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I, Introduction may be summarized in a column supplement. The available 

Many large-scale sample surveys, such as the Current 
Population Survey and the National Crime Survey, use 
rotating panel designs under which individuals are 
interviewed several times before rotating out of the sample. 
Typically, these large-scale surveys are used to produce 
point-in-time estimates. The rotating panel structure of the 
survey is a result of the need to reduce costs by keeping the 
same interviewers and subjects for more than a single 
interview. Recently, however, there has been increasing 
interest in using the longitudinal data bases available from 
such surveys to estimate gross change over time. 

In this paper, I consider the problem of estimating period- 
to-period gross change over time using categorical data from 
a panel survey where, as one would expect in a sample 
survey, there is nonresponse in the data so that some of the 
surveyed individuals are completely cross-classified while 
others are partially cross-classified or completely missing. In 
particular, I consider some Markov-chain models for the 
gross flow process along with Markov-chain models for the 
process generating the nonresponse. The models presented 
here are an improvement over previous models considered 
for estimating gross flows in the presence of non-random 
nonresponse (see for example Stasny (1983, 1985, and 
1986) and Stasny and Fienb~rg(1985)) because they allow a 
person to be missing at both of two interview periods. 

Section II of this paper presents a two-stage model for the 
panel data with nonresponse. Section III describes the 
Markov-chain models for nonresponse. In Section IV, I fit 
the models to employment data from the Canadian Labour 
Force Survey. Section V gives extensions of the models. 

II, A Two-$hage Model for Panel Data 

One possible approach to the problem of estimating gross 
change over time using panel data is to use only the 
information from individuals who are respondents in both of 
two consecutive interview periods. In order to use this 
approach, we must assume that individuals who do not 
respond in one or both periods are a random sample of all 
individuals (Rubin, 1976). However, in most cases, we do 
not believe that nonresponse occurs at random. For 
example, using data from the Canadian Labour Force 
Survey, Paul and Lawes (1982) and Fienberg and Stasny 
(1983) give evidence that nonresponse is related to labor force 
classification. Since there is evidence that nonresponse does 
not occur at random, we would like to consider some models 
for estimating gross flows that allow us to treat nonresponse 
as related to the survey classifications. 

Suppose that the result of each interview is the 
classification of the subject into one of K non-overlapping 
categories. Consider estimating gross flows among these 
categories using records of surveyed individuals matched 
over consecutive interview periods. It will be impossible to 
obtain matches for individuals who were nonrespondents in 
one or more of the interview periods or who rotated into or 
out of the survey during the period being considered. Thus, 
as a result of matching the survey data, we will have a group 
of individuals for whom we have survey classifications at 
each interview period, a group of individuals for whom we 
have classifications in some but not all periods, and a group 
of individuals who never responded to the survey. 

The survey classification data for individuals who 
responded at two consecutive interview times, say t-1 and t, 
can be summarized in a KxK matrix. The available 
information for individuals who were nonrespondents for the 
time t-1 interview but who responded to the time t interview 

information for individuals who were nonrespondents for the 
time t interview but who responded to the time t-1 interview 
may be summarized in a row supplement. Individuals who 
were nonrespondents at both times t- 1 and t are counted in a 
single Missing cell. Therefore, the observed time t-1 to time 
t gross flow data can be displayed as in Table 1. 

TABLE 1: OBSERVED GROSS FLOW DATA 

T i m e  t 

1 2 ... K R o w  S u p p .  

1 Xll x12 ... XIK R 1 
T/me 2 x21 x22 ... " X2K R 2 
t-1 : : : : : : 

. • . ° • o 

K XK1 XK2 ... XKK R K 

C o l u m n  S u p p .  C 1 C 2 ... C K M 

where xij = number of sampled individuals with 
classification i at time t-1 and j at time t, 

R i = number of individuals who were 
nonrespondents at time t and had 
classification i at time t-1, 

Cj = number of individuals who were 
nonrespondents at time t-1 and had 
classification j at time t, and 

M = number of individuals who were 
nonrespondents at both times t-1 and t. 

