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1. INTRODUCTION

The subjects of this paper are two relatively
unrelated problems in variance estimation. Research
into these problems was motivated by their
applicability to the demographic surveys conducted by
the Census Bureau, but their potential applications are
more general. The first problem, which is the subject
of Section 2, is the development of a methodology for
pairing strata in one PSU per stratum designs, which
minimizes the bias of the resulting variance estimator
when wusing a collapsed stratum estimator of
variance. The current designs of the Current
Population Survey, the National Crime Survey and the
A merican Housing Survey are examples of one PSU per
stratum designs.

The second problem, which is the subject of Section
3, is the development of an alternative to the
standard unbiased variance estimator for two PSUs per
stratum, without replacement designs, that will have
greater precision. The current design of the Survey of
Income and Program Participation is essentially this
type of design.

2. OBTAINING A COLLAPSING THAT MINIMIZES
THE BIAS OF THE COLLAPSED STRATUM
VARIANCE ESTIMATOR

To obtain variance estimators for one PSU per
stratum designs, a collapsed stratum variance
estimator 1is generally employed, as explained in
Wolter (1985), The first step in using such an
estimator is the partitioning, or "collapsing", of the set
of all strata into groups of two or more strata. Most
commonly, each such group of strata consists of two
actual strata, and the discussion in this section will be
confined to this speciai case. The main purpose of this
section will be to describe how the collapsing can be
obtained in a fashion that in practice appears to be
close to optimal in terms of minimizing the bias of the
corresponding variance estimator.

We first present the collapsed stratum variance
estimator, employing for the most part the notation of
Wolter (1985). Consider a population total Y to be
estimated by a linear estimator of the form

? = I Yh , where L denotes the number of strata,
h=1
which is assumed to be even, and Yh is an unbiased

estimator of the total in the h-th stratum. The
collapsing results in G = L/2 groups of strata, with gl
and g2 denoting the two strata in the g-th group. The

collapsed stratum variance estimator \7(‘7) of V(Y), as
given in Hansen, Hurwitz and Madow (1953), or Wolter
(1985), reduces in the case of two strata per group to

~ A G 2A .
W =5 et T,
g=1 "g1 * fg2 9
2A
1 " 2
- ——3—r Y )%, (2.1)
Agl + 42 g2
where Agh is a known measure associated with stratum
gh that” tends to be well correlated with Y

Com monly used values of A

later in this section, include?
(i) 1 for all g,h, and
(i1) the population of the gh-th stratum from the

h which will be d1scus§ed
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most recent census.
We simplify (2.1) by substituting
2

A92

k = s = g9l ,
gl m g2 m
which yields
ViYYy = v o 2
v(Y) = é (kg1¥g1 = kg2Y¥g2) (2.2)
Note that k 2 2.

To obtan? an expresswn for Bias V(?) » We observe
that

ELV(Y)] = 5 (V(klegl - k92Y92;
+ [E(klegl knggz)] )
- 2 2
= § Ll 91 91 * Kg29g2)
+ (k glvgl gZYQZ) ], (2.3)
2 .0 )
where Ogn* V(th) . Since
V(Y) = ¢ (0‘2 + 02 ), it follows that
g 9! g2
A 2
Bias V(Y) = =z (kgh 1) %gh
gh
2
+ I (klegl- ngYgZ) . (2.4)

We observe the following about (2.4) in the two cases
mentioned previously. In case (i), (2.4) reduces to
Bias \7(?) 2

= z(Y (2.5)

g1 ~ Yg2!
since kgh=1, while in case (ii) both terms of (2.4) are

generaﬂy present. However, in case (i) if Ay, and

are well correlated then the second term 1%\ (2.4)
gegneraﬂy tends to be smaller than in case (i), and
disappears altogether if A, is proportional to th.
Also note that if o2, = g2 for all g, then the first
term in (2.4) is nonnegative since kSI + kgz > 2,
but that in general it is possible for the first term of
(2.4), and (2.4) itself to be negative, as is illustrated by
examples in Hartley, Rao and Kiefer (1969).

