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I. Introduction 

Jay Kim, Bureau of the Census 

II. New Scheme 

Survey data is often released as microdata. 
Survey respondents are thus subjected to the risk of 
reidenti f icat ion and disclosure of confidential data, 
even when identi fying information such as name and 
address is deleted prior to release of data. To avoid 
this disclosure problem, m easures of m asking the data 
have been proposed. They include adding random 
error, multiplying by random error, microaggregating, 
data swapping, random rounding, slicing and co m bining 
subrecords. Two reseachers compared those measures 
with respect to their  masking capability and i m pact on 
key statistics. Specifically, Spruill (1983) performed 
an empirical study of comparison of additive random 
noise, mult ipl icative random error, microaggregation, 
random rounding and data swapping methods with 
regard to the effect of masking on key statistics. She 
also perform ed a reidentif ication experi m ant based on 
the distance measure of absolute deviation and squared 
deviation. 

Paass(1985) also performed a reidenti f icat ion 
experi m ant based on a refined m easure of 
ident i f icat ion including discriminant analysis. He 
found from his experiment that the addition of random 
error is not an effective measure and hence proposed 
new masking schemes such as slicing and subrecords- 
co m bination. 

As has been shown in both studies, some measures 
maintain the unbiased values of sum mary statistics 
such as mean and standard deviation but others lose 
the unbiasedness of the data. Also some schemes 
preserve the original structural relations and hence 
original causal relationships. However, others don%. 
According to Paass, the combination method which is 
best suitable for masking caused serious distortion of 
relationships among variables. This squarely puts us in 
the quandary as to whether or not we opt for 
protection in spite of grave sacrifice of usefulness of 
the data. From the users' point of view, maintenance 
of the usefulness of the data is the abiding 
require m ant for a good m asking sche m e. 

At the Bureau of the Census, we have been faced 
with masking microdata fi les. For masking earnings 
data, a new scheme has been developed. The scheme 
is a combination of random noise inoculation and 
transformation. In this paper I will describe this new 
measure and provide examples of application of the 
measure on the earnings data. Since multiple 
regression is the primary use of the earnings data, I 
will discuss the theoretical effects of masking on the 
regression. 

It should be mentioned that the power of l imi t ing 
the disclosure by this scheme has not been ful ly 
investigated. We are presently planning on performing 
reidentif ication experiment using the software 
developed by Paass' group. 

An advantage of the scheme proposed here is, i f  
users are willing to do multipl ication to get an 
unbiased estimate of the second moment of the 
original (unmasked) variables, then we can compact 
the data points around the mean while the correlation 
structure is not ha m pered. This can be done by using a 
small "a" value, as to be seen later. 

For si m pl ic i ty,  the derivation of form ulae is based 
on the unweighted data. 

11.1 Transformation on The Variable to 
Which Random Noise Was Added 

As mentioned in section 1, Paass (1985) found that  
the addition of random noise alone is not suff icient for 
reducing disclosure risk. He also found that as more 
data points cluster in a given space i t  becomes more 
d i f f icu l t  to reidenti fy respondents. It implies that as 
the number of source (original) data points which can 
be linked to a given masked data point increases, the 
probabil ity of l inking a masked data point to the 
correct original data point decreases. The new scheme 
originated from this perspective. That is, by this 
transformation we try to add an additional layer of 
protection to persons on the f i le without harming 
original interrelationships among the unmasked 
variables. This is possible since the correlation 
between variables is invariant under a l inear 
transform ation of the variables. 

Assume there are p variables, some of which are 
to be masked. Assuming the i ~Th variable is to be 
m asked, define 

x i- the variable to be masked 
e_.: random noise to be added to x-. 
~e generate e~ such that e i are independent of 

2 
x i. Let x i ~ ( u i ~ ) ,  e i ~ ( O , c o  i )  

, e  ) = c C o v ( x  , x  ) ,  and Cov(e i ~ j j  i ~ j J  

assuming x i is also to be masked. In the above c is a 
constant a~d the distribution of e i can be selected 
from among two distributions; normal distribution and 
the distribution of x i .  

For the i th variable, define 
y - = y  +e , i=1,2, ,p; j= l ,2 ,  ,n i "7 1 . . . . . . .  

This is t~e usual a~Jditive random noise mo(~l. 
For simpl ic i ty,  assume n i = n , V  i .  ~ Here i t  is 

proposed to transform Yij by 
= a Yii + bi (I) zii 

where ~ a and~bi are constants and determined in two 
di f ferent ways. The f i rst  approach is to subject a and 
b- to two constraints E(xi)=E(z i) and V(xi)=V(zi) The 
l . . . . . .  " h second approach requires determlnatlon of b i by t e 

f i rs t  constraint E(xi)=E(zj) but determination of a 
depends on the confidential i ty requirement. In this 
paper we adopt the f i rst  approach. 