Extending the ideas of Chen and Fienberg (1974) for 
maximum likelihood estimation in contingency tables with 
partially cross-classified data, I take the observed gross flow 
data to be the end result of a two-stage process where, in the 
unobserved first stage, individuals are allocated to the nine 
cells of a KxK matrix according to probabilities from a 
Markov-chain. Let 

n i = initial probability that an individual is in state i at 
time t-1, where E.rc. = 1 and 

• ,1 1 

Pij = transition probablhty from state i to state j, where 
., EjPij = 1 for all i. 

At me secona stage of the process each individual in the 
(i,j) cell of the gross flow matrix may either a) be a 
nonrespondent in month t-1 and, hence, lose its row 
classification, b) be a nonrespondent in month t and lose its 
column classification, or c) be a nonrespondent in both 
months and lose both its row and column classification. Let 

~(i,j) = initial probability that an individual in the (i,j) 
cell of the matrix responds in month t-1, 

PRR(iJ) = transition probability from respondent in 
month t-1 to respondent in month t, and 

PMM(i,j) = transition probability from nonrespondent in 
month t-1 to nonrespondent in month t. 

The data axe observed after this second stage. From the 
observed data, we want to make inferences about both the 
probabilities of the Markov-chain generating the labor force 
data and the probabilities of the Markov-chain generating 
nonresponse. In the context of this two-stage model, the 
underlying probabilities for the observed gross flow matrix 
are as given in Table 2. 

III.Markov-Chain M0clel~ for Nonr¢sponse 

We wish to use maximum likelihood estimation to obtain 
estimates of the parameters shown in Table 2. The likelihood 
function for the observed data under the two-stage model 
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described in Section II is as follows: 

{ rxirtj [~(ij)PRR(i,J)niPij] xij } 

x {Hi[Zj~(ij) [ 1 -PRR(i,j)]niPij]Ri} 

x {Hj[~i[ 1-~(ij)][ 1-PMM(i,j)]niPij]Cj } 

x { [~i~i [ 1-~(i,j)]PMM(i,J)niPij] M} 
where i and ~ take on the values from 1 to K. There are, 
however, 4K'~+K parameters with K+I constraints on the 
parameters in the above likelihood and only (K+ 1)2 cells of 
observed counts with the single constraint that the observed 
counts sum to the total sample size. Thus, we must reduce 
the number of parameters to be estimated. We will do this by 
considering 4 models for the ~ and p parameters, the parame- 
ters pertaining to nonresponse. The models are as follows: 

Model A: ~(i,j) = ~, P R R  ( i ' j )  = P R R '  P M M  ( i ' j )  - P M M  

M o d e l  B :  ~(i,j) = ~(i), P R R ( i , j )  = P R R ,  P M M  ( i ' j )  = P M M  

Model C: ~(i,j) = ~, PRR(i,j) = PRR(i), PMM(iJ) = PMM(i) 
Model D: ~(i,j) = ~, _ pRg(i,j) -- PRR(J), PMM(i,j) = PMMfJ) 

Models A and B have 2K-2 and K-1 associated degrees of 
freedom respectively while there are no degrees of freedom 
associated with models C and D. The n and p probabilities 
for the gross flow process are as defined in Section II. 

Under Model A, the initial probability that an individual 
responds at time t-1 is the same for all survey.classifications. 
The transition probabilities from respondent to respondent or 
from nonrespondent to nonrespondent also do not depend on 
the survey classification. Under Model B, the initial 
probability that an individual responds at time t-1 depends on 
the individual's classification at time t-1 while the transition 
probabilities from respondent to respondent or from 
nonrespondent to nonrespondent do not depend on 
classification. Under Models C and D, the initial probability 
that an individual responds at time t-1 is the same for all 
survey classifications. The transition probabilities from 
respondent to respondent or from nonrespondent to 
nonrespondent under Model C depend on the survey 
classification at time t-1 while under Model D they depend on 
the classification at time t. Note that Model A is a special 
case of each of the other three models. The methods used to 
fit each of these models are described below. 

Mode! A 
The likelihood function for the observed data under Model 

A can be written as the product of two factors, one involving 
only the n and p parameters. Thus, estimates of the n and p 
parameters can be found separately from the estimates of the 

and p parameters. This means that, under Model A, the 
Markov-chains for the gross flow process and for 
nonresponse are separate, independent Markov-chains. 

