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ABSTRACT: For a national survey of reading abi- 
lity among young adults using a multi-stage, 
stratified probability sample, generalized 
variance functions (GVF) were estimated. That 
is, an attempt was made to express the estimated 
variance of a statistic as a function of that 
statistic and other characteristics of the 
variable of interest. With GVFs estimated from a 
development sample of variables, predictions of 
sampling variance were made for other variables 
in a confirmation sample and comparisons made 
with conventional jackknife estimates. 
Conclusions were drawn about the feasibility of 
use of GVFs, with emphasis on the margin of addi- 
tional estimation error that is introduced. 

KEYWORDS : Estimated variance, design effects, 
jackknife. 

INTRODUCTION. In  this paper we report the 
results of an investigation into the feasibility 
of using generalized variance functions (GVF) for 
estimation of sampling variances for statistics 
computed for a large-scale and complex survey. 
As described in Wolter (1985), the GVF method 
attempts to model the variance of a survey esti- 
mator as a function of the estimate and possibly 
other variables. If the modelling is successful 
and the actual computation of the estimated 
variance by the usual formula is made 
unnecessary, then considerable cost savings may 
accrue. An accurate GVF may also be of great 
value in designing future surveys of the same 
type. This approach to variance estimation has 
been adopted by the Bureau of the Census for the 
Current Population Survey, and also by the 
National Center for Health Services Research in 
certain applications. In addition to the 
references cited in Wolter (1985), the reader 
should see Cohen (1979), Cohen and Kalsbeek 
(1981), and Burt and Cohen (1984). 

In many of the previous applications the GVF 
models the relative variance of an estimated sub- 
population total. A common specification is 

relvar(X) = ~ + ~IX. (i) 

This specification is in turn used to derive a 
model for the relative variance of a ratio or 
proportion. In the present paper we focus pri- 
marily on the direct estimation of variances of 
proportions -- e.g., for the percentage of sub- 
jects who choose a particular distractor in an 
achievement test -- although we shall also devote 
some discussion to the modelling of variances of 
subpopulation totals. 

The statistics of interest are from the Young 
Adult Literacy Survey, conducted by Response 
Analysis Corporation for the ETS Center for 
National Assessment of Educational Progress in 
the summer of 1985. The target population was 
all persons of age 21 through 25 residing in 

households in the Continental U.S, The sample 
design was a fairly conventional stratified, 
five-stage probability type with pps selection 
down to the household level. Selection ~f units 
in the first three stages was systematic. The 
design included oversampllng of Blacks and 
Hispanics at an approxlmately two to one rate. 
This oversampllng was effected at the second 
stage of selection (roughly Census tracts) -- 
hence members of each racial group could be 
selected at more than one rate. Approximately 
36,000 housing units were screened for eliglble 
subjects resulting in a final sample of about 
3,500 respondents, each of whom provided measures 
of cognitive and background characteristics. 
Estimates of means, totals, and proportions 
obtained for these items involve weights that 
reflect adjustments for disproportionate 
sampling, nonresponse, and poststratification to 
known marginal totals. 

The variance of a statistic for this survey 
will deviate from that under simple random 
sampling with a fixed sample size for a number of 
reasons. There are gains in precision over that 
of srs from stratification by geography and size. 
These gains, however, are counterbalanced by the 
effects of nonoptimal disproportionate selection 
and clustering. The use of weights which are 
subject to random variability makes the 
statistics of interest nonlinear. All of these 
considerations combine to make the estimators of 
sampling variances more complex and com- 
putationally more expensive than the simple srs 
algorithms. 

In this survey the variance estimation proce- 
dure is the jackknife applied to forty-nlne pairs 
of ultimate clusters -- see, e.g., Wolter (1985), 
p. 185. This technique involves the computation 
of forty-nine pseudo-values of each statistic of 
interest at nonnegligible expense. The purpose 
of the present research is to try to develop an 
alternative estimator of sampling variability 
that is less computationally intensive, but of 
adequate precision. The general approach is to 
fit linear models of functions of the sampling 
variance to estimates from the survey, using the 
jackknife variance estimate as the basis for the 
dependent variable, and various easily-computed 
statistics as the predictors. For items not used 
in the development of the model, variances are 
estimated by prediction from the fitted equation. 
Presumably in a large-scale survey, a relatively 
small number of items would be used in GVF deve- 
lopment, and the results used for the variance 
estimation for the remainder. 

