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Abstract: To facilitate the computation of
maximum Tikelihood (ML) estimates for data aris-
ing from Randomized Response (RR) investigations,
one can view the data as mixture data, and apply
the EM algorithm. The EM formulation presented
differs from the earlier formulation, in that
now the proportions to be estimated are regarded
as the mixing proportions, leading to a simple
implementation of the EM algorithm. A general
formulation is presented for both related-ques-
tion and unrelated-question RR designs, and il-
Tustrated with applications.

I. [INTRODUCTION

The Randomized Response (RR) technique was
introduced in Warner (1965) to deal with non-re-
sponse and consequent bias associated with sur-
veys of stigmatizing traits. The development of
the RR technique since then has been quite ex-
tensive, see reviews by Deffaa (1982), Boruch
and Cecil (1979) and Horvitz, Greenberg and
Abernathy (1976). Many of the estimators for
proportions presented in the early RR literature
were claimed to be Maximum Likelihood (ML), al-
though they could produce estimates outside the
range (0, 1), as noted by Singh (1976). For
the early RR designs, a minor adjustment to the
original estimators was sufficient to make them
ML, but for many later designs, computation of
ML estimates and their standard errors is diffi-
cult, as is evident from Gould, Shah and Aber-
nathy (1969), Greenberg et al. (1971), Liu and
Chow (1976), and Bourke (1982). )

By viewing observations from RR procedures as
mixture data, one can apply the EM algorithm
described in Dempster, Laird and Rubin (1977) to
find ML estimates. The standard errors of these
estimates can moreover be easily obtained using
the results of Louis (1982). There are two ways
of viewing the data as a mixture of distribu-
tions. One can view the randomizing device as
the mixing mechanism so that the mixing propor-
tions are the chosen parameters of the random-
izing device, as in Bourke and Moran (1984).
Alternatively the proportions to be estimated
can be taken as the mixing proportions. The
latter approach is adopted in this paper.

A general formulation for estimation of a
multinomial distribution is given in Section 2.
In Section 3, the unrelated question design with
two trials for each respondent and two samples,
first described in Horvitz, Shah and Simmons
(1967), is used to illustrate two applications
of the methods developed in Section 2. The
second application also provides an example of
multivariate estimation and a test of indepen-
dence between the variates is carried out.

2. ESTIMATION OF MULTINOMIALS FROM
RANDOMIZED RESPONSE DATA

Consider a sensitive variate S having c cate-
gories of which at most (c-1) are stigmatizing.
Let the population proportion for category k be
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I - Our objective is to estimate the nk's. We

consider also a non-sensitive variate U having f
categories (usually f = c¢) and the population
proportions in these categories may or may not be
known. For brevity we refer to the true state of
a respondent with respect to variate S as the S-
level and similarly for variate U.

We consider two broad classes of RR designs:
related question designs and unrelated question
designs. In a related question design, such as
the original Warner (1965) design, the possible
questions or statements that may be put to a
respondent relate only to the variate S, while
in an unrelated question design, see Horvitz et
al. (1967), some of the questions relate to the
variate U. 'If Ar denotes the probability of the

rth response, then

A (r=1,2, ...,d) (2.1)

§
= [ L
ke rkok

where.prk = P [response r|S-level = k].
Writing (2.1) in matrix notation we get

ATRE

where R the matrix of conditional probabilities

(2.2)

{prk}’ may be termed the design -matrix of the RR

procedure. If R is square, the moment estimator

for I may give the ML estimate, but if P has more

rows than columns a numerical procedure is neces-
sary.

Two cases are considered:
Case 1: All the parameters of the design matrix
are known

This class of RR designs is considered in
Loynes (1976) and corresponds to related question
designs, or unrelated question designs with a
known distribution of the unrelated question.
For example, in the unrelated question design of
Horvitz et al. (1967) for estimating a single
proportion Mys (2.2) becomes

A p+(1-p)u (1-p)u uf
= (2.3)

A (1-p)(1-w)  p+(1-p) (V=) || 1,

where M is the probability of the response 'YES',
Ay = (1-A]), I, = (]-n]), p is the probability that

the sensitive question is put to a respondent,
and p is the known proportion with the unrelated
attribute (for an example of a sensitive and an
unrelated attribute, see Section 3).
Case 2: Some of the parameters of the design
matrix are unknown

The most familiar example of this is the
Horvitz et al. (1967) unrelated question design
with an unknown distribution of the unrelated




question, so that in (2.3) above, u is unknown.
Two samples with different values of p are then
needed to estimate H] and u. Usually the moment

estimators for n],u give ML estimates, but not
always, as shown by this data-set:

Number of
p Sample-Size 'YES' replies
Sampie 1 0.3 1000 15
Sample 2 0.7 1000 75

Here the moment estimates are 0.12, -0.03
whereas the ML estimates are 0.09, 0.