Factor f is maximized using Lagrange multipliers to • A 1  . 
impose the constrmnts that X.n.=l and Z.p..=l for all i In 

1 1  1j " 

general, an iterative procedure must bd used to provide 
estimates of the n and p parameters. Initial estimates for the 
and p parameters are as follows: 

uj(0) = xi./x." and pii (0) = xi./x i. 
where a '.' in a subscript indichtes summation over that 
subscript. The iterative steps for obtaining the parameter 
estimates are given in Table 3a. 

The estimates of the ~ and p parameters have the following 
closed forms: 

= [x.. + R.]/[x.. + R. + C. + M], 

PRR = x../[x.. + R.], and 

PMM-- M/[C. + M]. 

Model B 
The likelihood function for the observed data under Model 

B can be written as the product of two factors, one involving 
only the re, p, and ~ parameters. Thus, estimates of the ~, p, 
and ~ parameters can be found separately from the estimates 
of the p parameters. 

The estimates of the p parameters under Model B have the 
same closed-form solutions as under Model A. Factor fBl.is 
maximized using Lagrange multipliers to impose the 
constraints. . that E.n.=~ ~ 1 and Ejpii= 1 for all i. In general, an 
lteratlve procedure must be used to provide estimates of the 
n, p, and ~ parameters. Initial estimates for the n and p 
parameters are as given for Model A. Initial estimates for the 

parameters are as foUows: 
~(i) (°) = [x.. + R.]/[x.. + R. + C. + M]. 

The iterative steps for obtaining the parameter estimates are 
given in Table 3b. 

Model C 
The likelihood function for the observed data under Model 

C can be written as the product of two factors, one involving 
only the n, p, and PMM parameters. Thus, estimates of the n, 
p, and. pM parameters can be found separately from the 
estimates o~ the ¢ and p parameters 

• R • 

The estimate of ~ under Model C has the same closed- 
form solution as under Model A. The closed-form estimator 
of PRR(i) is: 

pRR(i) = Xi./(X i. + Ri). 
Factor. f 1 is ma-x-imized, using IL-agrange multipliers, to 
impose t~e constraints that X.n.= 1 and Z.p..=l for all ~ In • . 1 1  1j " .  
general, an ~teratave procedure must bd used to prowde 
estimates of the n, p, and PMM parameters. Initial estimates 
for the n and p parameters are as given for Model A. Initial 
estimates for the p~,~,parameters are as follows: 

, ,  :-~'~f0)_ M/[C + M]. 
P M M \ -  ~, - -  

The iterative steps for obtaining the parameter estimates are 
given in Table 3c. 

Modql D 
The likelihood function for the observed data under Model 

D can be written as the product of two factors, one involving 
only the n, p, and p parameters. Thus, estimates of the n, p, 
and p parameters can be found separately from the estimate of 
the ~ parameter. 

The estimate of the ~ parameter under Model D has the 
same closed-form solution as under Model h. Factor fDt is 
maximized using Lagrange multipliers to impose the 
constraints that Z.n.= 1 and Z.p..=l for all i. In general, an 
• . 1 1 J 
lterative procedure must be usec~ to provide estimates of the 
n, p, and p parameters. Initial estimates for the n and p 
parameters are as given for Model A. Initial estimates for the 
PRR and PMM parameters are as follows: 

TABLE 2: PROBABILIq~S FOR OBSERVED GROSS FLOW DATA 

Time t 

Time 1 
t-1 .2 

Column Supp. 

1 2 ... K 

{~(ij)PRR(iJ)niPij} 

{Zi[1 ~(ij)ii 1-PMM(iJ)]nlPij}~ 

Row Supp. 

{ ~j{(i,j) [ 1-PRR(ij)]niPij } 

Xi~J[ 1-~(i'j)]PMM(iJ)rciPij } I 
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PRR(j)(O),= x../.[x.. + R.] and 
PMMO)'tu)= M/[C. + M]. 

The iterative steps for obtaining the parameter estimates are 
given in Table 3d. 

Fitting the Modeb 
For each of the models, the steps of the iterative 

procedure given in Table 3 are repeated for v = 0, 1, 2 .... 
until the parameter estimates converge to the desired degree 
of accuracy. The formulas given for ni (°), pi(0), ~(i) (0), 
p (i) (°), and PMM(J) (°) are merely suggested initiaq estimate s RR 
Any values between 0 and 1 satisfying Z.n.=l and Z.p..=l x l  j l 
for all i may be used. In the data analysis reported in Section 
IV, a number qf different starting values were used. In each 
case, the final estimates were the same. 

