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I. INTRODUCTION 

This paper describes recent results obtained by the 
Census Bureau Confidentiality Staff in its research 
into disc|osure avoidance methods for publicly released 
tabular data. Tabular data can be in the form of 
frequency counts where a population is cross-classified 
by specified characteristics, for example, age by sex. 
Each cell contains the number of individuals (or 
households, etc.) belonging to that cell. Tabular data 
can also be in the form of amounts where each cell 
contains the cross-classified aggregate total of some 
variable, such as total payroll at the state level 
displayed for SIC by county. A major goal of the 
research described here is the development of 
i m proved disclosure avoidance procedures for 
frequency count data for the 1990  Decennial 
Censuses. Procedures developed for frequency count 
data can be applied to tables of amounts (and 
conversely). However, the notions of what constitutes 
(I) a disclosure and (2) adequate protection are quite 
different in each instance. The discussion in this paper 
will be couched in terms of frequency count data with 
the understanding that the basic structures can be 
applied to tables of amounts as appropriate. 

Data tables can be one-dimensional (e.g., county 
populations sum ming to a state total), two-dimensional 
(e.g., age by sex), or of three or more dimensions (e.g., 
age by race by sex). We will report on rigorous new 
procedures which have been successfully developed for 
roundinq, perturbation, and cell suppression in 
two-dimensional tables, with a focus on their common 
underlying structure. 

Each of the three procedures will be described in 
terms of a com mon mathematical structure, circuits in 
a graph. Every two-way table of m internal rows and n 
internal columns gives rise to a bipartite graph of 
(m+l) + (n+l) nodes in which nodes correspond to 
marginal positions and edges correspond to nonzero 
table cells. This common conceptual framework 
highlights the similarities and differences a m ong these 
three procedures, suggests ways for extending them, 
and sheds l ight on why methods successfully employed 
on two-dimensional tables fail in three dimensions. 

We begin by establishing the notation to be used 
throughout. A t w o - - t a b l e ,  A, is represented as: 

(ao,o) i x l  ( a o , j )  Ixn 
A= 

(a i  ,O)mx l  (a i  , j  )mxn 

where a i ~ ( O < i < m ,  O<j<n) are non-negative 
integers. TNePvectors (a i O) and (ao.i) ( 1<j <m, 

l < j < n )  are row and cdlumn totaTs, respectively, of 
A, and a Q 0 is the grand total.  Thus, A is an additive 
table. Disclosure occurs in a frequency count table 
when small counts are released or can be narrowly 
estimated. If releasing A would result in disclosure, 
one creates a masked table 

B = 
(bo,o) I x l  ( b o , j ) i x n  

( b i , o ) m x l  ( b i , j ) m x n  

from A which is suitable for public release. A major 
objective is that the information loss in releasing B 
rather that A is as low as possible subject to the 
restriction that the risk of disclosing confidential data 
is at an acceptable level. Under rounding and 
perturbation, each b_ij will be an R integer close to aii. 
Under suppression, some cells i __  will not be release~I, 
while those released will be unchanged. For an 
extensive discussion of these three disclosure 
avoidance techniques and policy issues in releasing 
m asked tables, see Cox, et al [6]. 

In this report we present new techniques developed 
by the Census Bureau Confidentiality Staff for 
unbiased controlled rounding and unbiased controlled 
perturbation. In addition we present new methods to 
audit protection under a cell suppression 
methodology. Computer code has been developed to 
implement each of these procedures (running on the 
Sperry mainframe and on an IBM/AT under Ryan- 
McFarland Fortran), and these programs have been 
successfully tested using data from the 1980 Decennial 
Censuses. We begin by developing the mathematical 
structure which served as a unifying framework in the 
design of the methodologies presented here. 

2. UNIFYING MATHEMATICAL STRUCTURE 

2.1 Circuits in a table 
Let A be an arbitrary additive table as defined 

earlier. A pat_h_of length n is a sequence of distinct 
table cells; 

Q= { ( i l , J  l ) , ( i 2 , j  2) . . . .  , ( i n , J n ) } ,  

such that" 

(I) a i kJk~O , k = l ,  . . . .  n 

(2) any two consecutive cells are in the same row or 
colu m n, but 

(3) no three cells are in the same row or colu m n. 