VARIANCE MODELS FOR COGNITIVE ITEMS. In the 
Young Adult Literacy Survey there were 104 dif- 
ferent items, each designed to measure a person's 
cognitive ability with respect to one of four 
psychometric scales -- (I) reading proficiency, 
(2) prose comprehension, (3) document utiliza- 
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tion, and (4) practical computation. The prin- 
cipal statistics for any one of these items are 
the proportions of subjects choosing each of a 
set of possible response categories. Statistics 
for each item were produced for each of the 13 
domains of the target population. These domains 
include the total population, each sex, three 
racial groups, three levels of education, and 
four geographic regions. Thus we have measures 
on 104 x 13 or 1,352 variables for which we have 
arbitrarily chosen the first response category 
for the present analysis. The items are suf- 
ficiently diverse so that observed proportions 
cover a wide range within each domain. For model 
development we have further drawn a systematic 
sample of 897 of the item measures, saving the 
remainder for validation. The selection was 
balanced to provide the same 69 items for each of 
the 13 domains. In the survey, items were admi- 
nistered according to a balanced-lncomplete-block 
spiralling scheme so that not every person was 
given each item. The average number of responses 
to an item for the total population was 1,487, 
and obviously smaller for narrower domains; e.g., 
for Hispanics the average number of cases was 
only 167. 

The first GVF model for proportions that we 
consider is derived from that for the estimated 
total, shown in (i) above. The derivation, based 
on the assumption that Equation (i) holds for 
both numerator and denominator of the sample 
ratio (proportion) and that there is zero corre- 
lation between the ratio and its denominator, is 
discussed in Wolter (1985), p. 204. 

Calling the weighted sample proportion ~, and 
the weighted total X, we write 

re l va r (~ ) )  = [3(I - ~)/~)~(, (2) 

or in terms of the variance, 

v a r ( ~ )  = ~ ( i  - ~))/X. (3) 

Exhibit 1 shows the results of an ordinary 
least squares fit of the model in (3) above, 
where Z is the compact notation for the predictor 
expression on the right-hand side and the inter- 
cept is allowed to be nonzero. 

[Exhibit 1 about here]. 

A noteworthy aspect is the asymmetry about zero 
in the plot of residuals against predicted 
values. Furthermore, the large mean squared 
error indicates poor predictability for the 
dependent variable. 

Exhibit 2 shows the results of a regression of 
the variance of ~ on the simple random sampling 
formulation, 

var(~) = = + ~(I - ~)/n. (4) 

It can be seen that the linear fit is better than 
that for (3) above, leading us to doubt the 
effectiveness of the traditional specification. 

[Exhibit 2 about here]. 

One of the problems with the approach taken 
thus far is that the variance is modelled 
according to conventional least squares, the 
optimality of which depends on underlying nor- 
mality. Since variances tend to have skewed 
distributions, one shouldperhaps not expect sym- 
metry in residuals. There is also discussion in 
the GVF literature of the necessity in model 
fitting of correcting for inconstant residual 
variances. Our approach at this point is to 
transform to logarithms, with the aim of sym- 
metrizing the errors, making them more homoske- 
dastic, and converting multiplicative 
relationships to linear. 

As an example, we transform the variables in 
the model in (3) to their natural logarithms, 
yielding 

logvar(~) = = + ~log[~(l - ~)/X]. (5) 

With ordinary least squares we obtain the results 
shown in Exhibit 3. The scatterplot and the nor- 
mal probability plot indicate that the transfor- 
mation achieved its purpose, and we shall 
continue to work in the logarithmic metric. 

[Exhibit 3 about here]. 

Since the model in Equation (4) had a better 
linear fit than Equation (3) it is natural to 
examine its logarithmic version: 

logvar(~) = = + ~log[~(l - ~)/n], (6) 

the results of which are shown in Exhibit 4. 

