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1. INTRODUCTION 
The subjects of this paper are two relatively 

unrelated problems in variance estimation. Research 
into these problems was motivated by their 
applicability to the demographic surveys conducted by 
the Census Bureau, but their potential applications are 
more general. The first problem, which is the subject 
of Section 2, is the development of a methodology for 
pairing strata in one PSU per stratum designs, which 
minimizes the bias of the resulting variance estimator 
when using a collapsed stratum estimator of 
variance. The current designs of the Current 
Population Survey, the National Crime Survey and the 
American Housing Survey are exam ples of one PS U per 
stratum designs. 

The second problem, which is the subject of Section 
3, is the development of an alternative to the 
standard unbiased variance estimator for two PSUs per 
stratum, without replacement designs, that will have 
greater precision. The current design of the Survey of 
Income and Program Participation is essentially this 
type of design. 

2. OBTAINING A COLLAPSING THAT MINIMIZES 
THE BIAS OF THE COLLAPSED STRATUM 
VARIANCE ESTIMATOR 

To obtain variance estimators for one PSU per 
stratum designs, a collapsed stratum variance 
estimator is generally employed, as explained in 
Wolter (1985). The first step in using such an 
estimator is the partitioning, or "collapsing", of the set 
of all strata into groups of two or more strata. Most 
commonly, each such group of strata consists of two 
actual strata, and the discussion in this section will be 
confined to this special case. The main purpose of this 
section will be to describe how the collapsing can be 
obtained in a fashion that in practice appears to be 
close to opti m al in terms of mini mizing the bias of the 
corresponding variance esti m ator. 

We first present the collapsed stratum variance 
estimator, employing for the most part the notation of 
Wolter (1985). Consider a population total Y to be 
estimated by a linear estimator of the form 

L 
h ' where L denotes the number of strata, 

h=l 
A 

which is assumed to be even, and Yh is an unbiased 

estimator of the total in the h-th stratum. The 
collapsing results in G = L/2 groups of strata, with gl 
and g2 denoting the two strata in the g-th group. The 

collapsed stratum variance estimator V(Y) of V(Y), as 
given in Hansen, Hurwitz and Madow (1953), or Wolter 
(1985), reduces in the case of two strata per group to 

G 2Ag 2 
g=l gl  

2A91 ~ )2 (2.1) 
- Ag i + Ag 2 g2 ' 

where A_ h is a known measure associated with stratum 
gh that y tends to be wel l  correlated with Y_,. 
Commonly used values of Aah, which will be discus~ 
later in this section, include. ~-- 

(i) 1 for all g,h, and 
(ii) the population of the gh-th stratum from the 

most recent census. 
We simplify (2.1)by substituting 

2A 2A 
k = _ g2 k = gl 

gl -Ag ' g2 Ag I + A Agl + 2 
which yields 

g2 

V(Y) = r (kglYg I - kg2Yg2 )2 (2.2) 
g 

Note that k~ 1 + kg 2 = 2. 
To obtai~ an expression for Bias V(Y), we observe 

that 

E[V(Y)]  = ~ (V(kglYg I - kg2Yg2) 

+ [E(kglY - k Y ) ]2  
gl 92 g2 ) 

2 2 2 2 
= ~ [ ( k g l a g l  + kg2ag 2) 

+ (KglYg I - kg2Yg2)2] ,  (2.3) 

where a~h= V(Ygh) " Since 

2 
V(Y) = r (a~1 + ag2 ) ' i t f ° l l °ws tha t  

g 

Bias V(Y) = r l; (k 2 2 
gh gh- 1) a g h 

+ r (kglYg I -  Kg2Yg2 )2 .  (2.4) 
g 

We observe the following about (2.4)in the two cases 
mentioned previously. In case (i), (2.4)reduces to 

Bias V(Y) = r(Yg I - Yg2 )2 (2.5) 
g 

since kgh=l, while in case (ii) both terms of (2.4) are 

generally present. However, in case (ii) i f  A q h and 
Y~h are well correlated then the second term l~ (2.4) 
generally tends to be smaller than in case (i), and 
disappears altogether i f  A2g h is proportional to Y gh- 

2 for all g, then the first Also note that i f  agl = ag2 2 2 

term in (2.4) is nonnegative since kgl + kg2 ) 2, 

but that in general i t  is possible for the first term of 
(2.4), and (2.4) itself to be negative, as is illustrated by 
examples in Hartley, Rao and Kiefer (1969). 