A circuit of length n is a path of length n such that 
, 

(4) i f  a row or column has at least one cell in Q i t  
has exactly two. 

For each circuit cell define a signature, 

(_1)  k+z i k j k = , and note that the sum of 

signatures along any row or column equalszero. As we 
show below, one can add or subtract an integer from 
each cell in a circuit, yet maintain table additivity. 
The range of values by which we can alter each cell 
while maintaining non-negative values is called the 
circuit f low. Under a rounding or perturbation 
strategy one masks a positive cell by embedding the 
target cell in a circuit and adding or subtracting 
around the circuit within the l imits of the flow. Under 
a cell suppression strategy, a necessary condition for a 
table to be disclosure protected is that every 
disclosure cell is contained in a circuit of suppressed 
cells; a sufficient condition is that the collection of 
such containing circuits allows sufficient flow to 
adequately mask each disclosure cell. Rounding and 
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perturbation methods are discussed in Section 3 and 
suppression is discussed in Section 4. We continue this 
section with a description of procedures for altering 
cell values along a circuit. 

Let C be a circuit and let a be an arbitrary 
integer. For each (i~) eC, let 

~ i j  

f o r  l < i < m ,  l < j < n  a i j  
- a i j f o r  i=O a n d l < j < n o r l < i < m a n d j = O  

f o r  i=O andj=O a i j  

and let T i j  = 0 for(i~)~C. 

The array B, where b-- = a-- + aT..  for 
• I 

( O<i <m, O<j<n ) IS adc~tiveOand diIF~ers from A only 
for those cells in C. By selecting ain the range of the 
flow of C, each entry in B will be non-negative; hence 
B will be an additive table. If, in addition, a is chosen 
to provide sufficient disclosure protection, then we say 
that B is an additive masked table for A. If C consists 
only of in ter ior  ceils of A, -B will have the same 
marginal values as A, and i f  the expected value of 
each a (through our selection probabilities) equals 
zero, then each cell in B will be an unbiased estimate 
of the corresponding cell in A. We seek additive 
unbiased rounding and perturbation procedures and 
show how the perturbation procedure can be restricted 
to change the fewest cells possible. 

Example 1: Let Table 1 be our initial table, and let us 
focus on cell (1,1). 

54 
~12 -  --  

18 
11 
13 

13 9 21 11 
3 7 0 2 
4 0 8 6 
0 2 9 0 
6 0 4 3 

Table 1 

Two circuits containing cell (1,1) are: 

C1: { ( i , I ) ,  ( 1 , 2 ) ,  ( 3 , 2 ) ,  ( 3 , 3 ) ( 4 , 3 ) ,  ( 4 , 1 ) }  

C2= { ( 1 , 1 ) ,  ( 2 , 1 ) , ( 2 , 0 ) ,  ( I , 0 ) } .  

For C 1 we have flow ~I = [-2,6] and for C~ we 
have flow F2 = [ - 3 , 4 ] . . .  we form the masked sable 
using C l anda  = - l e F  lwe get Table 2, and 
using C2 with a=3eF2 w~ get Table 3. 

ml 5 4 113 9 21 ii 54 13 9 21 II 
12 ] 2 8 0 2" 15 6 7 0 2 
18 I 4 0 8 6 15 1 0 8 6 
11 0 1 10 0 11 0 2 9 0 
13 7 0 3 3 13 6 0 4 3 

Table 2 Table 3 

Although it might be a desirable objective to form 
circuits consisting only of internal cells so that a 
masked table would retain the marginal values of the 
original, this is not always possible, e.g., in Table 4 
there is no circuit containing cell (1,4) consisting of 
interior cells. 

42 [ 5 ! I  . . . .  10 16 
12 ! 3 5 0 4 
8 2 6 0 0 
7 0 0 3 4 
15 0 0 7 8 

T able 4 

It is important to note, however, that everY, non-zero 
table cell is contained in at least one circuit (which 
may include m arqinal positi()ns). 