[Exhibit 4 about here]. 

A third, and somewhat cruder logarithmic 

model, is 

logvar(~) - log[~(l - ~)In] = =, (7) 

for which least squares yields the mean log 
design effect as the estimator of =. 

For the purpose of model comparison, we shall 
reconsider the measure of goodness of fit of the 
various models. Our aim in developing a GVF is 
to predict the variance of a statistic for use in 
estimation and inference. For many of the pur- 
poses for which the results of this survey will 
be used underestimation of sampling variability 
is a more serious error than overestimation. 
Thus we would rather have conservative estimated 
standard errors than those that are too small. 
For illustration in this paper, we shall assume 
that the consequences of an underestimate are 
three times as severe as those of an overestimate 
of the same magnitude. We shall also assume the 
opportunity loss to be linear. A standard result 
from decision theory -- e.g., Raiffa and 
Schlaifer (1961) -- shows that the predicted 
value of the dependent variable that minimizes 
expected linear opportunity loss of the error of 
estimation is the fractile of the predictive 
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distribution given by the ratio 

ku/(ku + ko), (8) 

where k u and k o are the losses of under and over- 
estimation, respectively. Hence, assuming nor- 
mality, we use as the optimal prediction of the 
log-variance the expression 

LVe = predicted value 

+ .67 standard error of prediction, (9) 

corresponding to the .75 fractile of the normal 
probability distribution. We shall evaluate 
alternative models by comparing the means of 
absolute residuals from the optimal predicted 
values, LV*, weighting positive residuals by 
three. The following table summarizes the 
results thus far: 

Table 1 
AVERAGE LOSS OF PREDICTION ERROR 

Model A v e r a g e  Loss  
5 0 . 5 2 4 8  
6 0 . 4 3 7 7  
7 0 . 4 6 2 4  

Because Model (6) appears to perform better in 
prediction, we shall restrict further search to 
elaborations upon its form. 

The next step is to separate the factors in 
the logarithm of the simple random sampling for- 
mula for the variance, as in the following 
equation: 

logvar(~)  = a + B l log(~)  + ~21og(l _ ~) 

+ ~31og(n). (10) 

Exhibit 5 shows that the linear fit is 
slightly improved by this specification, with 
log(n) playing a lesser role in the determination 
of the dependent variable than in Model (6). 
Further elaboration upon the theme is shown in 
the lower part of Exhibit 5 for the model 

logvar(~) = a + ~llog(~) + ~21og(l - ~) 

+ ~31og(n) + ~41og[cv(X)] (11) 

where, although the coefficient for the log of 
the coefficient of variation of the estimated 
total is significant (LCVWN in the exhibit), its 
contribution to adjusted R 2 is negllgible. The 
following mean losses may be appended to Table 1 
above: 

i0 0.4351 
i i  0.4296 

[Exhibit 5 about here] 

In Exhibit 6 we show plots of the reslduals 
from the ordinary least squares fitting of Model 
(ii) for the thirteen groups of measures 
corresponding to the domains of the target popu- 

lation, and for the four scale identifiers, where 
we hoped to see some indication of further asso- 
ciation. Although the scatterplot did not pro- 
mise very much, we experimented with the 
introduction of group (domain) effects and deve- 
loped the best fitting model shown in Exhibit 7: 

logvar(~) = ~ + ~llog(~) + ~21og(l - ~) 

+ ~31og(n) + ~4G3 + ~5G4 + B6G5 + ~7G8 + B8G9 

+ B9GIO, (12) 

where G3, G4, G5, GS, G9, and GI0 are one-zero 
indicator variables for the domains of female, 
whites, blacks, high school education, greater 
than high school, and NE region. The exhibit 
shows that the increase in adjusted R 2 is not 
great. The average loss using the same predictor 
and criterion as in the previous models is 
0.4224, showing a decrease of less than two per- 
cent from that for Model (11). 

[Exhibits 6 and 7 about here]. 