In order to obtain a collapsing that minimizes (2.4),
the value of (2.4) must be known for each possible
pairing. If (2.4) only involves PSU or stratum totals
then such information is assumed known at the time of
the most recent census for any characteristic
tabulated in the census. (Of course these values
generally change between the time of the census and
the time that the survey is conducted. This problem
will be ignored for now, but returned to at the end of
this section.) In case (i), only stratum totals are
involved, so that the condition is met. In case (i)
there are several possible approaches. If A is
sufficiently close to for all g, then one gnght
choose to ignore the ﬁrgt term of (2.4). If that is not
acceptable, another possibility is to first rewrite (2.4)
by2 replacing 02 by °§hw+ %ghb where "Shw,
cghbdenote the within and between PSU variance



respectively for the gh-th stratum. Then

Bias V (V)= [y (kgh )ushw]
+ [ : (ksh 1) cghb
2
* 5 91 gl 92 92) 1 (2.6)

The terms within the second set of brackets in (2.6)
meet the requirement of involving only PSU and
stratum totals. However, census data alone cannot be
used to obtain a value for the term within the first set

of brackets, since °§hw depends on the particular
within PSU sampling procedure employed. Instead, an
: ~2 2 . .
estimator Ughw of "ghw could be obtained directly
from the sample, and the estimator
V(v - o

: 2
VOY) gy (kg dog,

~

(2.7)

used in place of V(Y) to estimate V(?) . If ;,Qﬁ

an unbiased estimator of "ghw » then Bias V(Y) would

be the terms within the second set of brackets of

(2. 6) Although unbiased estimators of within PSU
variance are not obtainable for the com monly used

was

within  PSU  sampling procedures that employ
systematic sampling, it may be possible to consider the
bias of °§hw small enough to be ignored.

Whatever approach is chosen, it is assumed that for
any collapsing, the contribution to the bias of the
variance estimator from each pair of strata is known
and nonnegative, and we turn to the key question of
this section: Given the set of L strata, how should they
be paired in order to minimize the bias of the variance
estimator. In an attempt to answer this question, the

problem will be formulated as a mathematical
program ming problem. First let the constants c:., i<j,
i3=1,...,L, denote the contribution to the bias of the

variance estimator from the pair of strata i,j, if i and j
are pa1red together. For %xample if the bias is given
by (2.5), then c|8 The total bias of the
vamance estimatodr cor‘r‘lespondmg to any collapsing
would be
L

T3 Ci3%4y
i<

s (2.8)

where
Xi5 = 1,if strata i and j are paired together,
= 0, otherwise.

Then minimizing the bias of the variance estimator is
equivalent to minimizing (2.8) subject to the
constraints

Xij = 0 or 1 for all i,j, i<j, (2.9)

and that for each i exactly one member of the
sequence

X1§oX 2seenX (121 )ioXi(41 )% (i +2) 000X L
is equal to 1, or equivalently,
i-1 L
T Xsst L x::= 1,
j=1 91 g=ia W
The problem defined by (2.8 - 2.10) is an integer
program ming problem. If L is sufficiently small, an
optimal solution can be obtained by using any standard

i=l,...,L. (2.10)
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software for solving integer program ming problems.
Unfortunately the solution time for such problems
increases rapidly with increasing L, and if L is fairly
large it would be impractical to solve the prablem in
this fashion.

It would be desirable if this integer program ming
problem could be transformed into a different form of
mathematical program ming problem that would be
more efficient computationally. To this end, we
define c; if 1>j and ¢ji=M for each i, where M is a
smtab]y]l] r&'a constant, as will be explained later. We
then seek to minimize

izj cijxij’ (2.11)

subject to the constraints
Jg Xij = 1, 1=1,00a,4Ll, (2.12)
]; xij = 1, jJ=lyeee,sl, (2.13)
=Q0orl, i,j = 1l,...,L. (2.18)

X3

The probiem (2.11 - 2.14) is an assignment problem.
Software exists for solving assignment problems in
reasonable time even for quite large L. The key
question is whether an optimal solution to the
assignment problem (2.11 - 2,14) leads to an optimal
solution to the original integer program ming problem
(2.8 - 2,10). The answer would be yes if the following
conditions were true for an optimal solution to this
assignment problem:

1,...,L ? {2.15)