In order to obtain a collapsing that minimizes (2.4), 
the value of (2.4) must be known for each possible 
pairing. If (2.4)only involves PSU or stratum totals 
then such information is assumed known at the time of 
the most recent census for any characteristic 
tabulated in the census. (Of course these values 
generally change between the time of the census and 
the time that the survey is conducted. This problem 
will be ignored for now, but returned to at the end of 
this section.) In case (i), only stratum totals are 
involved, so that the condition is met. In case (ii) 
there are several possible approaches. If Aol is 
sufficiently close to AQ2 for all g, then one ~ght 
choose to ignore the first term of (2.4). If that is not 
acceptable, another possibility is to first rewrite (2.4) 

2 2 + o where o by replacing ag h by aghw ghb hw, 
2 a ghbdenote the within and between PSU variance 
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respectively for the gh-th stratum. Then 

2 _1)a2 ] Bias V(Y) : [g I :h ,  (kgh ghw 

+ [ gSh (k  2 1) a 2 
, gh- ghb 

+ ~ ( k g l Y g l -  k Y )2 g2 g2 ] "  (2.6) 

The terms within the second set of brackets in (2.6) 
meet the requirement of involving only PSU and 
stratum totals. However, census data alone cannot be 
used to obtain a value for the term within the first set 

of brackets, since ~2hw depends on the particular 

within PSU sampling procedure employed. Instead, an 
2 ^2 of a could be obtained directly estimator ~ghw ghw 

from the sample, and the estimator 

: + 2 
g,h gh ) ghw (2.7) 

usedinplaceofV(Y) to estimate V(Y).  I [og2 w was 

2 , then Bias V (Y) would an unbiased estimator of Oghw 

be the terms within the second set of brackets of 
(2.6). Although unbiased estimators of within PSU 
variance are not obtainable for the commonly used 
within PSU sampling procedures that employ 
systematic sampling, i t  may be possible to consider the 

bias of ~hw^ small enough to be ignored. 
,.B 

Whatever approach is chosen, i t  is assumed that for 
any collapsing, the contribution to the bias of the 
variance estimator from each pair of strata is known 
and nonnegative, and we turn to the key question of 
this section: Given the set of L strata, how should they 
be paired in order to mini mize the bias of the variance 
estimator. In an attempt to answer this question, the 
problem will be formulated as a mathematical 
program ming problem. First let the constants cii, i<j, 
i~=l,...,L, denote the contribution to the bias o~F the 
variance estimator from the pair of strata i~, i f  i and j 
are paired together. For ~xam ple i f  the bias is given 
by (2.5), then cii= (Yi-Yi) ~" The total bias of the 
variance estimatl~r cor~sponding to any collapsing 
would be 

L 
r c x (2.8) i , j  i j  i j '  

i < j  where 

xij = I, i f  strata i and j are paired together, 

: O, otherwise. 

Then minimizing the bias of the variance estimator is 
equivalent to minimizing (2.8) subject to the 
constraints 

xij : 0 or 1 for all i~, i<j, (2.9) 

and that for each i exactly one member of the 
sequence 

x li,X 2,...~x (i_ i)i ,xi(i + 1),xi (i + 2), • "~xi L 
is equal to 1, or equivalently, 
i - 1  L 
j=lS x j i +  j=i+IIi x i j =  1, i = l , . . . , L .  (2.10) 

The problem defined by (2.8 - 2.10) is an integer 
program ming problem. If L is sufficiently small, an 
optim al solution can be obtained by using any standard 

software for solving integer programming problems. 
Unfortunately the solution time for such problems 
increases rapidly with increasing L, and i f  L is fairly 
large it  would be impractical to solve the problem in 
this fashion. 