With so little improvement from the introduc- 
tion of the domain identifier, we decided to stop 
the data dredging and conclude that there is 
little hope of developing a GVF model that can 
perform a great deal better than (7), in which 
the logvar of the weighted proportion is pre- 
dicted by the logarithm of the srs formula, plus 
the average of the logarithm of the design effect. 
The average logdeff for the set of 897 items is 
0.5464 and the standard deviation is .3858. 
Thus, the confidence interval for the predicted 
value under that model would have a half-width of 
about .8 -- not very precise, considering that 
the average logvar is 1.345. 

To understand more fully the implications of 
the models it is useful to consider goodness of 
prediction from a different angle. We have 
stated that we are primarily concerned with 
underestimation of the standard error, i.e., we 
would prefer estimates that are too big, rather 
than too small. For model comparison we have 
given underestimates three times the weight of 
overestimates and computed the weighted mean 
absolute error (average loss). The models are 
logarithmic, however, and it is reasonable to ask 
for some measure of performance in terms of the 
antilogs, i.e., the standard error that we are 
ultimately interested in knowing. We, therefore, 
transform the predicted values of the logvariance 
to predictions of the standard error and compute 
a relative error of prediction: 

err = (jackknife s.e. 

- p r e d i c t e d  s . e .  ) / j a c k k n i f e  s . e .  (13) 

For Model (7) we display in Exhibit 8 the 
histogram for the relative errors computed as 
shown in (13). It can be seen that 218 out of 
the 897 errors (24.3 percent) are positive -- 
that is, the standard error is underestimated. 
The maximum relative error of underestimation is 
40 percent, but the histogram shows that only 26 
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out of 897 (2.9 percent) are underestimates 
greater than 20 percent in relative terms. The 
median among the errors of underestimation is 
less than I0 percent. The maximum relative error 
of overestimation is 176.7 percent, i.e., the 
predicted standard error was 2.77 times as large 
as the jackknife estimate. It can be seen, 
however, that such extreme overpredictions are 
rare. In only 45 cases (five percent) did the 
predicted value of the standard error exceed the 
jackknife estimate by more than 50 percent. 
Finally, we observe that out of the total of 897 
relative errors, 555 or 61.9 percent were less 
than 20 percent in absolute value. 

[Exhibit 8 about here]. 

Exhibit 9 shows the relative errors for Model 
(i0) above. The maximum relative error of 
underestimation is now only 35 percent and only 
20 (2.2 percent) exceed 20 percent. Out of the 
total of 897, 571 (63.7 percent) are less than 20 
percent in absolute value. 

[Exhibit 9 about here]. 

VALIDATION. The prediction equations estimated 
for Models (7) and (I0) were applied to the 455 
cases that had been held in reserve for valida- 
tion. (See pages 3-4, above). For Model (7) the 
average loss in the validation run was 0.5017, as 
opposed to 0.4627 in the original fitting. 
Curiously, only 16.7 percent of the relative 
errors computed according to Expression (13) were 
underestimates. The maximum relative underesti- 
mate was 34.58 percent. For Model (I0), the 
average loss for the validation sample was 
0.4805, as opposed to 0.4351 originally. The 
errors of underestimation constituted 21.1 per- 
cent of the total, with a maximum value of 39.2 
percent. The validation run confirms our earlier 
conclusion that there is no great advantage in 
prediction accuracy of the more complicated Model 
(i0) over the simple approach of adding the 
average logdeff to the logarithm of pq/n. 

ESTIMATION OF DOMAIN TOTALS. In addition to the 
cognitive items, for which we have been 
discussing GVFs for variances of proportions, the 
Young Adult Literacy Survey provides information 
on 214 background items, covering the 13 dif- 
ferent subpopulations of interest. Thus, there 
is a large number of weighted estimates of domain 
totals with their corresponding jackknife estima- 
tes of variance. A systematic sample of 947 
estimated totals (72 or 73 values for each of the 
13 domains) was selected for analysis, with many 
other values held in reserve for subsequent 
exploration and validation. 

