes is small, thus for 

^ 

purposes of comparing e and d, ~o will be choosen 

to minimize E(d - 9)2 rather than the more usual 

procedure of minimizing Es(d - 
?)2 

for each 

different outcome of the superpopulation 
distribution. Technically the latter procedure is 
preferable but as stated above minor deviations 
from the optimal weight will have little effect on 
accuracy in most practical situations and with the 

~o based on minimizing E(d - ?)2 we can compare e 

and d for various superpopulation distributions. 
The primary reason for the superiority of the 

^ 

model based composite estimator, e, over a more 

usual composite estimator like d is the form of 
^ 

the second component of e which is suggested by 
the BLUE under the given model. 

The value of ~ which minimizes E(d - 9)2 is" 

If the universe size is sufficiently large and 
the population U can be thought of as increasing 

in such a way that each set ~N = {x~/~3" I N i 

N} is bounded above by a positive constant which 
is independent of N then for N sufficiently large 
we have: 

g(Al)/82~[2 = (a/m)(r + I) + r/n 

$(A2)/B2X 2 = (a/n)(r + i) + r/n 

g(A3)/B2X 2 = (a/n)(r + i) + (m/n2)r 

With these expected values standardized by ~2~2 
the optimal value for ~ is: 

)%t _. 

a(r + l)(i/m - i/n) + r(i/n -{m/n2}) 

a(r + l)(I/m - l/n) + r(2/n - {2m/n2}) 

The relative gain from using d in place of y is- 

E(d - Y)2/E(y - ?)2 = (x-~)/(~) 
Where" ~ = ((a/m) (r+l)+(r/n)) ((a/n) (r+l)+(r/n)) 

= ((a/n) (r+l)+(mr/n2)) 2 
= a(r+!)((1/m) - (l/n)) 

2 
+ r((2/n) - (2m/n)) 

= (a/n)(r+l) + r/n 

In the next section we compare the relative 

gains of d and e for various values of a and r. 

3. TABULAR RESULTS; THEORETICAL AND SIMULATED 

In this section the relative gains of d and e 
will be compared for various values of a, r, and 

^ 

m. The theoretical relative gains of d and e at 
o 

m=m . were derived in the previous section and are 
tabulated for certain pairs, (a,r). These 
theoretical relative gains are supported by an 
empirical study using a Bureau of Labor Statistics 
employment data set. Although the theoretical 
results may be legitimately criticized because 
they depend on an assumed superpopulation model 
the empirical results substantially support the 
theory even though the simulation data sets are 
clearly the result of a process which is only a 
very crude approximation of the superpopulation 
model of section two. 

^ 

In the previous section the relative gains of e 

and d were derived as functions of a and r but 
these functions are a little to complex to be very 
informative. In order to see how these relative 
gains behave as functions of a and r they are 
tabulated in Table one for values of a and r 
between zero and .5. In these tabular comparisons 

^ 

m=m °, the optimal value of m for e, was used in 
^ 

the formula for the relative gains of both e and 

O . 

d. It was found that m is an upper bound for the 

optimal overlap of d and that the relative gain of 

at m ° was, for all practical purposes, the same 
as its relative gain at its optimal value of m 
(within one percent). Although the relative gain 

of d was reduced very little by using the optimal 

overlap of d in place of m ° these two optimal 
overlaps were occasionally quite different from 
one another (difference of i0 or more units). In 
addition Pxy was included for each value of a and 

r. 

It was found that these relative gains are 
almost unaffected by misspecification of the 
population parameters used to estimate the optimal 

weights ~o and o. Since, in practice, these 
parameters must be estimated this robustness 
property is important. In addition, small 

O 

deviations of m from m were also found to have 
relatively little affect on these relative gains. 
Thus, the most important sourse of variation in 
these relative gains comes from the variation of 
the pair (a,r) and this is what is tabulated in 
Table one. In this section n=50. 