After any one of the above models has been fit to the 
data, the cell probabilities underlying the observed data may 
be estimated following the formulas given in Table 2. These 
estimated probabilities may then be multiplied by the total 
sample size to obtain the expected observed cell counts. 
Either the Pearson x a or the likelihood ratio statistic, G a, can 
be compared to a Z a distribution with the appropriate degrees 
of freedom to help assess the fit of the model. 

IV, Example From the Canadian Labour Force Survey 

The Labour Force Survey 
The Canadian Labour Force Survey (LFS) is based on 

monthly interviews with respondents in approximately 
56,000 households. Sampled households are retained in the 
sample for six months before being rotated out of the sample. 
Under this LFS scheme, the month-to-month overlap of 

sampled housing locations is 83%. A detailed description of 
the LFS can be found in Methodology of the Canadian 
Labour Force Survey 1976, Statistics Canada (1977). 

Month-to-month gross flows in labor force participation 
show how persons with each labor force classification in one 
month are classified in following month providing, for 
example, estimates of the numbers of persons who were 
employed in one month and unemployed in the next, 
unemployed in one month and employed in the next, 
employed in both months, and so forth. 

A single panel of micro-data from the LFS is available for 
our use. The data set contains responses for a subset of the 
survey questions for all individuals from the panel that 
rotated into the sample in August 1979 and remained in the 
sample through January 1980. Information is available for 
each individual in that panel who responded at least once 
during the six month period. Unweighted cell counts for a 
gross flow matrix can be obtained from this micro-data. The 
models described in this paper are suitable for unweighted 
data from a simple random sample. The LFS uses a 
multi-stage cluster sample. Thus, the models proPOsed in 
this paper are not ideally suited to describe the data. We will, 
however, fit the models to the data for illustrative purposes 
and as a first attempt at modeling the nonresponse in the data. 

Persons interviewed for the LFS in a given month are 
classified as employed, unemployed, not in the labor force, 
or outside the population of interest. Naturally, persons 
outside the population of interest are not intentionally 
included in the LFS sample. The relatively few persons 
classified as outside the population of interest who do appear 
in the sample are included by accident rather than by design. 
Thus, the out-of-population cells based on the available panel 

TABLE 3: EQUATIONS FOR ITERATIVE PROCEDURES FOR MODEL FffTING 

3a. Model A 
Z[Cn(V)p(V)/ n(v) (v) hi(v+1)= {x i '+Ri+  ] j i ij F_~k Pkj ] } x  { x . . + R . + C . }  -1 and 

Pij (v+l) = {xij + [Cj~i(V)Pij(v)/~_.,krCk(V)Pkj(V) ] } X {Xi.+ Zj[Cj~i(V)Pij(v)/Y_.,krCk(V)Pkj(V)]}-I 

3b. Model B 

~i (v+l) = {xi.+ R i + Zj[Cj[1- ~(i)(v)]ni(V)Pij(v)/Zk[1- ~(k)(V)]~(v)Pkj(V) ] + [M[1- ~(i)(v)]ni(v)/zk[1 - ~(k)(V)]~(v)] } x {x.. + R. + C. + M} -1, 

Pij (v+l) = {xij + [Cj[ 1- ~(i)(v)]n i(v)pij(v)/y.k[ 1- ~(k)(V)]nk(v)Pkj (v)] } × {x i. + ]~j [Cj[ 1- ~(i)(v)]ni(V)Pij(v)/Y_,k[ 1- ~(k)(V)]nk(V)pkj(v)] }-1 and 

~(i) (v+l) = {x i. + Ri} x {x i. + R i + Zj[Cj[1-~(i)(V)]ni(V)Pij(v)/Zk[1 - ~(k)(V)]nk(V)Pkj(V) ] + [M[1-~(i)(V)]ni(V)/Y-,k[1 - ~(k)(V)]nk(V)] } -1, 