It would be desirable i f  this integer program ming 
problem could be transformed into a different form of 
mathematical program ming problem that would be 
more efficient computationally. To this end, we 
define cii=cii i f  i>j and cii=M for each i, where M is a 
suitably l'ari~e constant, as w111 be explained later. We 
then seek to minimize 

I: c i j x i j ,  (2.11) 
i , j  

subject to the constraints 

}: x i j  : 1,  i = 1 ,  . . . .  , L ,  (2.12) 
J 
I: x ~  = 1, j = l ,  . . . .  L, (2.13) 

I J l 
X i j  = 0 or 1, i , j  = 1 , . . . , L .  (2.14) 

The problem (2.11 - 2.14) is an assignment problem. 
Software exists for solving assignment problems in 
reasonable time even for quite large L. The key 
question is whether an optimal solution to the 
assignment problem (2.11 - 2.14) leads to an optimal 
solution to the original integer program ming problem 
(2.8- 2.10). The answer would be yes i f  the following 
conditions were true for an optimal solution to this 
assign m ent problem: 

x i i  = O, i = 1 , . . . , L  ? (2.15) 

x i j  : x j i ,  i , j  : 1 , . . . , L  ? (2.16) 

For, i f  these conditions were satisfied, then as a result 
of the sym m etry in both the c~.'s and x~'s, the subset 
of the optimal xii's for the a~signmen~ problem for 
which i<j would satisfy (2.10)and the corresponding 
value of (2.8) would be 1/2 the value of (2.11). 
Furthermore, the set xij, i<j minimizes (2.8) subject to 

(2.9), (2.10), since if  x ~ j ,  i<j, also satisfied (2.9), 

(2.10) and i f  we let x l j = x ~ i  for i>j, xii=O, then the 

entire set of x~ j ' s  would satisfy (2.12 - 2.14) with 

i ,s j  c i j x ~ j  : ~ i , S j c i j x i j  > i,}:j c i j x i j  
i < j  

= i~,j c i j x i j "  
i < j  

Thus the value of (2.8) for x ~ j ,  i<j is not less than 
(2.8) for the set xij , i <j. 

Now (2.15) always holds i f  M is set sufficiently 
large. For example, any M > L'max { cijfi< j } would 
certainly suffice. 

One might believe that (2.16) also always holds since 
cii=cii for all i, j. However, this is false, as is 
es'tab~ished by the following counterexample. Let L:6 
and take 

c . = O, i f  i , j < 3  or i , j > 4 ,  i ~ j ,  
I j  > O, o t h e r w i s e ,  

that is ci-=O for all elements of the array in the upper 
lef t  or l~Jwer right quadrants of the array that are not 
on the main diagonal. Then the following set of xij's 

satisfies (2.12 - 2.14) and yields a value of 0 for (2.11), 
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and hence is an optimal solution to the assignment 
problem: 

x 12=x 23=x 31=x 45=x 56=x64 = 1, 

xij=O for all other i~. 

Clearly this solution does not satisfy (2.16). Nor are 
there any other feasible solutions to this problem for 
which (2.16) holds and (2.11) is O. To see why, observe 
that i f  a set of xij's is a feasible solution to (2.11 - 
2.14) and i f  x12=x21=1 then x3j.=l for j=4,5 or 6 and 
hence (2.11) would be positive. Similiarly, any other 
feasible solution to this assignment problem for which 

=1 for some i j  with cii=O, im mediately forces 
XlJl]-~Ji:" 1 for some i i ~  1 for which c i lJ 1 >0. 

Although an optimal solution to (2.11 - 2.14) does not 
in general lead to an optimal solution to (2.8- 2.10), i t  
is believed that a nearly opti hal solution can generally 
be obtained in an efficient manner by combining both 
of these problems as follows. First obtain an optimal 
solution to the assignment problem and let Sl denote 
the set of strata i for which there exists a j satisfying 
xi j=xi i=l ,  while the set of all remaining strata is 
denoted by S 2. The pairing for the strata in S 1 is 
defined by this optimal solution to the assignment 
problem, that is, the i-th and j- th strata are paired i f  
x~=x~: l .  If S~issuff ic ient ly small then the elements 
inUitJ~an be ~.red by obtaining an optimal solution to 
a problem like (2.8-  2.10), but with Sp now viewed as 
the set of all strata. If S 2 is still too large for this 
purpose, i t  can be partitioned into a collection of say t 
subsets $21,...,$2t, such that each such subset Szk 
contains an even number of elements; each c~.SP~elS 
small enough to efficiently obtain a solution to 
2.10) with S2k viewed as the set of all strata; and 
strata i and j are in the same S2k i f  either xi j=l  or 
x~--=l in the optimal solution t o  the assignment 
p~bblem, provided this last requirement can be met 
without any of the S2k becoming too large. (The 
rationale for grouping strata i~ for which either xi i=l  
or x-.=l in the same S is that such a grouping tends 2k 
to put together pairs of strata which would have a 
small contribution to the bias of the variance 
estimator.) The elements of S2k are then paired by 
the optimal solution of (2.8 -..2 i0-) restricted to $2~. 

