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Abstract" To f a c i l i t a t e  the computation of 
maximum l ike l ihood (ML)estimates for  data a r is -  
ing from Randomized Response (RR) invest igat ions,  
one can view the data as mixture data, and apply 
the EM algorithm. The EM formulation presented 
d i f fe rs  from the ea r l i e r  formulat ion, in that 
now the proportions to be estimated are regarded 
as the mixing proport ions, leading to a simple 
implementation of the EM algorithm. A general 
formulation is presented for  both related-ques- 
t ion and unrelated-question RR designs, and i l -  
l us trated with app I i ca t i  ons. 

I .  INTRODUCTION 

The Randomized Response (RR) technique was 
introduced in Warner (1965) to deal with non-re- 
sponse and consequent bias associated with sur- 
veys of stigmatizing traits. The development of 
the RR technique since then has been quite ex- 
tensive, see reviews by Deffaa (1982), Boruch 
and Cecil (1979) and Horvitz, Greenberg and 
Abernathy (1976). Many of the estimators for 
proportions presented in the early RR literature 
were claimed to be Maximum Likelihood (ML), al- 
though they could produce estimates outside the 
range (0, l ) ,  as noted by Singh (1976). For 
the early RR designs, a minor adjustment to the 
original estimators was sufficient tomake them 
ML, but for many later designs, computation of 
ML estimates and their standard errors is d i f f i -  
cult, as is evident from Gould, Shah and Aber- 
nathy (1969), Greenberg et al. (1971), Liu and 
Chow (1976), and Bourke (1982). 

By viewing observations from RR procedures as 
mixture data, one can apply the EM algorithm 
described in Dempster, Laird and Rubin (1977) to 
find ML estimates. The standard errors of these 
estimates can moreover be easily obtained using 
the results of Louis (1982). There are two ways 
of viewing the data as a mixture of distribu- 
tions. One can view the randomizing device as 
the mixing mechanism so that the mixing propor- 
tions are the chosen parameters of the random- 
izing device, as in Bourke and Moran (1984). 
Alternatively the proportions to be estimated 
can be taken as the mixing proportions. The 
latter approach is adopted in this paper. 

A general formulation for estimation of a 
multinomial distribution is given in Section 2. 
In Section 3, the unrelated question design with 
two tr ials for each respondent and two samples, 
f i r s t  described in Horvitz, Shah and Simmons 
(1967), is used to i l l u s t r a t e  two appl icat ions 
of the methods developed in Section 2. The 
second appl icat ion also provides an example of 
mul t ivar ia te  estimation and a test of indepen- 
dence between the variates is carr ied out. 

2. ESTIMATION OF MULTINOMIALS FROM 
RANDOMIZED RESPONSE DATA 

Consider a sensit ive variate S having c cate- 
gories of which at most (c - l )  are st igmat iz ing. 
Let the population proportion for  category k be 

l Rk" Our object ive is to estimate the H k s. We 

consider also a non-sensitive variate U having f 
categories (usual ly f = c) and the population 
proportions in these categories may or may not be 
known. For brev i ty  we refer  to the true state of 
a respondent with respect to variate S as the S- 
level and s im i la r l y  for  variate U. 

We consider two broad classes of RR designs: 
related question designs and unrelated question 
designs. In a related question design, such as 
the or ig ina l  Warner (1965) design, the possible 
questions or statements that may be put to a 
respondent relate only to the variate S, while 
in an unrelated question design, see Horvitz et 
al.  (1967), some of the questions relate to the 
variate U. I f  ~ denotes the probab i l i t y  of the r 
r th response, then 

c 

= ~. Prk Hk' ~r k= 1 
(r  = I ,  2 . . . .  , d) (2.1) 

where Prk : P [response r[S-level = k]. 