3c. Model C 

ni (v+l) = {xi.+ R i + Zj[Cj[ 1- PMM(i)(v)]ni(V)Pij(v)lY_,k [ 1- PMM(k)(V)]nk(V)Pkj (v)] + [MPMM(i)(v)ni(v)lY_,k[PMM(k)(V)r~k(V)]] } 
x { x . . + R . + C . + M }  -1, 

l(V) n(v) (v)/ 1 k(V) (v) (v) Pij (v+l) = {xij + [q[1- PMM(') ] i Pij '~-"k[ -PMM( ) ]/~k Pkj ]} 
1 (v) n(v) (v)/ 1 (v) (v) (v) X {x i. + Zj [q[  1- PMM(') ] i Pij ~-'k[ -PMM (k) ]/tk Pkj ] }-1) and 

PMM(i)(v+l) = { MPMM(i)(v)n i(v)/y_,k[pMM(k)(v)r~k(v)] } 
a(V) n(v) (v)/ 1 k(V) (v) (v) ×{~j[Cj[I=PMM(') ] i  Pij ~"k[-PMM( ) ]rW'k Pkj ] + MPMM(i)(v)~:i(v)/~-'k[PMM(k)(V)~'k (v)])'l" 

3d. Model D 
= Z M (v) n(v) (v)/ Z h(V) (v) (v) ni (v+l) {Xr+ Ri + Zj[Cjni(V)Pij(v)/F-~r~(V)pkj (v)] + ][ PMM(J) i Pij F_~ h[PMM( ) ]r~ p~  ]} X {x.. + R. + C.+ M} -1, 

+ C ~ (v) (v)/ (v) (v) Pij(v+l)={xij [Ri[1-PRR(j)(V)]Pij/Y-'k[1-PRR(k)(V)]Pik]+[ j i  Pij ~-"knk Pkj ] 
+ [MPMM(j)(v)ni(V)Pij(v)/F_.~F_~[PMM(h)(V)r~(V)p~(V)] } 

ME (v) n (v) (v)/ h (v) n (v) (v) 1 × {Xr + Ri + Zj[Cjn(i)(V)Pij(v)/Y-'k~(k)(V)]pkj(v)] + [ 3PMM(J) i Pij ZkZh[PMM( ) ] k Pkh ]}-, 

PRR(J) (v+l) = x.j × {x.j + Ei[Ri[ 1-PRR(j)(V)]Pij(v)/Y_,k[ 1-PRR(k)(V)]pik(v)] }-~ and 
C h(V) (v) (V)/M n(v) (v) PMM (j)(v+l)=l-~[ jZkZhPMM( ) nk Pkh ] [  Zk k Pkj ]}" 
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of data are mostly empty and I do not include them in the 
analysis given here. I will consider estimating gross flows 
among the three labor force classifications using records of 
individuals matched over two consecutive months. 

The observed gross flow data is given in Appendix I. 

The Fits of the Models 
All four models described in Section III were fit to the 

five possible observed gross flow matrices constructed from 
the available panel of data. Since there are K=3 possible 
survey classifications, Model A has 4 associated degrees of 
freedom and Model B has 2 degrees of freedom. Models C 
and D, which have no associated degrees of freedom, will 
both fit the data exactly although they need not necessarily 
produce the same parameter estimates. 

The criterion for stopping the iterative procedures 
necessary for obtaining some of the parameter estimates was 
that the maximum difference between estimates at two 
consecutive steps was less than .0005. The iterative 
procedure for fitting Model A converged quickly, requiring 
only 2 steps to converge for each of the 5 observed gross 
flow matrices. The iterative procedure for fitting Model B 
converged relatively slowly requiring between 24 and 58 
iterations. The iterative procedures for fitting Models C and 
D converged in between 16 and 25 iterations, and between 9 
and 13 iterations respectively. The parameter estimates, x 2, 
and G 2 values for all models are given in Appendix II. 

The fits of Models A and B to the August to September 
data are similar. For all other gross flow matrices, Model B 
provides a better fit to the data. (Note that, given the large 
cell counts in the observed gross flow matrices, we find the 
fits of Model 13 reasonable even though the x 2 and G 2 values 
are larger than the value of X2 ( 2 ) -  9 21 ) Recall that 

. . . . 9  - " " 

under Model A the probabilitaes o~nonresponse are the same 
for individuals in all employment classifications while under 
Model B the initial probability of being a nonrespondent in 
month t-1 depends on the employment classification in that 
month. Thus, since Model 13 provides a better fit than Model 
A, we have some evidence that nonresponse does depend on 
employment status. 