It is immediately evident from examining Table 

one tha~t e is superior to d under the criterion of 
relative gain. The definition of relative gain 
implies that the smaller the relative gain the 

^ 

better the estimator. The relative gain of e is 
generally more than 10% less than the relative 

gain of d except in the extreme cases where either 
no composite estimator should be considered 
because Pxy is very small or either composite 

estimator will work well because Pxy is very close 

to one. 
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Table I. Theoretical Relative Gains 

r 

.01 .II .21 .31 .41 .46 

a 
^ 

Gain e 001 .65 

Gain d .71 

Pxy .95 

^ 
Gain e i0 .99 

Gain d 1.00 

Pxy .30 

^ 

Gain e 20 .99 

Gain d 1.00 

Pxy .22 

^ 

Gain e 30 1.00 

Gain d 1.00 

Pxy .18 

^ 

Gain e 40 1 O0 

Gain d 1 .00 

Pxy .16 

^ 
Gain e 45 1 .00 

Gain d 1.00 

Pxy .15 

.55 

.57 

.99 

.85 

.94 

.70 

.90 

.97 

.57 

.93 

.99 

.50 

.94 

.99 

.45 

.94 

.99 

.42 

.53 .53 .52 .52 

.55 .55 .54 .54 

1.00 1.00 1.00 1.00 

.78 .74 .71 .70 

.89 .86 .84 .83 

.80 .84 .86 .87 

.84 .80 .76 .75 

.95 .92 .91 .90 

.68 .74 .77 .78 

.87 .83 .79 .78 

.97 .95 .94 .93 

.60 .66 .70 .72 

.89 .85 .81 .80 

.98 .97 .96 .95 

.55 .61 .65 .66 

.89 .85 .82 .81 

.98 .97 .96 .96 

.53 .59 .63 .64 

If useful relative gain is defined as any 
relative gain less than .9 then that region of the 

^ 
(a,r)-plane (0<a<.45, 0<r<.46) where e achieves a 
useful relative gain is more than twice the area 

of the region of this plane where d achieves a 
useful relative gain. Therefore there are many 
situations where the model based composite 

^ 

estimator, e, will still be useful when the design 

based composite estimator, d, would not be 
considered because of its relatively puny 

^ 

improvement over y. Note also that e attains a 

useful relative gain for values of Pxy of (0.7) or 

greater and in some cases for values of Pxy as low 

as .53 (see Table I a=.45 and r=.21), d generally 
requires a value of Pxy greater than .8 to achieve 

a useful relative gain. 

Table 2 is concerned with the behavior of e and 

on real data where our hypothetical 
superpopulation model is but a crude explanation 
for the process which generated the data. This 
data set consists of employment for the months of 
March 1983 and January 1984 for 2000 hospitals 
with March 1983 employment between 50 and 250. 
From this universe of 2000 hospitals the sampling 
was done as described in section two with n=50 and 
m=20. The x-variable was the March 1983 employment 
and the y-variable was the January 1984 
employment. The sample data was used to estimate 

the various parameters needed for e and d .  These 

are ko o , ~ , and certain other parameters needed in 
their estimators. 

For ko, we use (a I - a3)/(a I + a 2 - 2a 3) 

where al=(i/m)s 2 + ({I/m} - {i/n})~2s2 
y x 

o 

+ 2({i/n} - {i/m})$s xy 

2 
a2=(i/n)Sy 

is" 

a3=(i/n)S2y + ~Sxy({m/n 2} - {I/n'}) 

2= ~ (Yi - ~12 Sy 
s As 
y x 

2 ~, _ x)2 s x = (x i 
s As 
x y 

Sxy = ~ (x i - x)(Y i - 9) 
s A s  

x y 

^ 
The estimator for the optimal ~ to be used in e 

(e I - e 3)/(e I + e 2 - 2e 3) where" 

el = [o2/m + ~2] [i/(n-m)]s2 
x 

[ 2(~2 + 02)+ ~ 2 ( X 2  - s2/n)] 
e 2 = (l/n) s x 

e3 = (i/n)o2[x 2 - s2/n] 

~2 : (1/{n-m}) ~ ,  ( Y i -  ~xi )2/x2 
s A s  

x y 

g2 = g2 _ ~2/(n_m) 

With these sample data based estimates for the 
superpopulation parameters and the population 