Writing (2.1) in matrix notation we get 

~=  p ~ (2.2) 

where P the matrix of condit ional p robab i l i t i es  ~u 

{Prk }, may be termed the design mat r ix  of the RR 

procedure. I f  P is square, the moment estimator 
qJ 

for  ~ may give the ML estimate but i f  P has more 

rows than columns a numerical procedure is neces- 
sary. 

Two cases are considered" 
Case I- A.II the parame.ters o fj the design, matr ix 
are known 

This class of RR designs is considered in 
Loynes (1976) and corresponds to related question 
designs, or unrelated question designs with a 
known d is t r i bu t ion  of the unrelated question. 
For example, in the unrelated question design of 
Horvitz et al .  (1967) for  estimating a single 
proportion H I , (2.2) becomes 

= ( 2 . 3 )  
( l - p ) ( ! - ~ )  p+(l-p) ( I - ~  II 

where ~I is the probab i l i t y  of the response 'YES' 

~2 = ( I - ~ I ) '  ~2=( I -~ I  ) ' p i s  the probab i l i t y  that 

the sensit ive question is put to a respondent, 
and u is the known proportion with the unrelated 
a t t r ibu te  ( for  an example of a sensit ive and an 
unrelated a t t r i bu te ,  see Section 3). 
Case 2" Some of the parameters of the design 
matrix are unknown . . . . .  

The most fami l ia r  example of th is is the 
Horvitz et a l .  (1967) unrelated question design 
with an unknown d is t r ibu t ion  of the unrelated 
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quest ion, so that  in (2.3) above, p is unknown. 
Two samples with d i f f e r e n t  values of  p are then 
needed to estimate ]11 and ~. Usually the moment 

est imators for  l [ l ,p  give ML est imates, but not 

always, as shown by th is  data-set:  

p Sample,Size 'YES' r 

Sample l 0.3 lO00 15 
Sample 2 O. 7 1000 75 

Here the moment estimates are 0.12, -0.03 
whereas the ML estimates are 0.09, O. 

Number of 
' ' rep l ies  

Analysis o f  Case 1 th The response made by the i respondent may 
be represented by a vector (~ i )  of  (d - l )  zeros 

and one uni ty  such that the r th element being 

uni ty  implies that  the r th response was given. 

The S-level of  the i tn '- respondent is represented 
by a s im i l a r  vector z i .  In EM termin'ology z i 

corresponds to the missing data on the S level 
th of the i respondent. I f  the z i were observed, 

I the l og - l i ke l i hood  for  the ;I k s based on the 

observations (~zi'v .~Yi ) '  i = I ,  2, . . . .  n, would 
be 

log L(~) -- r [ s Y i r  Zik log Prk 
i r ,k  

+ Zik log Rk ] (2 4) 

where Y i r  and Zik are elements of ~i and z i re- 

spect ive ly .  The E step of the algor i thm consists 
of  est imat ing the complete data s u f f i c i e n t  sta- 
t i s t i c s  zz i by replacing the unobserved z i by 

t h e i r  expectations z* condi t ional  on the observed q,l 
J~i and the current  parameter est imates. Thus 

Z*ik = E(Zik I Y i r  : I ,  ~) 

= P rk ;Ik / Xr'  (k = I ,  2, . . . .  c) (2.5) 

The M step of  the algor i thm then gives immedi- 
^ 

ate ly  ]1 = r z* / n. The E and M steps generate 

a sequence of  estimates converging to the ML 
^ 

estimate ]I. I t  may be noted that  th is  ~ auto- 
nu  

mat ica l l y  sa t i s f i es  the r es t r i c t i ons  on the R k' 

v iz .  H k >_0 and z ]1k = I .  

The asymptotic variance-covariance matr ix  of 

is read i l y  estimated using the resul ts  of r b  

Orchard and Woodbury (1972) or Louis (1982), and 
is 

n 
S* S * t  (2 6) G ' ~i ~l i= l  

^ 

where ~î S* is the vector of elements (z_.*kl / llk.)- 

- ( z .  ~ / ]1 ) from the  f i n a l  i t e r a t i o n  o f  the  a l -  l c  c 
gorithm. An example of  Case 1 is given in Sec- 
t ion 3. 