In part B of Appendix II, we see that the estimated initial 
probabilities of falling in each labor force classification are 
similar under Models A, C, D, and in August to September 
under Model 13. Under Model B in all other months, 
however, the estimated initial probability that a person is 
unemployed is higher than under other models. For 
example, in October to November, the proportion of persons 
initially unemployed is estimated to be about 3.8% under 
Models A, C, and D while it is about 5.1% under Model B. 

Part 12 of Appendix II shows that the estimated transition 
probabilities among the various employment classifications 
do not vary greatly from model to model. Note, however, 
that the estimated transition probabilities do appear to change 
over time. This change may be due to actual changes in the 
labor force over time but it may also but due, at least in part, 
to the effects of rotation group bias (see, for example, Bailar 
(1975) and (1979)). 

Parts D, E, F, and G of Appendix II give the estimates of 
the ~, PRR, and PMM parameters under Models A, B, C, and D 
respectii,-ely. As- h-oted in Section III, the estimates of {, the 
initial probability of being a respondent, are identical under 
Models A, C, and D. Under Model B, however, the initial 
probability of being a respondent depends on the labor force 
classification. Note that in all months, these initial 
probabilities of being a respondent are quite similar for 
persons who are employed or not in the labor force. The 
estimated value of { for unemployed persons, however, is 
lower than for other persons. This difference is not very 
large for the August to September data as would be expected 
since the fits of Models A and B are similar for that data. The 

difference is fairly large in all other months with the estimates 
of ~fU) being about .2 to .3 lower than the estimates of ~(E) or 
~(N). This again illustrates that response rates appear to differ 
by labor force classification. 

The estimates of PR and PMM, the probabilities of 
• , _ _ R  

transitions from respondent to respondent and nonrespondent 
to nonrespondent respectively, are identical under Models A 
and B but depend on employment classification under Models 
C and D. Note that the estimates of the pRR(E) pRR(N), 
9 (E), and P M(N) do not differ much fro'/ff Mrd~l'i2 to 
~for~e 1 M 

although, excep, ono  a e,,he 0 )and 0 R 
are larger under Model D than under ~/~6del C an~lRthe 
estimates of the P M(E) and pM (N) are. always smaller under 
Model D than under Model c.MThe differences range from 
about .001 to about .007 between probabilities that are 
estimated to be from about .74 to about .97. The differences 
between estimates of the PRR(U) and PMM(U) under Models C 
and D are somewhat larger, ranging from about .01 to about 
.1 on estimates that range from about .58 to about .95. The 
estimated probabilities of an unemployed person remaining a 
respondent, ~RR(U), are always larger under Model C than 
under Model--IS while the estimated probabilities of an 
unemployed person remaining a nonrespondent, ~MM(U), are 
always smaller under Model C than under Model D. 

Thus we see that while both Models C and D provide 
exact fits to the data, they do not result in the same parameter 
estimates and, hence, they do not give the same estimated 
expected cell counts after the first stage. This can be seen in 
Part A of Appendix II. Also note, however, that the 
estimated expected cell counts after the first stage do not 
differ by much under any of the Models A, C, and D or in 
August to September under Model B. In other months, the 
estimates under Model B do differ somewhat from the 
estimates under the other models. In particular, note that the 
expected cell counts in the row corresponding to persons 
who were unemployed in the first of the two months are 
larger under Model B. 

From this analysis, it is not clear which model we would 
prefer for modeling nonresponse in this labor force data. It 
is does seem, however, that unemployeds have response 
patterns that are different from the response patterns for 
persons who are employed or not in the labor force. Since 
response rates appear to be fairly similar for persons who 
are employed or not in the labor force, it would be 
worthwhile to consider variations of the models fit above 
where the probabilities associated with those classifications 
are the same. 

V. Extensions of the Models 

An advantage of the Markov-chain models for 
nonresponse proposed here is that there is a natural way to 
think about extending the models to allow us to use more 
than two periods of data in estimating gross flows. This is 
not the case for the discrete-time models described by Stasny 
and Fienberg (1985) and by Stasny (1983, 1985, and 1986). 
Therefore, an important generalization of this work will be 
to extend the models to handle gross flows over more than 
two time periods. 