(2.16)

xﬁ=0, i =

= X..os 14 lyeeaskl 7

i3 7 %51
For, if these conditions were satisfied, then as a result
of the symmetry in both the c:.'s and x:i's, the subset
of the optimal x;'s for the gs1gnmen¥ problem for
which i<j would at1sfy (2.10) and the. corresponding
value of (2.8) would be 1/2 the value of (2.11).
Furthermore, the set X{js i<j minimizes (2.8) subject to
(2.9), (2.10), since if x;j , i<j, also satisfied (2.9),
(2.10) and if we let X$57%54 for i>j, x4§=0, then the
‘s would satisfy (2.12 - 2.14) with

1 1

entire set of X:ij

i%5 C93%53 T 2 4%3%43%75 2 2 4%  Ci3%4;
i<
BRI IR IR
i<j

Thus the value of (2.8) for x1f ., i<j is not less than
(2.8) for the set x.ij,i<j. J

Now (2.15) always holds if M is set sufficiently
large. For example, any M > Lemax { ¢; ”1<J } would
certainly suffice.

One might believe that (2.16) also always holds since

for all i,j. However, this is false, as is

e&ab%shed by the following counterexample. Let L=6
and take

c.. = 0, if i1,j<3 or i,j>4,
1 5 0, otherwise,

that is cqqo for all elements of the array in the upper

Teft or 1ower right quadrants of the array that are not

on the main diagonal. Then the following set of Xij's

satisfies (2.12 - 2.14) and yields a value of 0 for (2.11),

i#j,



and hence is an optimal solution to the assignment

problem:
X12X23=X31 X457 % 567X g4 1s
xﬁ=0 for all other i,j.

Clearly this solution does not satisfy (2.16). Nor are
there any other feasible solutions to this problem for
which (2.16) holds and (2.11) is 0. To see why, observe
that if a set of xs;i's is a feasible solution to (2.11 -
2.14) and if x19=x21=1 then x3;=1 for j=4,5 or 6 and
hence (2.11) would be positive.” Similiarly, any other
feasible solution to this assignment problem for which
xij=x--=1 for some iy with c~§=0, im mediately forces
x11J-1— 1 for some iy,j; for which c11j1>0.

Although an optimal solution to (2.11 - 2.14) does not
in general lead to an optimal solution to (2.8 - 2.10), it
is believed that a nearly optimal solution can generally
be obtained in an efficient manner by combining both
of these problems as follows. First obtain an optimal
solution to the assignment problem and let S; denote
the set of strata i for which there exists a j satisfying
xj;=x5=1, while the set of all remaining strata is
denoted by Sp. The pairing for the strata in Sq is
defined by this optimal solution to the assignment
problem, that is, the i-th and j-th strata are paired if
X{5=X =1, If Szis sufficiently small then the elements
init“can be paired by obtaining an optimal solution to
a problem like (2.8 - 2.10), but with Sy now viewed as
the set of all strata. If Sy is still too large for this
purpose, it can be partitioned into a collection of say t
SUbSELS S5p7se..,Spp, Such that each such subset Sy
contains an even number of elements; each S, s
small enough to efficiently obtain a solution to (2.8 -
2.10) with Sy viewed as the set of all strata; and
strata i and j are in the same Sy if either x4:=1 or
x5=1 in the optimal solution to the assignment
p;loblem, provided this last requirement can be met
without any of the S,  becoming too large. (The
rationale for grouping strata i,j for which either xy:=1
or x;=1 in the same Sy is that such a grouping tehds
to put together pairs of strata which would have a
small contribution to the bias of the variance
estimator.) The elements of Sy, are then paired by
the optimal solution of (2.8 - 2.10) restricted to Syy.

The procedure just described results in an optimal
pairing of strata in S, and either an optimal pairing of
strata in S, or, if 3, is partitioned, an optimal pairing
of strata in each of the Spy's. However, it is not
necessarily an optimal pairing for the entire set of L
strata, since such a pairing may require that a stratum
in one subset be paired with a stratum in another.
Although it does not in general yield an optimal
solution, it 1is believed that this approach would
provide a good approximate solution in an efficient
manner.

Remark: A1l of the preceding work has been with
respect to a single characteristic Y. Since, as a
practical matter, the same collapsing would generally
be used for variance estimates for all characteristics,
the collapsing criteria could be taken to be the
minimization of the weighted average of the biases of
the variance estimator for several key characteristics
instead of the bias of a single characteristic, that is,

T W, Bias V(V,), (2.17)
k
where Y, is an unbiased estimator of Y. If ail of
these 'c(haractem'stics are considered of equal

importance then Wy would be some value that would
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serve as a scaling factor. {One possible scaling factor
is presented in the example below.) If some variables
are more important than others, then Wy could be
taken to be something greater than the corresponding
scaling factor for the more important variables and
less than the scaling factor for the less important
variables.