A revised (and feasible) objective is to 
find a c i rcu i t  consisting ent i re ly  of in ter ior  
cells when such a c i rcu i t  exists and to include 
marginals in a c i rcu i t  only when necessary. 
For these purposes, we define a length for each 
non-zero cell of a table and define the lenBth 
of a c i rcu i t  to be the sum of the lengths of 
ce l ls  i t  contains. Each positive internal cell 
is in i t i a l i zed  at length one, row and column 
marginal cells are i n i t i ~ z e d  at a large 
length M, and the grand total cell is i n i t i a l -  
ized at length N>>M. Given an arbi t rary 
positive internal cell (i~) by forming a c i rcu i t  of 
minimal length containing cell (i~) we will obtain 
circuits consisting only of internal cells i f  any exist, 
and include as few marginal cells as feasible when they 
are needed. In using minimal length circuits to alter 
table values, we may increase the length of a cell once 
it has been perturbed to minimize the possibility of 
multiple changes to a single cell. 

2.2 Graph Theoretic Framework For Two- 
Dim ensional Tables and_ Cyc.]es 
An arbitrary table, A, can be represented by an 

undirected bipartite graph, G, in which the edges 
correspond to positive cells and nodes correspond to 
rows or columns. That is, let G be the bipartite graph 
whose node sets are: 
N R : { r l ,  r 2, ...,rm,COl NC : {Cl,C 2, ..., c n, ro}, 

and having the edge ( r i , c i ) i f  and only i f  
cell a ¢0 (O<i<m, O<j<ni )  ~. The graph 
represle~ting Table i is shown in Figure I. 

In an arbitrary directed graph, an e lem;entarY 
math of length m is a sequence of arcs 

P = el,  e2,...,em with 

e I : (no,nl),e 2 : (n l,n 2),... , e m = (nm_l,nm) 
such that each node is reached at most once when 
traversing P. An elementar~ circuit is an elementary 
path such that n(}- rim. We omit repeating the term 
"elementary" in discuSSing paths and circuits with the 
understanding that all paths and circuits discussed here 
will be elementary. If the graph is not directed, we 
replace the term "arc" by "edge" an~he definitions 
above still prevail. Our reference for graph and 
network theoretic information is Gondran and Minoux 
[8] and we conform to the terminology therein. 

If G is the bipartite graph representing table A, 
there is a one-to-one, onto correspondence between 
circuits in A and circuits in G. For example, the 
circuit CI in Table 1 is shown by the darkened edges 
in Figure I. 

By assigning a length to each edge in an 
(undirected) graph, one defines the length of a path to 
be the sum of the lengths of edges it contains. If two 
arbitrary nodes are connected by at least one path, 
there exists a path of minimal length connecting 
them. Every edge in G is contained in a circuit, and 
after removing an arbitrary edge from G, its end 
points are connected by at least one path of minimal 
length. Thus, to find a minimal length circuit 
containing an arbitrary edge (x,y): (1) remove edge 
(x,y) from G, (2) find a minimal length path between 
nodes x and y, and (3) adjoin the edge (x~y) forming a 
mini m al length circuit. 

In Section 2.1, we made use of table circuits (of 
minimal length) to alter cell values; by expressing 
table circuits in terms of circuits within graphs, we 
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f 

Figure i. / 

can exploit graph-theoretic methods to find them. 

0 UNBIASED CONTROLLED ROUNDING AND 
UNBIASED CONTROLLED PERTURBATION 

3.1 Controlled Rounding 
L etA be an" additive table and let b be a positive 

integer. A table, B, is called a rounding of A to base b 

if: (1) b i j  = b [ a i j / b ]  or b ( [ a i j / b ] + l )  

(where [x] denotes the integer part of x). 
Rounding techniques traditionally have treated 

each cell independently (including marginals) and round 
values up or down based on some random process, see 
Nargundkar and Saveland [11]. (Fellegi, [7], rounded 
cells additively, but his method is applicable only to 
one-way tables.) Accordingly, rounded two-way tables 
may fail to be additive. 