After the n. and p.. have been estimated under one of the 1 1j 
above models using one of the procedures described in the 
previous sections, the estimates may then be used to estimate 
the intensity matrix for a continuous-time Markov-chain for 
the gross flow process. Descriptions of estimating 
continuous-time Markov-chains from data collected at 
discrete intervals are given by Singer and Spilerman (1976) 
and Stasny (1983). Thus, another extension of the model 
would be to allow the Markov-chain model for the gross 
flow process to be a continuous-time Markov-chain. 
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APPENDIX I: Observed LFS Data 

September 1979 

E U N Row Supp. 

August E 9223 128 662 473 

1979 U 221 322 151 59 

N 256 164 5941 292 

October 1979 

E U N Row Supp. 

September E 9698 169 355 475 

1979 U 177 317 143 46 

N 326 159 6522 423 

November 1979 

E U N Row Supp. 

October E 9779 178 392 406 

1979 U 159 362 130 53 

N 212 145 6728 274 

Col. Supp. 997 69 677 5016 Col. Supp. 554 59 339 4701 Col. Supp. 419 54 269 4920 

December 1979 

E U N Row Supp. 

November E 9685 202 304 379 

1979 U 129 405 157 48 

N 204 155 6928 232 

January 1980 

E U N Row Supp. 

December E 9413 191 366 339 

1979 U 162 450 168 42 

N 187 180 7004 237 

Col. Supp. 291 60 219 5051 Col. Supp. 252 50 186 5204 

APPENDIX II; Parameter E~timates 

A. Estimates of the Expected Cell Counts After the First Stage 

Model A Model B Model C Model D 

E U N E U N E U N E U N 

8/79- E 13315 186 954 13315 184 956 13307 185 955 13296 199 952 

9/79 U 330 485 225 349 508 239 330 482 226 319 501 217 

N 369 238 8548 366 234 8500 369 236 8561 369 255 8542 

9/79- E 13214 238 481 13202 230 483 13198 230 483 13183 240 490 

10/79 U 247 457 198 326 585 263 247 442 199 241 450 197 

N 450 227 8950 436 213 8725 450 219 8994 443 225 8994 

10/79- E 13224 249 528 13166 240 528 13220 241 530 13204 258 529 

11/79 U 223 527 182 306 699 250 224 509 183 215 526 175 

N 287 203 9058 278 190 8823 286 196 9091 286 210 9077 

11/79- E 13015 284 409 12716 266 399 13044 272 409 13032 287 407 

12/79 U 178 587 217 288 907 350 179 563 218 174 576 210 

N 273 217 9268 267 203 9054 273 208 9283 274 220 9269 

12/79- E 12676 266 492 12464 253 485 12689 258 493 12682 266 492 

1/80 U 222 638 230 334 930 346 223 619 231 218 627 226 

N 251 250 9405 244 235 9140 252 242 9425 252 251 9416 

B. Estimates of the Initial Probabilities of Being in Each Employment Classification 

Model A Model B Model C Model D 

~ E . 5 8 6 4  . 5 8 6 4  . 5 8 6 1  . 5 8 6 1  

8/79-9/79 n U .0422 .0445 .0421 .0421 
~N .3714 .3692 .3718 .3718 

^ 
A,~E . 5695 . 5 688 . 5687 . 5687 

9/79-10/79 ~.U .0369 .0480 .0363 .0363 

• 3936 .3832 .3950 .3950 

~ E .5719 .5692 .5715 .5715 

10/79-11/79 ~U .0381 .0513 •0374 •0374 

~N .3900 .3796 .3911 .3911 

A 
~E .5 607 .5473 .5614 .5614 

11/79-12/79 ~U . 0402 . 0632 . 0393 . 0392 

K N .3991 .3895 .3993 .3994 

~ E 5499 5404 5501 5501 

12/79-1/80 K U . 0446 . 0659 . 0439 . 0439 

.4055 .3937 .4060 .4060 
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8/79- E 