Mustrative Example

The present design of the Current Population Survey
(CPS) is used to llustrate this work. This survey has a
one PSU per stratum design with 379 nonself-
representing strata. (There are also self-representing
strata that are not subject to a collapsed strata
procedure since there is no between PSU variance for
such strata). Because L is odd, one stratum was
arbitrarily dropped for this illustration. After the
remaining 378 strata are paired, the discarded stratum
could then be grouped with one of the 189 pairs
resulting in 188 pairs and one group of three strata.
The pair that this strata is grouped with could be
chosen to minimize the bias of the total collapsing by
computing the bias for each of the 189 possible such
groupings that could be.created and choosing the
grouping with smallest bias.

The comparison criterion is the value of (2.17) where
the eight characteristics used were

Total

Black

Hispanic
Teenage (16-19)

Unemployed,

Total
Black
Hispanic

Civilian Labor Force,

Agriculture Employment

To obtain Wy, a random pairing was first selected and
then for each k, W was taken to be (1/8) Bias V(?k)

corresponding to the random pairing. The
minimization of the objective function with this Wy
amounts to obtaining a particular pairing for which the
average, over the eight characteristics, of the ratio of
the bias for this pairing to the bias for the random
pairing is minimized.

For each k, Bias V( Yk )} was computed separately for

the cases (i) and (i1), defined earlier, both for obtaining
W, and then for computing the objective function. For
case (i), (2.5) was of course used in this computation
while for case (ii), the second term only of (2.4) was

used to obtain Bias V(Y ). 1980 census data was
used for all computation§. In case (i), the procedure
resulted in sets S; and S, containing 316 and 62 strata
respectively. S, was partitioned into 3 subsets. Soq,
S99, Sp3 consisting of 18, 20 and 24 strata. In case 11]),
S1 and S, contained 278 and 100 strata respectively.
So was partitioned in case (ii) into 4 sets of 26, 26, 24
and 24 strata. (The assignment problems were solved
with software written by James Fagan, while the
Sperry Functional Mathematical Program ming System
was used to solve the integer program ming problems.)
The value of the objective function (2.8)
corresponding to the final pairing obtained from this
procedure for each case is presented in the first
column of numbers in Table 2.1. The numbers in
columns 2-4 provide an indication of the effectiveness
of this procedure. Each value in the second column is

~



1/2 the corresponding minimum value of the assign-
ment problem (2.11 ~ 2.14), which is a lower bound on
the minimum value for the integer program ming
problem (2.8 - 2.10). The numbers in the third column
are the values of (2.8) corresponding to a pairing by
strata size, that is with the strata ordered in
increasing size based on 1980 population, and the
smallest stratum paired with the next smallest
stratum, etc. The fourth column presents the values
of (2.8) averaged over 10 random pairings independent
of the random pairing used in computing the W,'s. The
fact that this number is reasonably close to 1 in both
cases provides an indication that results similar to
these in this table would be expected if some other
random pairing had been used to compute the W, 's.
The table indicates that the procedure described in
this section yields, for this set of data, a pairing with a
bias reasonably close to optimal, and substantially
below that obtained by either random pairings or
pairings by strata size,

As previously noted, the biases of the variance
estimator for any pairing change over time. Since a
pairing for the current design of the CPS would be
based on 1980 census data, but might be used for a
time span that roughly averages 10 years away from
1980, it would be instructive to consider the bias of
the variance estimator for the pairings used in
constructing Table 2.1 with 1990 census data
substituted for 1980 census data. Since 1990 data is
not available, 1970 data was used instead on the
assumption that the results from going backwards a
decade would be indicative of the results going
forward a decade. The results are presented in Table
2.2. Columns 1, 3 and 4 of this table were obtained by
using the same pairings as for the corresponding
entries in Table 2.1, but with 1970 census data
substituted for 1980 data. Column 2 was obtained by
minimizing the assignment problem (2.11 - 2.14) with
1970 census data and multiplying the resuit by 1/2 to
get a lower bound on the bias of the variance
estimator for 1970. The table indicates that while the
bias reduction deteriorates over time, as would be
expected, it is still substantial for this set of data
after 10 years.