The two constraints are such that the f i rst  and 
second moments of the transformed noise-added- 
variable are identical to those of the original variable. 

First, by subjecting the transformation to the 
constraint E(x i )=  E(zi),we obtain a ~i + bi = ui  " 
Hence 

b i = ( l - a )  o (2) 
By replacing ui~iln (2) by its estimate 

i or  ~ i  (~ i  = ~ i  + - ~ i ) '  and by substituting 

( i-a) ~ i  or ( i-a) ~ i  for b i in (I), 

z~j : a Yij + (1 - a) Y-i (3) 

or 

zij = a Yij + ( i  - a) ~ i  " (4) 

Based on the transformation in (3), 

i 2 (5) V(zi) = (1 + c)~a 2 + [2a(1 - a)+ (1 - a)2] /n)o i . 
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When this equation is solved for "a" under the 
constraint V(z i) = V(xi), one obtains 

n - 1 - c 
a : (n - 1)  ( i  + c )  (6) 

Note 2 that this "a" value will make the coeff icient 
of 0- ( i . e . ,  V (x i  ) ) i n  equation (5) equal to i .  
W he~ n is large, 

a ~ 1/vI+C'. 

II.2 Properties Q~ Transformed Variable, 
z i. When c~ Is Known 

When 0 2 is known, noise is generated using 0 2 . 
However, silnce the generated ~ample of noise is finilte, 
the~estimated variance of c 0 i is to be different from 
c o~. 2 The estim ated variance is going to be denoted 
b y c s ~ .  

Usbally, mic~odata is created by taking a sample. 
Hence even i f  c i is known to the survey takers such as 
the Bureau of tlle Census, the microdata users do not 
know oi a2nd hence have to esti m ate it. The esti m ate 
is again si " 

I. E(zi) = ui (7) 

This follows since E(Yi)= E(x i + e i) = n i , 
and E(~ i )  = u i "  

2. T i = ~i (8) 

This can be proved easily. This implies that the 
sample mean of the transformed variable is the same 
as that of the noise added original variable. 

3. E (7  i ) : ni 

4. V ( z i )  : ( 1 + c ) { a 2 +  [ 2 a ( 1 - a )  
+ ( l - a ) 2 ] / n } o i  2 

5. V (z '  ) = { ( l + c ) a 2 + [ 2 a ( l - a )  
1 2 + ( l - a )  2 ] / n  }o i 

(9) 

This follows since Cov(xij, ~ i  ) : V ( ~ i ) "  

6. Cov(zi ,z j ) :  (1+c)la2 + [2a(1-a) + (1-a)2]/n 1 (10) 
i¢D- 

x Cov(xi,x i) 

This follows from Cov(zi,zj) : Cov(aYi,ayj) + Cov[(1-a) 

~ i  ' ( l - a ) y - j ] + 2 C ° v [ a Y i  ' (  l - a ) y ' j ] , C o v ( y  i ,y - j )  

= (l+c) Co v(xi,xj)/n and Cov (~ i  ' ~ j  ) = C°v(Yi'YJ )/n" 

7. C orr(zi,zj) = C orr(xi,xj) (11) 

This follows since the coefficients of V(Zk), k = iQ and 
C ov(zi,zj) are identical. 

8. Let t be an unmasked variable, then 

Cov(zi,t ) = [a + (1-a)/n] Cov(xi,t) (12) 

This follows since Cov(Yi,t ) /CnOV(Xi,t) and 
cov( i,t) : co (xi,ti 

9. Corr(zi,t) = [a + (i  - a)/n] Corr(xi,t) (13) 

This follows since V(zi)= V(xi), but Cov(zi,t)= 
[a+(l-a)/n] C ov(xi,t). 

10. Corr(zi,t ) < Corr(xi,t ) 

This follows from a < 1 and hence [a + (1 - a)/n] < 1. 

11. C orr(Yi , t )=[ I / ( I~c)]  C orr(xi,t ) (14) 

This follows since Cov(Yi,t ) = Cov(xi,t ) and V(Yi) = 
(l+c) V(xi). 

The correlation between Yi and t is always less than 
the correlation between x i and t. 

12. Correlation between z i and t is asymptotically 
the same as the correlation between Yi and t. 

This follows since when n is large, Corr(zi,t) ~ a 
Corr(xi,t ) and a ~ I / V  I÷C. Note that when n is large, 
(n - l -c  )/ (n - l  ) ~ I and hence from equation (6), a ~ 
1 / ~ .  