The procedure just descmbed results In an optlmal 
pairing of strata in S 1 and either an optim al pairing of 
strata in S 2 or, i f  S 2is partitioned, an opti hal pairing 
of strata fn each of the S2k 's" However, it is not 
necessarily an optlmal palmng for the entire set of L 
strata, since such a pairing may require that a stratu m 
in one subset be paired with a stratum in another. 
Although it does not in general yield an optimal 
solution, it is believed that this approach would 
provide a good approximate solution in an efficient 
m anner. 

Remark: All of the preceding work has been with 
respect to a single characteristic Y. Since, as a 
practical matter, the same collapsing would generally 
be used for variance estimates for all characteristics, 
the collapsing criteria could be taken to be the 
minimization of the weighted average of the biases of 
the variance estimator for several key characteristics 
instead of the bias of a single characteristic, that is, 

~ W k Bias V(Yk), (2.17) 
k #w 

where Yk is an unbiased estimator of Yk- If all of 
these characteristics are considered of equal 
importance then W k would be some value that would 

serve as a scaling factor. (One possible scaling factor 
is presented in the example below.) If some variables 
are more important than others, then W k could be 
taken to be something greater than the corresponding 
scaling factor for the more important variables and 
less than the scaling factor for the less important 
variables. 

Illustrative Exam ple 
The present design of t'he Current Population Survey 

(C PS) is used to il lustrate this work. This survey has a 
one PSU per stratum design with 379 nonself- 
representing strata. (There are also self-representing 
strata that are not subject to a collapsed strata 
procedure since there is no between PSU variance for 
such strata). Because L is odd, one stratum was 
arbitrarily dropped for this i l lustration. After the 
re m aining 378 strata are paired, the discarded stratum 
could then be grouped with one of the 189 pairs 
resulting in 188 pairs and one group of three strata. 
The pair that this strata is grouped with could be 
chosen to minimize the bias of the total collapsing by 
computing the bias for each of the 189 possible such 
groupings that could be;created and choosing the 
grouping with smallest bias. 

The comparison criterion is the value of (2.17) where 
the eight characteristics used were 

U nem ployed, Total 
Black 
Hispanic 
Teenage (16-19) 

Civilian Labor Force, 

Agriculture E m ploy m ent 

Total 
Black 
Hispanic 

To obtain W k, a random pairing was first selected and 

then for each k, W k was taken to be (1/8) Bias V( Yk ) 

corresponding to the random pairing. The 
minimization of the objective function with this Wu 
amounts to obtaining a particular pairing for which thB 
average, over the eight characteristics, of the ratio of 
the bias for this pairing to the bias for the random 
pairing is mini mized. 

For each k, Bias V ( k ) was co mputed separately for 

the cases (i) and (ii), defined earlier, both for obtaining 
W k and then for co m puting the objective function. For 
case (i), (2.5) was of course used in this computation 
while for case (ii), the second term only of (2.4) was 

used to obtain Bias V(Y~) 1980 census data was 
used for all computationS, in case (i), the procedure 
resulted in sets S 1 and S 2 containing 316 and 62 strata 
respectively. S 2 was partitioned into 3 subsets. S 21, 
$22, $23 consisting of 18, 20 and 24 strata. In case Oi}, 
S 1 and S contained 278 and 100 strata respectively. 2 
S 2 was partitioned in case (ii) into 4 sets of 26, 26, 24 
and 24 strata. (The assignment problems were solved 
with software written by James Fagan, while the 
Sperry Functional Mathematical Programming System 
was used to solve the integer program ruing problems.) 