If, in addition, we have that: (2) B is additive, we 
say B is a controlled roundin9 of A, see Cox and Ernst 
[5]. If, furthermore: .... (3) E(bii ) a i j ,  ~e say the 
controlled rounding is unbiased~ A slmp unbaised 
controlled rounding procedure has been developed by 
Cox [3] based on circuits in a table; and we report on 
some of this work below. If (i)-(3) hold, i t  follows that 
Ibij - ~j~<b, so i f  aij is a multiple of b, then b~. : aij. 

rting wit~i a table A, and a bas~ b, one 
em ploys circuits in A to create a masked table which 
is a controlled rounding. One crucial observation is 
that each unrounded cell is contained in a circuit 
consisting exclusively of unrounded cells (Cox, [3 ] )  
Thus, i f  all the marginal values of A are multiples of b, 
we can confine our attention to circuits and 
adjustments of interior cells. If some marginals are 
not multiples of b, they too will be adjusted. The 
procedure is as follows. If at least one cell in A is not 
rounded, form a circuit, C, consisting of unrounded 
cells. For each cell in C let 

a i j -  b [ a i j / b  ] f o r  T i j  : -1 
s i j= 

• f o r  T . .  : 1, b [ a i j / b ] + b - a i 3  13 

i b [ a i j / b ] + b - a i j  f o r  T i j  : - i  

t i j =  a i j - b [ a i j / b  ] f o r  T i j  = 1. 

Le t s=  Min { s i j }  andt= Max { - t i j } ,  
( i  , j ) c C  ( i  , j ) c C  

and setting m equal to either s or t we have 

b [ a i j / b ] < a i j  + m T i j < b [ a i j / b ]  +b 

for each (iQ) ~C. For at least one (i~) ~C, 

s%~'~, + m T ' "  will be a multiple of b. Thus, one 
~cts a valJ# for m (either s or t) adds or subtracts 

from each circuit cell as appropriate, and obtains a 
revised table having at least one more multiple of b 
than did A. If every element of the revised table, B, is 
a multiple of b, then B is a controlled rounding of A. 
If not, repeat this procedure, noting eventually i t  will 
terminate yielding a controlled rounding of A. 
Selecting - t  

I 
s w i t h  p r o b a b i l i t y  s - t  

Ot : S 
t w i t h  p r o b a b i l i t y  ~ , 

then E(m)=Oand the controlled rounding will be 
unbiased (Cox, [3]). 

3.2 Unbiased Controlled Perturbation 
Given a table A, by a rand()m perturbation of A 

one usually means a masked table,each of whose 

entries differ from A by a small randomly selected 
value, see Newman [12]. One forms a random 
perturbation of A by selecting a positive integer called 
the perturbation base, k, and a family of probabilities, 
P : { p ~ ] ~ c [ - k , k ] } , ( w h e r e  [-k,k] "Is the set of 
in teger  between -k and k, inclusive) such that: 

(I) Z p : I (2) Z mp : 0 
~ c [ - k  k ]  ~ ~ " , ~ c [ - k , k ]  

(Although a symetric interval, [-k,k], is often chosen, 
any interval satisifying (1) and (2) will suffice.) 

For each interior cell one randomly selects a 
value ~ according to the distribution P, and lets 

a i j  + m i f  a i j + ~ O  

b i j  = 0 o t h e r w i s e .  
One may sum interior cells to obtain marginal values, 
b i and b O- for O<i<m and O<j<mto form the 
m~Ok~ tab l~B.  Note that B is additive, but neither 
interior nor marginal cells of B are unbiased esti mates 
of their counterparts in A, and the marginal values can 
differ from their counterparts in A by a value 
exceeding k. We use a different procedure below 
which achieves additivity and unbiasedness within a 
cell perturbation fra m e work. 

We first show how random perturbation can be 
made unbiased. Start with an additive table A, a 
perturbation base k, and distribution P as before. To 
perturb cell (iQ) we let h = min[aii,k] and choose the 
value to be added to a~ from the fnterval [-h,h]. Let 
the probability ofselec~ng m e [ - h , h ]  be qm(h) 
which satisfies: 
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Z q (h) = 1 Z mq (h) = O. 
m E [ - h , h ]  m m E [ - h , h ]  

For exa m ple, one can let 

qm(h) = pm/B where B = p • 
mE[- ,h ] m 

After selecting ~ ,  form bij = aii + m for each inter ior 
cell. Zero values are not perturbed and each bi i is an 
unbiased estimate of the corresponding aii (in~uding 
marginals). Note, as in the biased procedure above, 
revised m arginals can dif fer from their counterparts 
by a value greater than k. 