9/79 U 

N 

C. Estimates of the Transition Probabilities, p~ 

Model A Model B Model C 

E U N E U N E U N 

.9212 .0129 .0660 .9211 .0128 .0661 .9211 .0128 .0661 

.3175 .4660 .2165 .3188 .4633 .2178 .3184 .4641 .2175 

.0403 .0260 .9337 .0402 .0257 .9340 .0402 .0258 .9340 

Model D 

E U N 

.9203 .0138 .0659 

.3073 .4833 .2094 

.0403 .0278 .9319 

9/79- E .9484 .0171 .0345 .9487 .0166 .0347 

10/79 U .2735 .5069 .2196 .2776 .4986 .2238 

N .0468 .0236 .9296 .0466 .0227 .9307 

.9487 .0165 .0347 

.2778 .4978 .2244 

.0465 .0227 .9308 

.9476 .0172 .0352 

.2711 .5067 .2222 

.0459 .0233 .9308 

10/79- E .9445 .0178 .0377 .9449 .0172 .0379 

11/79 U .2397 .5652 .1951 .2439 .5569 .1992 

N .0300 .0212 .9487 .0299 .0205 .9496 

.9449 .0172 .0379 

.2442 .5562 .1996 

.0299 .0205 .9496 

.9438 .0184 ..0378 

.2345 .5739 .1916 

.0299 .0220 .9481 

11/79- E .9494 .0207 .0298 .9503 .0198 .0298 

12/79 U .1815 .5975 .2210 .1862 .5873 .2265 

N .0279 .0222 .9498 .0280 .0213 .9507 

.9503 .0198 .0298 

.1866 .5862 .2272 

.0280 .0213 .9507 

.9495 .0209 .0296 

.1810 .6000 .2190 

.0281 .0225 .9494 

8/79-9/79 
9/79-10/79 

lO/79-11/79 
11/79-12/79 
12/79-1/80 

12/79- E .9436 .0198 .0366 .9441 .0192 .0367 

1/80 U .2037 .5853 .2110 .2072 .5779 •2148 

N . 0254 . 0252 . 9494 . 0254 . 0244 . 9502 

D. %, PRR, and PMM Parameter Estimates Under Model A 

PRR PMM X2 G2 
• 7258 .9539 .7421 19 16 

.7689 •9498 .8316 38 36 

• 7687 . 9610 . 8690 49 40 

• 7701 .9650 .8986 74 58 

• 7 670 .9670 .9143 43 34 

Note: ~2.99(4).. = 13.28 

• 9441 . 0192 . 0367 . 9436 . 0198 . 0366 

.2076 .5770 .2153 .2038 .5853 .2109 

• 0254 . 0244 . 9502 .0254 . 0253 . 9493 

F. %, PRR, and PMM Parameter Estimates Under Model C 

,~ PRR(E) p~(o)  pRa(N) pr.,t(E) pMM(O) PMM(N) 
• 7258 .9549 .9216 .9561 .7411 .7025 .7483 

.7689 .9556 .9327 .9431 .8310 .5842 .8552 

• 7687 . 9623 . 9247 . 9628 . 8714 . 6474 . 8866 

• 7701 .9641 .9350 .9691 .9101 .6138 .9104 

. 7670 . 9671 . 9489 . 9688 . 9212 . 7156 . 9264 

8/79-9/79 
9/79-10/79 

10/79-11/79 
11/79-12/79 
12/79-1/80 

E• ~, PRR, and PMM Parameter Estimates Under Model B 

(E) ~ (O) ~ (N) PRR PMM X2 G2 

• 7254 .6870 .7311 .9539 .7421 19 16 

• 7687 .5822 •7926 .9498 •8316 19 19 
.7719 •5611 .7920 .9610 .8690 26 21 

.7900 .4784 .7895 .9650 .8986 24 20 

.7809 •5106 .7909 .9670 •9143 9 8 

Note: ~2.99(2).. = 9.21 

G. ~, PRR, and PMM Parameter Estimates Under Model D 

PRR(E) PRR (U) PRR (N) Pt~,,l(E) PMM (U) PMM(N) 
.7258 .9557 .8852 .9582 .7400 "7364 .7458 
.7689 .9567 .9165 .9430 •8271 •7208 .8485 

.7687 .9634 •8965 •9643 .8678 .7649 .8811 

• 7701 .9650 .9138 .9706 .9061 .7588 .9037 

• 7670 .9677 .9357 .9697 .9178 .8123 .9212 
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