The value of the objective function (2.8) 
corresponding to the final pairing obtained from this 
procedure for each case is presented in the first 
column of numbers in Table 2.1. The numbers in 
colu runs 2-4 provide an indication of the effectiveness 
of this procedure. Each value in the second column is 
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1/2 the corresponding minimum value of the assign- 
ment problem (2.11 - 2.14), which is a lower bound on 
the minimum value for the integer program ming 
problem (2.8- 2.10). The numbers in the third column 
are the values of (2.8) corresponding to a pairing by 
strata size, that is with the strata ordered in 
increasing size based on 1980 population, and the 
smallest stratum paired wi th the next smallest 
stratum, etc. The fourth column presents the values 
of (2.8) averaged over 10 random pairings independent 
of the random pairing used in co m puting the W k'S. The 
fact that this number is reasonably close to 1 in both 
cases provides an indication that results similar to 
these in this table would be expected i f  some other 
random pairing had been used to compute the Wk's. 
The table indicates that the procedure describedin 
this section yields, for this set of data, a pairing with a 
bias reasonably close to optimal, and substantially 
below that obtained by either random pairings or 
pairings by strata size. 

As previously noted, the biases of the variance 
estimator for any pairing change over time. Since a 
pairing for the current design of the C PS would be 
based on 1980 census data, but might be used for a 
time span that roughly averages 10 years away from 
1980, i t  would be instructive to consider the bias of 
the variance estimator for the pairings used in 
constructing Table 2.1 w i th  1990 census data 
substituted for 1980 census data. Since 1990 data is 
not available, 1970 data was used instead on the 
assumption that the results from going backwards a 
decade would be indicative of the results going 
forward a decade. The results are presented in Table 
2.2. Columns 1, 3 and 4 of this table were obtained by 
using the same pairings as for the corresponding 
entries in Table 2.1, but with 1970 census data 
substituted for 1980 data. Column 2 was obtained by 
minimizing the assignment problem (2.11 - 2.14) with 
1970 census data and multiplying the result by 1/2 to 
get a lower bound on the bias of the variance 
estimator for 1970. The table indicates that while the 
bias reduction deteriorates over time, as would be 
expected, it is still substantial for this set of data 
after 10 years. 

Table 2.1 Bias Measure with 1980 Census Data 

Math. Low. Bd. Pair. by Avg. of 
Prog. on Optml. Strata 10 Rdm. 
Pair. Solution Size Pair. 

AQh=I .0620 .0462 .6455 1.0522 
A~h=POP~ .0582 .0468 1.3987 1.0551 

Table 2.2 Bias Measure with 1970 Census 
Data, but samle Pa[irings asTable 2.1 

M ath. Low. Bd. Pair. by A vg. of 
Prog. on Optml. Strata 10 Rdm. 
Pair. Solution Size Pair. 

Agh=l . i134 .0489 .6613 1.0499 
Ag h=POP .0428 1.3226 1.0545 1.0545 

3. AN UNBIASED ESTIMATOR OF VARIANCE WITH 
INCREASED PRECISION FOR MULTI-STAGE 
WITHOUT REPLACEMENT SAMPLING 

The standard estimator of variance for n (~2) PSUs 
per stratum, multi-stage designs, with the PSUs chosen 
without replacement, as presented in Raj (1968), can 
itself have a large variance. In this section an 
alternative unbiased variance estimator is developed 
for the case n=2 that will in general have greater 

precision. 
We proceed to explain this problem in detail. The 

variance estimator in Raj (1968) will first be 
presented. All expressions will be given in the special 
case of a single stratum, since the generalization to 
m ore than one stratu m is routine. 