If the masked table B is released to the public 
and cell (i~) is observed to be b-., different inferences 

1 
can be drawn about the corresponding value a-. under 
these two perturbation strategies. Under th1~ usual 
(biased) procedure one can say that: 

M a x { O , b i j - k } < a i j  < b i j + k  , 

whereas under the unbiased procedure one has that: 

M a x { [ ( b i j + l ) / 2 ] ,  b i j - k } < a i j < b i j + k .  

Note that for a i j ) k  the two procedures perform the 
same. 

Our next objective is to maintain table additivity 
and alter m arginals as infrequently as feasible. To this 
end we introduce the notion of controlled perturbation. 
Start with a table A, a perturbation base k, and a 
distribution P : {p~  I s E [ - k ,  k ] }iC To perturb a i we 
form a circuit containing cell ( i~j and let F denot~ the 
circuit flow. We select m E F C ~ [ - k , k ]  by any 
specified random process such that E (m) = 0 and add 
or subtract m from each cell in the circuit as discussed 
above for rounding (Greenberg, [9]). 

3.3 Restrictive Controlled Perturbation 
In tables of frequency counts, cells containing 

large values do not pose a direct disclosure risk. It 
will suffice to perturb cells with small values, the 
disclosure cells, and such cells will be called 
perturbation cells. It will often be necessary to 
perturb cells other than primary perturbation cells to 
ensure table additivity - - a n d  such cells will be 
referred to as complementary perturbations. We can 
implement an unbiased restricted ~ control led 
perturbation using the framework established above. 

One begins by assigning length one to all primary 
perturbation cells, length two to all other positive 
interior cells, and length M and N to marginal cells as 
earlier. Given a table A with at least one primary 
perturbation cell; (1) form a circuit of minimal length 
containing that cell, (2) choose the value to be added 
or subtracted from each cell in the circuit by some 
unbiased random process, (3) form the revised table, 
and (4) update cell lengths. If no cell has length one in 
the revised table, we are done. If any cell has length 
one, repeat the process as often as necessary, noting 
that this process will terminate. 

4. SUPPRESSION METHODS 

4.1 Introduction 
A primary suppression set for a table, A, is a set 

of cells, P, whose values will be suppressed when A is 
released. Because of linear relations along rows and 
colu m ns of a table, one can always find the range of a 
suppressed cell (see Cox, [2]). To prevent disclosure of 
sensitive information, data releasing agencies must 

ensure that a suppressed cell cannot be estimated too 
closely. For any suppressed cell its level of protection 
is related to the circuits consisting of suppresssed cells 
to which it belongs. In fact, a suppressed cell can be 
estimated exactly i f  and only i f  i t  exists in no circuit 
consisting of suppressed cells. 

72 

20 
13 
15 
24 

16 11 15 30 72 

5* 6* 0 9* 20 
2* 3* 2 6 13 
3 0 4* 8* 15 
6 2 9* 7* 24 
T able 5 

16 11 15 30 

5* 6* 0 9* 
2* 3* 2 6* 
3 0 4 8* 
6 2 9* 7* 
Table 6 

If Table 5 were released with starred cells 
suppressed, one could determine that the value in cell 
(1,4) must be 9. Note that cell (1,4) is contained in no 
circuit consisting of suppressed cells. 

On the other hand, consider Table 6 in which 
starred cells are to be suppressed. Forming the circuit 
(1,4), (2,4), (2,1), ( i , I )  we can add 5 units to cell (1,4) 
obtaining the Table 7 and s u b t ~ t  2 units from cell 
(1,4) obtaining Table 8. 

72 

20 
13 
15 
24 

16 11 15 30 72 

0 6 0 14 20 
7 3 2 1 13 
3 0 4 8 15 
6 2 9 7 24 

Table 7 

16 11 15 30 

7 6 0 7 
0 3 2 8 
3 0 4 8 
6 2 9 7 
T able 8 

Forming the circuit (1,4), (2,4) (2,2), (1,2) we can add i 
unit to cell (1,4) in Table 7 and subtract 3 units fro-'---m 
cell (1,4) in Table 8 yielding, respectively, Tables 9a 
and 9b. 

72 

20 
13 
15 
24 

16 11 15 30 72 16 11 15 30 

0 5 0 15 20 7 9 0 4 
9 4 2 0 13 0 0 2 11 
3 0 4 8 15 3 0 4 8 
6 2 9 7 24 6 2 9 7 

Table 9a Table 9b 

We can no longer form circuits of suppressed cells to 
either add or subtract from cell (1,4). Thus i f  table 9c 
were released, one can only say that cell (1,4) lies in 
the interval [4,15]. 