[To comply with restrictions on the length of 
papers for this publication we have omitted the 
remainder of this section, including Exhibits 10 
through 13. A full copy of the paper is 
available upon request. ] 

USING PRIOR KNOWLEDGE OF THE DESIGN EFFECT. As a 
final exercise with the cognitive items we shall 
introduce the design effect into the right-hand 

side of the model. To do so exactly would lead 
to a perfect fit by tautology, but to be a bit 
more realistic, we assume that the analyst has a 
rough prior idea of the magnitude of the effect. 
In the discussion of theoretical motivations for 
Models (3) and (4), Wolter (1985) suggests that 
the specification is consistent with a constant 
deff for groups of items. The logarithm of the 
deff ranges from -1.23 to 1.814 in these data. 
Assume that it is possible a priori to place a 
proportion in one of the four categories of log- 
deff: (1) less than -.9, (2) greater than or 
equal to -.9 and less than zero, (3) greater than 
or equal to zero and less than +.9, (4) greater 
than or equal to 4.9. In Exhibit 14 the 
variables LD1, LD2, and LD3 are indicators that 
the item falls into the first three of the log- 
deff categories above. It can be seen that with 
this important information the mean squared error 
is reduced by more than two thirds from that of 
previous models. The mean loss with the 3.1 
penalty for underestimation that we have been 
using falls to 0.2618, only 62 percent of the 
previous minimum. This superiority is further 
borne out in the examination of relative errors 
of estimation of the standard error. The range 
is -41.7 to 24.4 percent, with 777 out of 897 
(86.6 percent) of the relative errors less than 
20 percent in absolute value. 

[Exhibit 14 about here]. 

To be even more realistic (but not realistic 
enough for the real world) in Exhibit 15 we 
assume that the best that the analyst can do a 
priori is to place the proportion in the two 
categories: negative vs. nonnegative logdeff -- 
in other words, deff less than, or greater than 
or equal to one. The categorical varlable is 
LDSIGN. Exhibit 15 shows that the fit. is still 
better than the models that do not involvelog- 
deff. The mean loss of estimation error is 
calculated to be 0.3807. The range of relative 
error of estimation of the standard error is 
-74.8 to 36.2 percent with about two-thlrds 
falling within plus or minus 20 percent. 

[Exhibit 15 about here]. 

In summary, it would be very nice if we could 
identify some surrogate for the design effect of 
a variable that would enable us to classify it in 
at least a rough manner. In further research we 
shall experiment with the imposition of various 
amounts of measurement error on the classifl- 
cation variable to gauge the effects. 
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EXHIBIT i 

UNWEIGHTED LEAST SQUARES LINEAR REGRESSION FOR VAR 

PREDICTOR 

VARIABLES COEFFICIENT STD ERROR STUDENT'S T 

CONSTANT I. 857 1.841E-O 1 10.08 
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EXHIBIT 2 

UNWEIGHTED LEAST SQUARES LINEAR REGRESSION FOR VAR 

PREDICTOR 
VARIABLES COEFFICIENT STD ERROR STUDENT'S T 
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EXHIBIT 3 

UNWEIGHTED LEASTSQUARES LINEAR REGRESSION FOR LV 

PREDICTOR 
VARIABLES COEFFICIENT STD ERROR STUDENT'S T 
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EXHIBIT 4 

LINWEIGHTED LEAST SQUARES LINEAR REGRESSION FOR LV 

PREDICTOR 
VARIABLES COEFFICIENT STD ERROR STUDENT'S T 
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LPQN 1. 099 1. 288E-02 85.33 

CASES INCLUDED 897 MISSING CASES 0 
DEGREES OF FREEDOM 895 

OVERALL'F 7.281E+03 P VALUE 0.00C50 
ADJUSTED R SQUARED 0.8904 
R SQUARED 0.8905 
MEAN SQUARED ERROR 1.398E-01 
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UNWEIGHTED LEAS ' I  : ' ]QUARES L IHEAR REGRESSION FOR LV  

FREDICTOR 
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CE,'NST ANT -1. ,I04 1. 863E-01 -7.53 
LF' 1. 195 I. 616E-02 73.97 
LQ I. 227 I • 913E-02 64. 15 