The following notation will be used. Let ~i be the 
probability that the i-th PSU is in a sample of n PSUs 
out of N, and let ~i j be the probability that both the 

i-th and j-th PSUs are in sample. Let Y i be an 
unbiased estimator of the i-th PSU total, Yi, based on 
sampling at the second and subsequent stages, with 

2 ^ 2 denote an unbiased V(Yi l i )  = o and let ~i 

estimator of ~ I.'~ Then an unbiased estimator of the 

population total Y is given by 

n l 
m , 

i=1 ~i 
with 

N 
v ( ~ ) :  ~ (~i ~ -~  ) (  i , j  j i j  

2 
N o i Yi Yj)2+ S ~, (3 .1)  

~i ~j i=1 ~i 
i < j  

and an unbiased estimator V(Y) of V(Y) given by 

~j ^ n ~ ~j -~ Y - n ~i 2 
~ (~ )=  S ( i i j ) (  i 2 

i , j ~ i j  ~ ~-j) +i=IZ ~. (3 .2)~ i  
i < j  

The focus of this section will be on reducing the con- 
tribution to the variance of (3.2)that arises from the 
factor ( ~i ~ j - ~ i  j ) / ~i j ' which from now on will be 

abbreviated by dij. Although dij is nonnegative for 

procedures to select PSUs such as the procedure of 
Brewer (1963) and Durbin (1967) for n=2 and its gen- 
eralization for n>2 by Sampford (1967), dii in general 
does not have any upper bound and its va~ability can 
result in an undesirably large variance of (3.2). 

To understand what can be done to alleviate this 
problem, f irst observe what each of the terms of (3.2) 
estimates. From the proof given in Raj (1968, 
Theorem 6.3) i t  follows that 

i j ) 2 ]  
E[ ~ d i j  ( ~J 

i , j  ~i 
i < j  N 

=iS, j ( ~ i ~ j  - ~ i j ) (  
i < j  

N 2 
+ ~ ( I - ~  i ) # ' 

i : l  
while ^2 

n a i N 2 
 ):zo i 

i = l  i = l  

Yi Yj)2 

~i ~j 

Thus the expected value of the first term in (3.2) is the 
entire first term in (3.1) (the between PSU variance) 
plus part of the second term (the within PSU variance), 
while the expected value of the second term in (3.2)is 
the remainder of the within PSU variance. A superior 
alternative to estimating the between PSU variance by 
the first term in (3.2) does not appear to exist. 
Howe~(er, a general class of unbiased estimators 
of V(Y) exists, which includes (3.2), from which a 
specific estimator can be chosen that reduces the 
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variability associated with the estimation of the within 
PSU variance. This class of estimators has the form 

^ 

n o~ n~ rYi Yj)2 + ~ k ,(3.3) (~)= d i j ' ~  ~ i j  
Vk i j  i , j  i 3 i , j  ~i 

i < j  
where the kij's are constants. (It is understood that i=j 

is excluded from the second sum mation in (3.3) and in 
all other expressions in this section.) Note that (3.2) is 
a special case of (3.3) with k i j  = ~i / ( n - l ) '  and 

that in general ki j ~ k j i  " Furthermore, in order for 

(3.3) to be an unbiased estimator of (3.1) restrictions 
must be placed on the kii's. To establish what these 
restrictions are, note thai~ the expected value of (3.3) 
conditioned on the specific set of sam ple P S Us is 

9 
n Y Y n ~ 
I: d i j  ( i j 2 i j ~i ~j) + }1 ( d i j +  k i j ) - - ~ ; "  (3.4) 
, i , j  ~ i  

i < j  
consequently, 

N Y. Y. 
(Y) ]  : ~ ( ~ i ~ j ' ~ i j ) ( - - ] - I  - _~)2 

k i j  i , j  ~i 
i < j  2 

N a i 
+ I: ~ i j ( d i j +  k i j )  --~ . 

i , j  ~i 
(3.5) 

Comparison of (3.5) with (3.1) shows that (3.3)is an 

unbiased estimator of V ( Y ) i f  and only i f  
N 

~ii(dii~~ + kii)~ = ~ i '  i = l , . . . , N .  (3.6) 
J 
Furthermore, since by the proof in Raj (1968, Theorem 
6.3) 
N 2 

~i~di  ~ J  j = ~i - ~ i '  i = l , . . . , N ,  (3.7) 
J 

(3.6) can be rewritten in the alternate form 
N 2 " 
~ ~i~ki  ~ J  j : ~i ' i -1  . . . .  ,N. (3.8) 
J 