Analysis of  Case 2 
In an unrelatecl question design suppose that  

the d i s t r i b u t i o n  (~) of the U-var iate is unknown. 

In (2.4) some of the Prk w i l l  now depend on the 

unknown ~, and th is  can make the M step awkward. 

To avoid t h i s ,  we suggest the fo l lowing approach. 
Corresponding to (2 .1) ,  we have two possible ex- 
pressions for  x • 

r 

c 
: ~ f[k ( 27 )  Xr k= 1 Prk " 

f 
= z: Pk (2 8) ~r qrk k=l 

where qrk = P[response r lU- leve l  = k].  

I f  }~ were known, the procedure of Case 1 could 

be appl ied. S im i l a r l y  i f  I[ were known, we could 
r b  

reverse the role of ~II and ~ and again apply the 

EM procedure of Case 1 to estimate ~. This sym- 

metry can be explo i ted to maximize the l i ke l ihood 
for  ~r[ and }~ simultaneously. Depending on whether 

the missing data is taken to be the levels of the 
S-var iate or the U-var iate,  we have two possible 
expressions for  the l og - l i ke l i hood"  

log L(~,~) : z{ r [Yir Zik log Prk 
i r,k 

+ Zik log Hk]} (2.9) 

log L(~,~) : 7.{ 7. [Y i r  Wik log qrk 
i r ,k  

+ Wik log ~k]} (2.10) 

where Zik has the same meaning as Zik of (2 .4 ) ,  

and Wik is an element of the corresponding w i 
th vector denoting the U-level of the i respondent. 

As in (2 .5) ,  we see that the E step is 

z* = R I x  ik Prk k r 

. = / 
wi k qrk ~k r 

A ^ 

and the M step is ~ = z ~iz* / n and }~ = 7. W*~l / n. 

The observed informat ion matr ix is as (2.6) 
where S* is the vector of elements S* and 

* =(z* / ~ ) * ) 1 < k < ( c - l )  Sik Ik k - (Z ic  / ~c ' - - 
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* ^ ^ D S* = Wik/U * 1 ,k+(c- l )  k -  w i f / ~ f  1 < k < ( f - l )  

An example of Case 2 is given in Section 3. 
Although the presentation here has been in 

terms of a multinomial var ia te S, the procedure 
is also appl icable to mu l t i va r ia te  cases. In 
Tamhane (1981) and Bourke (1982) RR designs for  
mu l t i va r ia te  est imation are presented, each de- 
sign being represented as in (2 .2) .  An example 
of Case 1 mu l t i va r ia te  est imation is given in 
Section 3. 

3. APPLICATIONS 

The 2-Tr ia l  Unrelated Question Design with Two 
Samples. 

An appl icat ion of th is design to the estima- 
t ion of a proport ion of i l l e g i t i m a t e  b i r ths  is 
described in Horvitz et  a l .  (1967). The design 
involved two samples. The statements used were: 

S "In the past 12 months there was a baby 
born in th is  household to an unmarried 
woman who was l i v i ng  here at the t ime".  

U "I was born in North Carol ina".  
The p robab i l i t y  (p i )  that the randomizing de- 

vice would select  statement S was kept con- 
stant fo r  each t r i a l  in sample i ,  i = I ,  2. 
The relevant data are reproduced in Table 3.1. 

TABLE 3.1 

Frequency of Responses 

YY YN NY NN Pi 

Sample 1 137 271 253 566 0.7 
Sample 2 512 291 215 322 0.3 

We present two appl icat ions of the EM proce- 
dure to th is  data-set ;  the f i r s t  to i l l u s t r a t e  
the case where some parameters in the design 
matr ix are unknown, the second to i l l u s t r a t e  
mu l t i va r ia te  est imation where a l l  parameters in 
the design matr ix are known. The f i r s t  app l i -  
cat ion requires that  the S and U variates be 
independent, an assumption made in previous 
analyses of th is data-set.  The second analysis 
not only avoids th is  assumption, but shows that 
i t  is inconsistent  with the data and has a sub- 
s tan t ia l  e f fec t  on the estimates. 