11.3 Properti2es of Transformed Variable, z, 
When o is Unknown 

In practice, o 2 is not known, hence q2 is estimated 
fro m the sam ple (estim ate denoted by s 2 as ~sual), ~nd 
then random noise is generated using this s L. If s Lis 
calculated ~rom the noise e, i t  will not be exactly the 
same as s t due to the sampling variability of e. 
Hen~c~, we denote the estimated variance of noise 
by s 

Taking a respondent sample and adding noise can be 
interpreted as a two stage sampling. 

In Stage 1, n respondents are selected from a 
population of size N and observations are made. From 
the observations, sample statistics are calculated (This 
is the usual situation, but i f  a whole population is 
observed, population statistics are calculated). 

In Stage 2, noise sample is generated using the 
statistics and noise is added to the observed values. 
From this perspective, the mean and variance can be 
interpreted as follows. Denoting the respondent 
sample by ~ .  

E(Yi) : E[E(x i + ei)i~)] : E(xi)-  , • 
The above follows since E(eiiS) = O. ~tence, 

E(zi) = E[E(zii#) ] = E[ax i + ( i - a )~ i  ] = " i  

V(Yi) = V[E(x i + eii~)] + E[V(x i + eii~)] 
2 2 

= V(xi)+ E(cs i )  : ( l + c ) ° i '  
2 

which follows since V(x i + ei i#)= V(eii~) = cs i • 
Therefore, 

V(zi) = V{E[aYi + ( l - a )~ i  i~ ] l+ E{V[aYi 

+ (l-a) 7 i  i ~  ] I  

= V[ax i + ( I -a )~ i  ] + E{ v[aei + (l-a) ~ i  ] l "  

But the second term in the above expression reduces to 

E c s i a  + c s i [ 2 a ( l - a )  + ( l - a ) 2 ] / n  

~e~a 2 + [2a( l -a)+ (l-a)2]/n Ico # . 
Hen the above variance of z reduces to the variance 
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in (6). 
Similarly, the covariance between z i and z-, and the 

covariance between z i and t in this case reddJce to the 
covariances in the prevlous case. 

II.4 Im pacts of M asking on Regression 

Without loss of generality• the variances can be 
assumed to be homogeneous since heterogeneous 
variances can be changed to the homogeneous by 
proper transfomration of variables (see p. 221 of 
reference 4). 

2 Case 1. when a isknown 

Smith considered the effects of masking by random 
noise on the regressie~ when all the variables are 
masked and when ~ is known for generating 
random noise, but the variance estimate s 2 is used 
for the regression. Here we deal with the problem 
from a broader perspective under the same set of 
conditions. 

Define X' = (x~,x2,...~x~)~ a vector of p Vayr~ables, X* 
is a realizatlon of Define Y, and Z, 
similarly. Note that Y is a vector of variables, at 
least some of which are masked and Z is a vector of 
transformed variables. Define E(X) = p and V(X) = 
V. Then E(Y)=u and V(Y)= (l+c) V. 

T9~ build a regression of Xl on X ?' = (x2,x3,...~Xp), X 
X , and V are partitioned ~s foll6ws. 

X= 1 X* = 1 
• 9¢ • 

2 2 

(~I)~2 and V =(~I121 Vl~)v2 p 

Then 

E(xIIX2= X2) = "1 +v12v221(x2  - "2 ) 
In the above Ul - V12V22 u 2 is the intercept 

Z 

- i  is the vector of coefficients. and VI2V22 

Theorem 1. If all the masked variables have the 
same first two moments as the unmasked variables 
then the regression coefficients and intercept 
based on the masked data are on the average 
identical to those of the un m asked data. 

Proof. Proof follows from the fact that the inter- 

- 1 and the coefficients cept ~_~ - V12V22 P2 
V12V22 remain the same throughout masking. 

The above theorem applies to the data masked by 
our sche m e. 

Theorem 2. If all the masked variables have the 
same first moments but their second moments are 
proportional (at the same rate) to those of the 
un m asked• the regression coefficients and 
intercept based on the masked variables only are 
on the average identical to those of the unmasked 
data. 

Proof. E(Y) = E(X) = u and the new variance and 
covariance matrix is k V, where k is a constant 
The new coefficients are samekV12*as (kV~2o)-I " _  
V12V22 -1 which is the that the 
un m asked. 

This theorem applies to the data masked by the 
random noise approach. 

If the covariance between two unmasked variables 
is maintained after masking• but the covariance 
between the masked and unmasked is not, then an 
adjustment of the covariance to make i t  unbiased is 
required to preserve the same correlation coefficients• 
on the average. The covariance between the masked 
and unmasked variables in our scheme is [a + (1-a)/n] 
times the covariance between unmasked variables. 
Thus the covariance must be adjusted to insure 
unbiasedness of the coefficients and intercept. On the 
other hand, the corresponding covariance in random 
noise approach is unbiased ~ ,  but the variance of the 
masked variable is (1 + c) times that of the unmasked 
variable. Hence• this variance needs to be adjusted. 