LN -8. 697E-A 1 3.221 E-02 -27. C:0 

LCHWN 1.371 E- 01 5. 325E-02 2.57 

CASES INCLUDED B97 MISSIPG CASES 0 

DEGF:EES OF ,FREEDOM B92 
OVERALL F 2. 048E+03 P VALUE O. OOC, O 

ADJUSTED R SQUARED 0.9014 
R SQUARED O. 9018 

MEAN SQUARED ERROR I. 258E-C)I 

RES I DU 

EXHIBIT 6 
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SCALE 897 CASES PLOT]ED 

EXHIBIT 7 

UN;JEIGHTED LEAST SQUARES LINEAR REGRESSION FOR LV 

F'RED I CTOR 

VARIAE:LES COEFFICIENT STD ERROR STUDENT'S T 

CONSTANT --I. 3(i)7 1. 995E-01 -6.55 
L P I. 185 1. 636E-02 72.43 

L Q 1.21 C) 1. 967E-02 61.49 
LN -9. i 1 -?E-OI 2.45:-IE-02 -37.23 
G3 -I. 88i E-Of 4. 755E--02 -3.96 
G4 -1 .  564E- ( -~  1 4 .7 :75E -02  - 3 .26  

G5 -S. 41 IE-02 4 .515E-02  -i. 86 
G8 -9.531E-02 4.66",' E-02 -2.04 
G9 -6,647E-r;2 4. 637E--02 --1. ,13 
G 10 -2. '162E-01 4.59,SE-C:'2 -5.35 

CASES i NCLUDED ,997 
DEGREES OF FREEDOM ,987 
OVERALL F 951 . 8 
ADJUSTED R SQUARED 0.9052 

R SQUARED O. 9062 
MEAN SQUARED ERROR 1,2C19E-01 

MISS ING CASES 0 

F:' VALUE 0 .00 " : ; 0  

0.0C)C)0 
0. 0000 
0. Cu:)00 
0. 0000 
0.0098 

0 .  C)C)0CI 

0. 0000 

0 .0C)0C)  

0.00':, 0 
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cAs£s ZNCLUD£D EV7 MISSIES C~5ES 4D~ 

EXHIBIT 14 

UNWEIGHTED LEAST SQUARES LINEAR REGRESSION FOR LV 

PREDICTOR 
VARIABLES COEFFICIENT STD ERROR STUDENT'S T 

CONSTANT 4. 252E-01 1. 151E-01 3.69 
LP 1. 056 1. C)03E-02 105.24 

LQ I. 073 i, 168E-02 91.86 
LN -0. 969 I. 257E-02 -77.07 

LDI -2. 107 1. 212E-01 -17.38 
LD2 -1. 240 3. 225E-02 -38. o,5 

L .b3  -5. 547E-01 I. 9C,'6E-02 -29. 10 

CASES INCLUDED 897 
DEGREES OF FREEDOM 89(:) 
OVERALL F 4.304E+03 

ADJUSTED R SQUARED (1.9665 

R SQUARED 0.9667 
MEAN SQUARED ERROR 4.279E-02 

MISSING CASES 0 

F' VALUE O .  C)C,00 

EXHIBIT 15 

Ui'JWEIGH'IED LEAST SQUARES LINEAR REGRESSION FOR LV 

PREDICTOR 

VARIABLES COEFFICIENT STD ERROR STUDENT'S T 

CONSTANT -i. C154 1. 518E-01 -6.95 

LP 1.110 1. 393E-02 79.73 

LQ 1.13,5 1. 627E-02 69.74 
LN -0. 996 1. 774E-C)2 -56. 16 
LDS I GN 7. 899E- C) I 3. 829E-(')2 2n. 63 

CASES I NCLUDED 897 

DEGREES OF FREEDOM 892 

OVERALL F 3. 106,E+03 
ADJUS]ED R SQUARED (1.9327 
R SQUARED 0. 9330 

MEAN SQUARED ERROR 8. 583E--02 

M I SS I NG CASES 0 

P VALUE 0. 0000 

0 .  0003  

0 . 0 0 0 0  

0 .0000  

O .  0000  

O. OC,OC) 

0 . 0 0 0 0  

O.  0000  

P 

0. 0000 
0.0000 

0° 0000 
0. 0000 

O.  000C)  

423 