Although (3.8) is clearly satisfied by 
k i j =  ~ i / ( n - l ) ,  the ( d i j +  k i j ) ' s  can be quite 

variable for fixed i with this set of kij's because of the 

variability in the dij's. An alternate set of kij's which 

clearly satisfies (3.6) and completely removes the 
l S variability of the (dij + kij) is given by 

k .  - I - d . (3.9) 
13 n-1 i j  

However, since dii can exceed 1/(n-1), (3.9) can be 
negative for som'~ i~'s and negative estimates of 
variance can result. To avoid this possibility, a second 
set of constraints on the kij's, 

k i j  ~ O, i , j = l ,  . . . .  N, iCj (3.10) 

is added to (3.6), and the set of kij's defined by (3.9) 
will not be considered further in un modified form. 

One method of modifying (3.9) to satisfy (3.10) is to 
let 

1 _ i f  d < 1 k i j =  ~ d i j  i j  n~-  (3.11) 

= 0 o t h e r w i s e .  

This method was suggested by Robert Fay of the 
Bureau of the Census (personal communication). 
However, this set of k~'s does not in general satisfy 
(3.6) and consequentl~ yields a biased variance 
esti m ator. 

From now on, we consider only the case where n=2 
and present what is the major focus of this section, a 
set of kij's which satisfies (3.6), (3.10) and which for 
each i mlnimizes the deviation of dij + kij from 1 in 
the sense that for each p > 1, 

E ( I d i j + k i j - l l P ' i  is in sample) 

N ~ i j  
= ~ ~ I d + k - 11 p (3.12) 

j ~i i j  i j  

is minimized subject to (3.6), (3.10). (The expectation 
in (3.12) is with respect to the other sample PSU j.) 
Deviations from 1 are considered because it follows 
from (3.6) that for fixed i this is the expected value of 
dii + kii given that the i-th PSU is in sample. To 
d~fine t~is set of kij's for fixed i, we first relabel the 
sequence di , ,di i ,di i+1, ,diN to transform it • 1 " " .  -1 "'" 
Into a nondecreasl~g s~qu~nc~. Then let 

N 

- ~ ~ i t d i t  ~i t = j + l  
a. - , i , j = l , . . . , N , i ~ j .  (3.13) 

I j  3 
I: n i t  

t = l  

Next, let m i be the largest integer for which 
< aim ' and finally, let dimi I 

kij = aimi-dij i f  j<m i , 

= 0 otherwise. (3.14) 

Roughly, the motivation for (3.11) is that for each i, 
dij + kij becomes a constant function of j except for 

those j which would require a negative ki j to 
acco m plish this. In fact, i f  dij < 1 for all i~, it can be 
shown that aimi= l f o r a l l i ,  m i = N for iaN, mN=N-1, 

and (3.14) then reduces to (3.9) with n=2. 
In the complete paper, which is available from the 

authors, we establish that the ki~'s satisfy the stated 
conditions, that is (3.6) and (3.YO) are satisfied and 
(3.12) is minimized subject to these constraints. This 
is omitted here due to lack space. 

Illustrative Exa mple 
We will compare numerically our variance estimator, 

defined by (3.3), (3.14), with two other estimators 
previously described, the method given in Raj (1968) 
and defined by (3.2), and the estimator suggested by 
Fay and defined by (3.3), (3.11). These three variance 
estimators will be referred to as the conditional 
unbiased (C U), unconditional unbiased (U U), and 
conditional biased (C B) estimators respectively. 
("Conditional" indicates that kij is conditioned on j.) 

The survey used in the comparison was the original 
1980 census based design for the Survey of Inco me and 
Program Participation (SIPP), (A sample cut took 
place before this design was ever implemented in 
which some sample PSUs were dropped, but this cut is 
not considered here.) There were 95 strata in that 
design from which two PSUs were selected without 
replacement. There were also 91 self-representing 
strata and eight nonself-representing strata from 
which one PSU was selected per stratum which will not 
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be considered in this exam ple. 
The comparison criterion will be one component of 

the squared error of (3.3), namely the MSE of the 
second term in (3.4), which we denote by W, that is 

2 2 
° i ° j  

W = ( d i j +  k i j  ) --~ + ( d i j +  k j i  ) --~ , 
~i ~j 

where i and j are the sample PSU's. To simplify our 

2 is proportion- co m putations, i t  will be assu m ed that o i 
2 nal to ~ . .  Furthermore, since the comparison would I 

not be affected by the constant of proportionality, we 
2 2 take ai / ~ i = 1 for all i, and thus W reduces to 

W = 2 d i j +  k i j ÷  k j i .  