Table 2.1 Bias Measure with 1980 Census Data

Math. Low. Bd. Pair, by Avg. of
Prog. on Optml. Strata 10 Rdm,

Pair, Solution Size pair.
g =1 .0620 .0462 .6455 1.0522
Agh POP .0582 .0468 1.3987 1.0551

Table 2.2 Bias Measure with 1970 Census
Data, but same Pairings as Table 2.1

Math. Low. Bd. Pair, by Avg. of
Prog. on Optml. Strata 10 Rdm.

Pair, Solution Size Pair.
Agh=1 .1134 .0489 .6613 1.0499
Agh=POP .0428 1.3226 1.0545 1.0545

3. AN UNBIASED ESTIMATOR OF VARIANCE WITH
INCREASED PRECISION FOR MULTI-STAGE
WITHOUT REPLACEMENT SAMPLING

The standard estimator of variance for n(»2) PSUs
per stratum, multi-stage designs, with the PSUs chosen
without replacement, as presented in Raj (1968), can
itself have a large variance. In this section an
alternative unbiased variance estimator is developed
for the case n=2 that will in general have greater
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precision,
We proceed to explain this problem in detail. The
variance estimator 1in Raj (1968) will first be

presented. All expressions will be given in the special
case of a single stratum, since the generalization to
more than one stratum is routine.

The following notation will be used. Let w. be the
probability that the i-th PSU isin a sample of n PSUs
out of N, and let i be the probability that both the

i-th and j-th PSUs are in sample. Let?. be an
unbiased estimator of the i-th PSU total, Y;, based on

sampling at the second and subsequent stages, with
(Yi |1) = 01?, and let ;1.2 denote an unbiased
estimator of o?. Then an unbiased estimator of the

population total Y is given by

R n Y.
Y =5 =,
i=1 ™4
with 2
N Yi Y. 2 N oy
V()= 2 (mymgem ) (e - S0 5 5 1,6
i,j 31y i i=1 M
i< 0 .
and an unbiased estimator V(Y) of V(Y ) given by
v 3 ~ 2
" n 7w.m.=m,. =Y n o,
V(Y)= ¢ (1__‘_3)(_1_ __J_)2 T 1 (3.2)
i,3 "ij T i=1 M
i<j

The focus of this section will be on reducing the con-
tribution to the variance of (3.2) that arises from the
factor (n.nj-uu. )/wij , which from now on will be

i
abbreviated by dij' Although dij is nonnegative for

procedures to select PSUs such as the procedure of
Brewer (1963) and Durbin (1967) for n= 2 and its gen-
eralization for n>2 by Sampford (1967), di; in general
does not have any upper bound and its vaHabwhty can
result in an undesirably large variance of (3.2).

To understand what can be done to alleviate this
problem, first observe what each of the terms of (3.2)

estimates. From the proof given in Raj (1968,
Theorem 6.3) it follows that
n Y. V.
2
E[ £ d..(— - —34)¢]
i,y T Ty
i<j N LE
= - N RY -
ifglmings mig) 5y -5
i< J
N 012
+ X (1_“‘) e
i=1 Ty
while .
n ciz N 2
E( "—) = I 05 .
i=1 i i=1

Thus the expected value of the first term in (3.2) is the
entire first term in (3.1) (the between PSU variance)
plus part of the second term (the within PSU variance),
while the expected value of the second term in (3.2) is
the remainder of the within PSU variance. A superior
alternative to estimating the between PSU variance by
the first term in (3.2) does not appear to exist.
Howeyer, a general class of unbiased estimators
of V(Y) exists, which includes (3.2), from which a
specific estimator can be chosen that reduces the



variability associated with the estimation of the withip
PSU variance. This class of estimators has the form

A A A

) (Y)= £ d;, . {(— - =2)° + & k. »(3.3)