Analysis of Case 1 th

The response made by the i respondent may
be represented by a vector (xi) of (d-1) zeros
th
r

and one unity such that the element being
unity implies that the rth response was given.

The S-level of the ith
by a similar vector Zi+

respondent is represented
In EM terminology Z;

corresponds to the missing data on the S Tlevel
of the 1th If the z; were observed,
the log-likelihood for the nk's based on the

gzservat1ons (z Xi)’ i=1,2, ..

respondent.

p .s N, would

log L(g) = : [rfk Yir Zik 109 Ppy

*+ 2, Tog Hk] (2.4)

and Zik

spectively. The E step of the algorithm consists
of estimating the complete data sufficient sta-
tistics 2%1 by replacing the unobserved Z; by

. . a . re-
where Yip are elements of X3 nd z; re

their expectations %$ conditional on the observed

Xi and the current parameter estimates. Thus

1, 1)

2 = Ezy Ly = 1 1

= P T / Aps (k=1,2, ..., ¢) (2.5)

The M
ately n=

step of the algorithm then gives immedi-
1 by %? / n. The E and M steps generate
a sequence of estimates converging to the ML
estimate ﬁ. It may be noted that this ﬁ auto-
matically satisfies the restrictions on the &
viz. T >0 and = n, = 1.

The asymptotic variance-covariance matrix of

k’

~

I is readily estimated using the results of

Orchard and Woodbury (1972) or Louis (1982), and
is

t
S @.6)

o
It
lI’M >

i=1
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where é? is the vector of elements (z?k / ﬁk)
—(z;.*c / HC) from the final iteration of the al-

gorithm.
tion 3.

An example of Case 1 is given in Sec-

Analysis of Case 2
In an unrelated question design suppose that
the distribution (&) of the U-variate is unknown.

In (2.4) some of the Prk will now depend on the
unknown s and this can make the M step awkward.

To avoid this, we suggest the following approach.
Corresponding to (2.1), we have two possible ex-
pressions for Ar:

c
A= % p., I (2.7)
roogeq rkok
: (
A= I qu n 2.8)
o= Tkk

where Qg = P[response r|U-Tevel = k].

If u were known, the procedure of Case 1 could
be applied. Similarly if I were known, we could
reverse the role of I and ¥ and again apply the
EM procedure of Case 1 to estimate K- This sym-

metry can be exploited to maximize the likelihood
for I and ¥ simultaneously. Depending on whether

the missing data is taken to be the levels of the
S-variate or the U-variate, we have two possible
expressions for the log-likelihood:

log L(Ty) = 2€ 2 [yg). 24 Tog ppy

ir,k

+ 2, Tog Hk]} (2.9)
tog L{Tog) = 24 2 Ly;, Wy Tog gy

ir,k

W log uk]} (2.10)

ere z.
wh ik

and Wap is an element of the corresponding ¥

has the same meaning as zo of (2.4),

vector denoting the U-level of the 1th
As in (2.5), we see that the E step is

respondent.
2 T Pk M /Ay
Wik = Ak b /Ay

and the M step is I=23z %$ / n and R=2 x$ / n.

The observed information matrix is as (2.6)
where %? is the vector of elements S?k and

STk =@y £ md=(Zf /1), 1< ko< (e-1)



= wk - Wk -
S¥ ke(c-1) T Wi/ T Wig/ue 1 <k < (f-D)

An example of Case 2 is given in Section 3.
Although the presentation here has been in
terms of a multinomial variate S, the procedure

is also applicable to multivariate cases. In
Tamhane (1981) and Bourke (1982) RR designs for
multivariate estimation are presented, each de-
sign being represented as in (2.2). An example
of Case 1 multivariate estimation is given in
Section 3.