3.1 Appl icat ion 1 
Denote the two possible S- levels by z vec- 

r b  

tors ( I ,0 )  and ( 0 , I ) ,  and s im i l a r l y  for  the U- 
leve ls .  Denote the four possible responses YY, 
YN, NY, NN (YY = YES, YES) by a vector ~ where 

= ( I , 0 ,0 ,0 )  denotes YY. The matr ix of con- 

d i t i ona l  p robab i l i t i es  of (2.7) for  the f i r s t  
sample is :  

u 

p +2plq1 +q   q2 
Plql (l-u) Plql u 

Plql (l-p) Plql u 
(3.1) 

where ql = 1 - PI '  and ~ is the unknown propor- 

t ion of the population having a t t r i bu te  U. The 
corresponding matr ix for  the second sample is 
s im i la r .  The matr ix of condi t ional  p robab i l i -  
t ies  of (2.8) is s im i la r  to (3.1) with Pi '  qi 

interchanged and 11 replacing u, where 11 is the 
proport ion having a t t r i bu te  S. 

In Horvi tz et a l .  (1967) moment estimates 
for  11 and u were presented. Subsequently in 
Gould et a l .  (1969, Table 4, Model I) ML e s t i -  
mates fo r  H and ~ were reported, but not stan- 
dard errors.  The appl icat ion of the EM algor-  
ithm y ie lds  the resul ts  shown i:n Table 3.2. 

TABLE 3.2 

S.E.C ) 
EM 

A1 go ri thm 

Gould et 
al. (1969) 

0.02829 0.8616 0.0095 

0.02824 0.8616 - -  

0.0112 

3.2 Application 2 
Here, we i l lust rate Case 1 for multivariate 

estimation by computing ML estimates for H.. 
13 

where i denotes the S-level and j denotes the 
U-level. We note that H = 1111 + 1112 and 

= 1111 + H21" 
The z vector, which now indexes the four 

r b  

possible cross-categories of S and U, has the 
same form as the ~ vector in the f i r s t  applica- 

tion. For the f i r s t  sample the design matrix in 
(2.2) is 

2 2 
1 Pl ql 0 

p _ 
qJ 

0 plql  plql  0 

0 plq I plql 0 

o 

with a s im i la r  form for  the second sample. 
The appl icat ion of the EM algori thm y ie lds  

the fo l lowing ML estimates for  the 11ij' with 

standard errors in parentheses: 

^ 

H22 
0.000 O. 124 0.779 0.097 

(0.012) (0.024) (0.019) (0.014) 

The assumption of independence can eas i ly  be in-  
corpora ted in the EM procedure as fo l lows:  Af- 
te r  each M step compute the estimated marginal 

^ ^ ^ ^ 

proport ions 11 and u, then obtain ~II = 11 u, and 

return to the E step. Not su rp r i s ing ly ,  the 
estimates for  11 and u are as given in Table 3.2. 

The estimate of 11, without assuming indepen- 
dence of S and U, is 0.124. Calculat ing the 
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corresponding l ikel ihood rat io s t a t i s t i c  A we 
f ind-21ogA = 37.55 for 1 DF which c lear ly  con- 
t radicts the assumption of independence. On re- 
f lec t ion ,  one might expect a lower proportion of 
bir ths to unmarried women for those who were 
born in North Carolina (and continue to l ive 
there) than for those who were born elsewhere 
(but now l ive in North Carolina). One explan- 
ation might be that unmarried women who become 
pregnant leave home, often-moving out-of-state;  
another is that unmarried women l i v ing  away from 
home may be less subject to social norms, and 
thus more l i ke l y  to become pregnant, or to admit 
to i t .  
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