Ko,y W T Ty 2

i<j

where the k~u-'s are constants. (It is understood that i=j
is excluded from the second sum mation in (3.3) and in
all other expressions in this section.) Note that (3.2) is
a special case of (3.3) with k1j= ui/(n-l), and

that in general ki j # kji . Furthermore, in order for

(3.3) to be an unbiased estimator of (3.1) restrictions
must be placed on the ki:'s. To establish what these
restrictions are, note tha1t] the expected value of (3.3)
conditioned on the specific set of sample PSUs is

n Yi Yj 2 o?
T d,, (— - =)+ ¢ (d,.+ k;.) —; (3.4)
i,y T Ty g,y 4TI
i<j
consequently,
. . N YooY,
ELV, (N1 =& (nymg=my ) (5 - 74)
1j 1,
i<]
N o
+ L wai.(d..+ ki) —= .
R 2
i,5 :

(3.5)

Comparison of (3.5) with (3.1) shows that (3.3) is an

unbiased estimator of V( ?) if and only if
N

3: mpjldys + ki) = my, i=lein, N (3.6)
Furthermore, since by the proof in Raj (1968, Theorem
6.3)

N 2 .
§ "ijdij =y o= Ty i=l,...sN, (3.7)
(3.6) can be rewritten in the alternate form

N 4

- 2 i =

3; "ijkij = mys 121,000, N (3.8)

. Although (3.8) is clearly satisfied by
k}.J.= n;/(n-1), the (d].j+ kij)'s can be quite

variable for fixed i with this set of kij's because of the
variability in the dij's. An alternate set of kﬁ's which

clearly satisfies (3.6) and completely removes the
variability of the (di]' + kij)'s is given by

1
kij = 701 - 44 (3.9)

However, since d;; can exceed 1/(n-1}, (3.9) can be
negative for som& ij's and negative estimates of
variance can result. To avoid this possibility, a second
set of constraints on the k,-j's,

k (3.10)

> 0, i,j=1,...,N, i%#j

1J
is added to (3.6), and the set of ks:'s defined by (3.9)
will not be considered further in unmodified form.
One method of modifying (3.9) to satisfy (3.10) is to
let
! ;
= 0 otherwise.

n_fl- , (3.11)
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This method was suggested by Robert Fay of the
Bureau of the Census (personal com munication).
However, this set of k:i's does not in general satisfy
(3.6) and consequenﬂy yields a biased variance
estimator.

From now on, we consider only the case where n=2
and present what is the major focus of this section, a
set of ks:'s which satisfies (3.6), (3.10) and which for
each i minimizes the deviation of dﬁ + k]-j from 11in
the sense that for each p > 1,

E(|d1j+k1.j-1|p:1’ is in sampie)

N oomss
- i _ 1P
J; > ldg % ky5- 1 (3.12)

is minimized subject to (3.6), (3.10). (The expectation
in (3.12) is with respect to the other sample PSU j.)
Deviations from 1 are considered because it follows
from (3.6) that for fixed i this is the expected value of
ds. + ks given that the i-th PSU is in sample. To
d‘é]ﬁne 'Hﬁs set of kij's for fixed i, we first relabel the
sequence diqseeesdifi_1)sdi(i+1)s eeosdiy to transform it
into a nondééreasgryg &q&’ﬁ% . Thé‘nN1et

N
"i-t£j+11ritdit . .
aij 3 s T5i=1,00.,N,i%j.(3.13)
el it
Next, let my be 'ghe largest integer for which
dimi < aimi , and finally, let

kij = ajpm~dig 1T J<my s

= 0 otherwise. (3.14)

Roughly, the motivation for (3.11) is that for each i,
dij + kﬁ becomes a constant function of j except for

those j which would require a negative k;i; to
accomplish this. In fact, if d;; <1 for all i,j, it can be
shown that a;, =1 for alli, mj = Nfor i#N, my=N-1,

and (3.14) then 1r*educes to (3.9) with n=2.

In the complete paper, which is available from the
authors, we establish that the k;:'s satisfy the stated
conditions, that is (3.6) and (3.11]0) are satisfied and
(3.12) is minimized subject to these constraints. This
is omitted here due to lack space.

Iustrative Example

We will compare numerically our variance estimator,
defined by (3.3), (3.14), with two other estimators
previously described, the method given in Raj (1968)
and defined by (3.2), and the estimator suggested by
Fay and defined by (3.3), (3.11). These three variance
estimators will be referred to as the conditional
unbiased (CU), unconditional unbiased (UYU), and
conditional biased (CB) estimators respectively.
("Conditional" indicates that ks: is conditioned on j.)