72 

20 
13 
15 
24 

16 11 15 30 67 

D D 0 D 
D D 2 D 
3 0 D D 
6 2 D D 

Table 9c 

9 
31 
27 

15 16 24 12 

1" 2* 2 4, 
5* 6 17" 3 
9 8* 5* 5* 

Table 10 

4.2 Auditing Protection Using Flows In A Network 
Based on the pattern of suppressions and'released 

cell values, one can find the interval [mpa , M oJ 
containing the true value of suppressed cell ~p,q)'by 
solving a family of linear equations, Cox, [2]. In this 
section we show how an agency releasing data can 
derive this interval, and thereby audit protection, by 
employing the concept of a capacitated network 
f low. Afterwards we couch the process" in terms of 
circuits in a table thus coming full cycle in our 
analysis of this problem in terms of circuits. 

Given a table A and primary suppression set, one 
constructs the following capacitated network. The 
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Figure 2. Capacities are alongside arcs. Each arc has a counterpart 

~, in the reverse direction with infinite capacity (not drawn). // 

underlying graph has the same bipartite structure as G 
defined earlier, however arcs correspond to suppressed 
cells. For each suppressed cell, (i~), there are two 
directed arcs; (ri, ci) and (c~,r~). Thus, for Table I0 
whose starred ceIls~correspoHd 'to suppressed positions, 
the associated network is shown in Figure 2. To find 
the amount by which we can increase the value in an 
arbitrary suppressed cell (p,q) we form the capacitated 
network where: (1) the capacity in arc (ri,cj)equals 
aii, (2) the capacity in arc (ci,ri) is infinite, (3) the arcs 
(r~,cQ) and (ca,rD) are deleted and (4) a source, s, is 
added along w~t~i arc (S,rp) of infinite capacity and a 
sink, t, and arc (Ca,t) with infinite capacity. The value 
MDq equals apfl plus the maximum flow from s to t_, 
1.6., the maxlmum we can Increase apa without 
disturbing the relationship between the sum 6f interior 
cells and marginals. To find M~, 3 for Table 10, we use 
the capacitated network in rlgure 2, where finite 
capacities are shown on each arc. The maximum flow 
is equal to 5 units, and the flow along each arc is 
indicated alongside the arcs in Figure 3. Thus M2, 3 = 
22. 

To find the value mpq, we alter the network above 
so that (I) arcs (S,rn) an~ (cn t) have capacity an~, and 
(2) arc (ri,ci) has i~finite c~)acity and arc (ci,~r~) has 
capacity aij% As before we compute the m~aximum 
flow from s to t. The value mDa equals aDq minus the 
maximal flow on the revised detwork. The maximum 
flow along this revised network is 6 units, so m : 
17-6 = i i .  Pq 

Using networks to obtain Mpq one finds a flow 
from s to t. When one unit moves from s to t i t  
determines a path from r D to c n, and (along with the 
arc (rp,Ca)) a circuit cont~ining~che arc (rD,ca). That 
is, findin~ M.~ as outlined has a direct touhterpart 
when viewingP~che problem in terms of circuits in a 
table. Consider Table 11a with circuit as noted which 

was obtained by moving one unit along path (s,rp), 
~r~Ce4 ½ (c4,r3), (r3,c3),e(l~3ntg). Add or subtract tl~e 

as appropriate yi Table l l b .  

67 

9 
31 
27 

15 16 24 12 67 15 16 24 12 

1 2 2 4 9 1 + 2 
5 6 17 + 3- 31 5- 6 
9 8 5- 5 + 27 9 8 + 

T able 11a T able 11b 

2 4 
20 + 0 

2- 8 

Adding and subtracting 2 units from the circuit in 
Table 11b obtained by moving one unit along path 
(s,r2), T(r~cl~.(cl,rl), (rl,c2), (c2,r3), (r3,c3), (c3,t), 
yields 

67 15 16 

9 3 0 
31 3 6 
27 9 I0 

Table 12 

24 12 67 

2 4 9 
22 0 31 
0 8 27 

15 16 24 12 

0 3 2 4 
6 6 11 8 
9 7 11 0 

Table 13 

By circuiting only on suppressed cells in Table 12, one 
cannot add any more to cell (2,3), and as above, we see 
that M = 22. Similar considerations show m2 3 = I I  
i f  each2'3circuit containing cell (2,3) in the ~vised 
network is used to subtract from the (2,3) position. 
The final table one would obtain is shown in Table 13. 