3. APPLICATIONS

The 2-Trial Unrelated Question Design with Two

Samples.

An application of this design to the estima-
tion of a proportion of illegitimate births is
described in Horvitz et al. (1967). The design
involved two samples.

S "In the past 12 months there was a baby

born in this household to an unmarried
woman who was living here at the time".

U "I was born in North Carolina".

The probability (pi) that the randomizing de-

vice would select statement S was kept con-
stant for each trial in sample i, 1 =1, 2.
The relevant data are reproduced in Table 3.1.

TABLE 3.1
Frequency of Responsgs
YY YN NY NN Py
Sample 1 137 271 253 566 0.7
Sample 2 512 291 215 322 0.3

We present two applications of the EM proce-
dure to this data-set; the first to illustrate
the case where some parameters in the design
matrix are unknown, the second to illustrate
multivariate estimation where all parameters in
the design matrix are known. The first appli-
cation requires that the S and U variates be
independent, an assumption made in previous
analyses of this data-set. The second analysis
not only avoids this assumption, but shows that
it is inconsistent with the data and has a sub-
stantial effect on the estimates.

3.1 Application 1
Denote the two possible S-Tevels by Z vec-

tors (1,0) and (0,1), and similarly for the U-
levels. Denote the four possible responses YY,
YN, NY, NN (YY = YES, YES) by a vector X, where

Y= (1,0,0,0) denotes YY. The matrix of con-
ditional probabilities of (2.7) for the first

sample is:
72 2 2 -
PI2P G ktaqu agu
P19, (1-u) P,Gqu
™ ™ (3.1)
p]Q](1'U) P]q]u
2 2 2
q](]-u) P1+2P1q](1-u)+q1(]-u)

The statements used were:
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where q] =1 - Pqs and p is the unknown propor-

tion of the population having attribute U. The
corresponding matrix for the second sample is
similar. The matrix of conditional probabili-
ties of (2.8) is similar to (3.1) with Pi» 9

interchanged and n replacing p, where I is the
proportion having attribute S.

" In Horvitz et al. (1967) moment estimates
for m and p were presented. Subsequently in
Gould et al. (1969, Table 4, Model 1) ML esti-
mates for 0 and u were reported, but not stan-
dard errors. The application of the EM algor-
ithm yields the results shown in Table 3.2.

TABLE 3.2
1 L S.EM) S.E.(w)
EM  0.02829 0.8616 0.0095  0.0112
Algorithm . : : .
Gould et
M oes) 0-02824 0.8616 - -

3.2 Application 2
Here, we illustrate Case 1 for multivariate

estimation by computing ML estimates for Hij

where 1 denotes the S-level and j denotes the

U-Tevel. We note that 1 = n]1 + H]Z and

R TIERIE
The z vector, which now indexes the four

possible cross-categories of S and U, has the
same form as the X, vector in the first applica-

tion. For the first sample the design matrix in

(2.2) is
_ ) ;-
1 Py 9, ©
O P9 ey O
R-
0 p]q] p]Q] 0
0 & 1]

with a similar form for the second sample.
The application of the EM algorithm yields
the following ML estimates for the Hij’ with

standard errors in parentheses:

~ ~ ~ ~

S T2 oy T2z
0.000 0.124 0.779 0.097
(0.012) (0.024) (0.019) (0.014)

The assumption of independence can easily be in-
corporated in the EM procedure as follows: Af-
ter each M step compute the estimated marginal

proportions I and u, then obtain H]] =1 u, and

return to the E step. Not surprisingly, the

estimates for m and  are as given in Table 3.2.
The estimate of 1, without assuming indepen-

dence of S and U, is 0.124. Calculating the



corresponding likelihood ratio statistic A we
find -27logA = 37.55 for 1 DF which clearly con-
tradicts the assumption of independence. On re-
flection, one might expect a lower proportion of
births to unmarried women for those who were
born in North Carolina (and continue to live
there) than for those who were born elsewhere
(but now live in North Carolina). One explan-
ation might be that unmarried women who become
pregnant leave home, often-moving out-of-state;
another is that unmarried women living away from
home may be less subject to social norms, and ~
thus more likely to become pregnant, or to admit
to it.
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