Now from (3.6) i t  follows that 
N 

E(W) = z ~i = 2 
i 

for the C U and U U procedures, which is also the value 
for the second term in (3.2). For the C B procedure we 
have 

N 
E(W) = r. ~ i j  max { dij,1 } .  

i , j  
Furthermore, for all three procedures 

N 
V(W):  r. ~ i j ( 2 d i j +  k i j + k j i  ) 2 -  E(W)2.(3.15) 

i , j  
i < j  

In addition, for the C B procedure only 

Bias W : E(W)- 2, (3.16) 

while Bias W =0 for the other two procedures. 
One modification of this work was necessary. In the 

actual selection of PSUs for SIPP, some small PSUs 
were combined to form a "rotation cluster" in 18 of 
the strata. In computing the joint probabilities, the 
cluster was initially treated as a single PSU. If the 
cluster was selected, then at any time during the life 
of the design one of the PSUs in the cluster would be 
in sample with probability proportional to size. (This 
was done because a new sample is chosen from the 
sample PSUs each year. For small PSUs there is not 
enough distinct ulti m ate sam pling units to last the life 
of the design. PSUs in a cluster can be rotated in and 
out of sample to avoid this problem. See Alexander, 
Ernst and Haas (1982) for more details.) As a result of 
this procedure ~i~n=d 0 i f  PSUs i and j are both in the 
rotation cluster, unbiased estimators of variance 
are no longer possible. To obtain a class of estimators 
constructed with the goal of being approximately 
unbiased, the following modifications were made to 
(3.3) and (3.6). Let T= { (i~).d or j are not in the 
rotation cluster } ,  Ti= { j:(i~) E T } , 

N 

r. ( ~ i ~ j - ~ i j )  
i , j  f = 

( ~ i  ~ - ~  ) ( i , j ) ~ T  j i j  

and di j : fd i j ' ,  (i~) ~ T. Then modify, (3.3), (3.6), by 

substituting d i j for ~j in these expressions, and only 

summing over J E T i .  (The f factor is to compensate 

for the fact that the modified f i rst  term in (3.3) is a 
sum mation o n l y  over (i~) ~ T.) These same 
substitutions in (3.11) and (3.14) are used to modify the 
C B and C U procedures. As for the U U procedure, 
k i j = ~i would not satisfy the modified (3.6), since 

* 2 
z ~ i_d i_  J J ~ i - ~ i  j e T  

in general. I Instead, take , 
- z ~ i j d .  

k . .  = 1 . (3.17) 

It should also be noted that for some i i t  is possible 

that z ~- .d- . > ~ . , i n  which case no 
j ~ T  i I j  I j  1 

nonnegative set of k~'s could satisfy the modified 
(3.6). In particular (3.24) would be negative and C U 

would not be defined s incedi j  >a i j  for all J c T i .  

This problem arose in only 1 of the 95 strata under 
consideration in this illustration and that stratum was 
dropped fro m the exam ple. 

For each of the remaining 94 strata, V(W) was com- 
puted for all three methods and the resulting values 
sum med over the 94 strata to obtain the first column 
of Table 3.1. Similarly, for the UB procedure, Bias W 
was co m puted for each stratu m with the sum given in 
column 2 of this table. Finally, MSE, that is the sum 
of column 1 and the square of column 2, is presented 
for each of these three procedures in column 3. 

T ABLE 3.1 
COMPARISON OF THREE VARIANCE 

ESTIMATORS ON SIPP DATA 

Procedure Variance Bias M SE 

CU 11.6168 0 11.6168 
UU 20.2374 0 20.2374 
CB 8.2359 4.8941 32.1877 

Thus for this particular design, MSE is smallest for the 
C U procedure. 
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