Table 2. Simulated Relative Gains 

Popular ion 6 RG (e) RG (d) 
Correlation 

1 53 

1 80 

1 84 

1 85 

1 82 

1 83 

2 22 

2.17 

2.03 

2.01 

1.96 

2.16 

1.86 

1.82 

i .  84 

1.82 

1.84 

65 .74 

73 .88 

69 .83 

93 .94 

79 .89 

88 .97 

71 .87 

85 .97 

79 .92 

93 .95 

82 .91 

89 .97 

73 .89 

71 .85 

95 .97 

83 .93 

90 .98 

4 5 8  



^ 

parameters the estimates, e and d were 

constructed. Then their squared errors, (e - ~)2 

and (d - ~)2, were computed. This was replicated 
150 times and these squared errors were averaged 
over these 150 replications to obtain the 

empirical relative gains for e and d. These 
empirical relative gains are contained in Table I 

and denoted as RG(e) and RG(d) where: 

is the set of 150 replications. RG(d) is 
similarly defined. For this hospital data set the 
correlation, Pxy' was .96. In order to compare 

these two composite estimators on a greater 
variety of populations where this correlation was 
much lower than .96, noise was injected into the 
y-variable (January 1984 data) and the simulation 
was rerun. These derived populations are 
classified by their values for Pxy" 

The entries in Table 2 substantially support the 
conclusions from Table I. The prediction theory 
based composite estimator remains a great 
improvement over the more classical approach even 
when the hypothesized superpopulation model is a 
very rough description of the data. In particular, 
the superpopulation model hypothesized in section 

th 
two assumes that the unit variance of the i unit 

is proportional to x 2. As a test of this variance 
1 

assumption the universe data was used to estimate 
6 where 6 was the exponent of x i under the model 

th that assumes the variance of the i unit is 

proportional to x 6. . The estimates of 6 for each of 
1 

the simulated populations are given in the column 

labeled 6. Note that d is similar to the BLUE 
under a superpopulation model with 6=1. 

As is seen by examining table two these 
estimated values of 6 all lie between about 1.5 

and 2.2 but even when 6 is 1.53 the prediction 
^ 

theory composite estimator, e, still is strikingly 

superior to d. 

4. CONCLUSIONS 
The purpose of this paper is to suggest ways of 

using superpopulation prediction theory to derive 
superior estimators for classical sampling 
problems where the sampling distribution still 
plays an essential role. The composite estimation 
problem which this paper analyzes is only one 
example of this technique. In nearly all sample 
survey situations where some kind of supplementary 
information is available about the population 
being studied a superpopulation model may be 
hypothesized and used to derive an improved 
estimator (i.e. the BLUE). The usual techniques of 
superpopulation prediction theory may not be 
directly applicable (i.e. conditionality) but 

slight generalizations of these techniques can 
produce improved estimators. The composite 
estimation problem which this paper studies shows 
that this method of combining both these 
approaches to sampling problems can be very 
benificial. 

This approach to an improved sampling strategy 
can be summarized in three steps. In step one we 
use supplementary information to hypothesize a 
superpopulation model. In step two we derive the 
BLUE under this model and in step three we use the 
sampling distribution (if necessary) to estimate 
the unknown superpopulation parameters in the 
BLUE. Thus, variability in this estimator will, in 
general, come from both the sampling distribution 
and the superpopulation distribution. For example, 

^ 

in the composite estimator, e, the x-mean for all 
the non- sample units in the population was 
estimated by its conditionally (given Sy) sampling 

unbiased estimator, the x-mean of the units in s 
X 

but not in s . 
Y 

Both the theoretical and the simulation results 
of section three demonstrate an improved approach 
to composite estimation. These results can be 
roughly summarized by saying that the prediction 
theory approach to composite estimation is as 
superior to the more classical approach as the 
classical approach is superior to the basic 

estimator y. In addition,the prediction theory 
composite estimator may give substantial 
improvements in precision in many situations where 
the classical approach to composite estimation 
would give such a very marginal improvement that 

it would not be considered worthwhile to use. 
The problems of generalizing this approach to 

composite estimation to a larger set of 
superpopulation models, of estimating variances 
for these hybrid estimators, and of extending this 
approach to other inference problems beyond 
composite estimation may be other directions in 
which to continue this work. 
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