The survey used in the com‘%ar‘ison was the original
1980 census based design for the Survey of Income and
Program Participation (SIPP). (A sample cut took
place before this design was ever implemented in
which some sample PSUs were dropped, but this cut is
not considered here.) There were 95 strata in that
design from which two PSUs were selected without
replacement. There were also 91 self-representing
strata and eight nonself-representing strata from
which one PSU was selected per stratum which will not




be considered in this example.

The comparison criterion will be one component of
the squared error of (3.3), namely the MSE of the
second term in (3.4), which we denote by W, that is

2 2
O'i G\]-

W = (dij+ kij) “—Z + (dij+ kji) " s
L J

where i and j are the sample PSU's. To simplify our
computations, it will be assumed that 01? is proportion-
nal to 1[1? . Furthermore, since the comparison would
not be affected by the constant of proportionality, we
take G?/‘n$= 1 for all i, and thus W reduces to

W = Zdij+ kij* kji .
Now from (3.6) it follows that

E(W) = T, = 2

1

-dipg =

for the CU and UU procedures, which is also the value
for the second term in (3.2). For the CB procedure we
have

E(W) =

max { di;,1 } .

joyid i
Furthermore, for all three procedures

N 2 2
V(W)= & “ij(2d1j+ k.. +k..)"= E(W)“ .(3.15)

Lo i j 1
i,] J
i<j

In addition, for the CB procedure only

Bias W = E(W) -2, (3.16)
while Bias W=0 for the other two procedures.

One modification of this work was necessary. In the
actual selection of PSUs for SIPP, some small PSUs
were combined to form a “rotation cluster” in 18 of
the strata. In computing the joint probabilities, the
cluster was initially treated as a single PSU. If the
cluster was selected, then at any time during the life
of the design one of the PSUs in the cluster would be
in sample with probability proportional to size. (This
was done because a new sample is chosen from the
sample PSUs each year. For small PSUs there is not
enough distinct ultimate sampling units to last the life
of the design. PSUs in a cluster can be rotated in and
out of sample to avoid this problem. See Alexander,
Ernst and Haas (1982) for more details.) As a result of
this procedure Ty .=01f PSUs i and j are both in the
rotation cluster, dnd unbiased estimators of variance
are no longer possible. To obtain a class of estimators
constructed with the goal of being approximately
unbiased, the following modifications were made to
(3.3) and (3.6). Let T= { (i,j)d or j are not in the
rotation cluster }, Ti= {j:(i,J) €T },

N
t (nw
f oo 1ad

i757m5)

( i, ) el
and d:j =fdis, () € T Then modify, (3.3), (3.6), by
substituting d:j for dﬁ in these expressions, and only
sum ming over jeTi . (The f factor is to compensate
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for the fact that the modified first-term in (3.3) is a
summation only over (i) e T.) These same
substitutions in (3.11) and (3.14) are used to modify the
CB and CU procedures. As for the UU procedure,

kij= Ty would not satisfy the modified (3.6), since

z d * + 2

T, .0, . N =T

jsTi ijoig i i

in general.’ Instead, take
T = T T, .d. .
i jsTi ij ij
k i J T ememnaas ; -------- . (3.17)

It should also be noted that for some i it is possible

that I which

J eTi
nonnegative set of kﬁ's could satisfy the modified
(3.6). In particular (3.24) would be negative and CU
would not be defined since d:j >a].j for all jeTi .
This problem arose in only 1 of the 95 strata under
consideration in this fllustration and that stratum was
dropped from the example.

For each of the remaining 94 strata, V(W) was com-
puted for all three methods and the resulting values
summed over the 94 strata to obtain the first column
of Table 3.1. Similarly, for the UB procedure, Bias W
was computed for each stratum with the sum given in
column 2 of this table. Finally, MSE, that is the sum
of column 1 and the square of column 2, is presented
for each of these three procedures in column 3.

*
N DA SR |
"1Jd1.] Ty, N case no

TABLE 3.1
COMPARISON OF THREE VARIANCE
ESTIMATORS ON SIPP DATA

Procedure Variance Bias MSE
Cu 11.6168 0 11.6168
Uy 20.2374 0 20.2374
CB 8.2359 4,8941 32.1877

Thus for this particular design, MSE is smallest for the
C U procedure,
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