4.3 Com plementary Suppressions 
If cell (p,q) is a primary suppression, and the 

interval [m Da' MDa] is not sufficiently large to provide 
adequate protection, other table cells must be 
supressed; they are ca l led complementary suppres- 
s, ions. Complementary per tu rba t ion  ce l l s  fo r  re- 
s t r i c t e d  contro l  led per tu rba t ion  and complementary 

3 

~ Figure 3. The flow is shown along each arc . . . .  

'- " . . . . . .  , , , rr--T - J 
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suppression cells play a similar role. A complementary 
perturbation is introduced in order to complete a 
circuit containing a primary perturbation cell. One 
introduces complementary suppressions when the flow 
through a prim ary suppression cell is too l i t t le to offer 
adequate protection. In essence, new circuits are 
created through the introduction of complementary 
suppression cells, and these new circuits allow a 
greater flow through the primary suppressions. This is 
related to the network flow analysis by observing that 
each complementary suppression introduces a new pair 
of arcs in the underlying network, allowing for a 
greater flow fro m source to sink. 

Methods for introducing complementary cells 
differ for controlled perturbation and cell 
suppression. Under controlled perturbation, the 
process is local to the extent that for each primary 
perturbation, co m ple m entary perturbations are 
introduced as needed. Their number is controlled by 
forcing a minimal length circuit. In contrast, when 
finding co m ple m entary suppression cells the process is 
global to the extent that generally one seeks a mini m al 
set of complementary suppressions to protect all 
prim ary cells. ---- 

It is beyond the scope of this paper to present 
techniques for finding complementary suppressions. 
Techniques using a combination of linear analysis and 
branch-and-bound techniques have been developed by 
Cox [2] and have been successfully employed at the 
Census Bureau for the 1977 and 1982 Economic 
Censuses. Recent, promising results of Gusfield [ I0]  
couch the search for co m ple m entary suppressions as a 
graph augmentation problem. Gusfield's results extend 
some of Cox's methods in that a comprehensive 
approach is offered to problems such as that 
illustrated in Table 5. 

5. TABLES IN THREE DIMENSIONS 

The procedures for forming and analyzingmasked 
two-dimensional tables fail in three-dimensions 
basically because three-dimensional tables lack the 
underlying graph and associated network structure 
(Cox, [4]). We can define circuits in a three- 
dimensional table traversing only positive cells, and in 
fact show that each positive cell is contained in such a 
circuit. To that extent, (restricted) controlled 
perturbations do exist and can be found. However, in 
the absence of the underlying graph one does not have 
an efficient procedure for finding requisite minimal 
length circuits for perturbing non-zero cells. For 
controlled rounding, the situation is worse. The 
crucial result for two-dimensional tables is that every 
unrounded cell is contained in a circuit consisting of 
unrounded cells. This result is not true in three- 
dimensional tables, and indeed an u-'n-bTased, controlled 
rounding of an arbitrary three-dimensional table does 
not always exist (Causey, Cox, Ernst, [ I ]).  

. . _ _ . . = .  

A common thread running through this paper 
focuses on the role of circuits in creating masked 
tables. In two dimensions, circuits, along with the 
underlying graph and network structures are available 
and are used to full advantage. In three dimensions, 
required circuits do not exist for unbiased controlled 
rounding nor are they readily accessible for controlled 

perturbation due to the absence of the underlying 
graph structure. 

A n opti m al strategy for m asking three-di m ensional 
tables may be to (I) design efficient and effective 
three-dimension heuristic counterparts to the two- 
dimension exact procedures, or (2) resolve each two- 
dimension cross-section and integrate the masked two- 
dimension faces to form a three-dimensional masked 
table. The Census Bureau Confidentiality Staff is 
actively pursuing research into rigorous techniques for 
masking three-dimensional tables and also into the 
area of intertable consistency. 
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