Lemma 1. If the unbiased variance-covariance 
structure is maintained after masking• but the 
means lose unbiasedness, then the regression 
coefficients based on the data including masked 
variables, on the average• would remain identical 
to those based on un masked data, but the intercept 
would not. 

Proof. By inspection of the formula of intercept. 

This lem m a can be applied to the data generated by 
the random noise approach. If the masked data is 
adjusted before inputting in the computer to make 
the sample variance and covariance unbiased, the 
resulting sample means will become biased. Thus, 
the intercept of the regression based on this data 
will be biased. 

The above two lemmas can be combined and 
rephrased in terms of correlation coefficients. 

Lemma 2. If the means and correlations of the 
masked variables are unbiased, (naturally or by 
adjustment), then the regression coefficients and 
the intercept of the model fitted on the wholly or 
partly masked data will be, on the average, the 
same as those obtained from the unmasked data. 

Theorem 3. If all variables in the regression model 
are masked and the second moments of the masked 
variables are the sa me as those of the un m asked• 
then the residual error variance of the regression 
will be the sa me as that of the regression based on 
the un m asked. 

 roof. 
Since all the variances o maske~l variables are 
identical to those of the unmasked• V(ZllZ2) w111 
be thesame as V(XllX2 ). 

This theorem applies to the data masked by our 
scheme, but it does not apply to the data masked by 
the random noise approach. The residual error 
variance based on the latter is (1+c) times that 
based on the unmasked data. 
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Lem ma 3. If the variables in the regression, all or 
part of which are masked, have the same second 
m o m ents as the un m asked, then the residual error 
variance based on the data will be the same as 
that based on the un masked data. 

Proof. 0 mitted. 

This applies to the data, on the average, part of 
which is masked by our scheme and the covariance 
between masked and unmasked variables is adjusted 
to be unbiased. 

Define 
- . . . - Xp 21 x2 Xpl 

22- x2 " " . Xp2 Xp 
X - -  • • • • 

• ~ • • • 

2n- x2 " " " Xpn- ~p 

Theorem 4• Under the same condition as in 
Lem ma 3, the standard errors of regression 
coefficients based on the data will be the same as 
those based on the un m asked data. 

Proof. In general, the variance of the coefficient 
can be expressed as 

2 -1 
o ( x ' x )  

where × is defined above• The proof follows from 
inspection of the above variance. 

Theorem 5• The variance of the intercept based 
on the data having the same variance-covariance 
and means as the un m asked data is identical to the 
variance of intercept based on the un masked data. 

Proof. The variance of the intercept is 

2 , , -1 
[ I / n  + x (× x) x] 

The proof follows from inspection of the above 
variance form ula. 

The data masked by our scheme satisfies the above 
theorem but the data generated by the random noise 
approach never, even with adjustment, does. 

2 Case 2. When o is not known 

2 When ~ is not known, s 2 is used to generate noise, 
hence due to the sampling error of o noise, the actual 
variance will be different from s L. Only ~peated 
generation Q~ noise and calculation of s (more 
precisely cs ) infinitely ~nany times will result in 
their average equal to s .  This has significant 
i m plications on the regression coefficients• 

2 Denote the regression coefficients based on o 
^ 

by B , s  2by band s2 by b. Note that 

will be calcultated using sam ple variance which is 
^ 

a mixture ofs  2and s 2 .  For example in the random 

noise case, if noise whose variance is 1/2 of s 2 is 

used then the resulting sam ple variance will be 

s2+.5 s 2 • 

Hence the regression coefficients will be estimated 
based on this type of variance. If the conditions for 
unbiasedness of b seen in the previous theorems and 
le m m as are met, then 

E(b) = EEE(bI~ ) ]  = E(b) = 8. 
^ 

This means under the suitable conditions b can be 
unbiased• 

Ill. Exam ples of Application of the Sche m e 

The scheme proposed here was tried for masking 
earnings data. A separate scheme was also 
investigated, namely, the addition of random normal 
noise with zero mean and standard deviation equal to 
1/2 the observation• This scheme is also included in 
the co m parison. 

R ando m nu m bers were generated using a subroutine 
in IMSL called GG NSM. This routine generates 
standard normal multi-variates which follow a 
specified correlation structure among the variables. 
Using these variates random noise was generated• 
Also RLMULin IMSL was used to run regression• Box- 
and-Whisker plot was obtained by using IMSL, too. 

Table 1 shows means of 3 unmasked as well as 
masked variables. In our scheme, three versions were 
tried by varying the amount of variance of noise, i.e., 
25%, 50% and 100% of the variance of the unmasked 
variable were tried. 

Due to the sampling variability of the mean of noise 
the sam ple means in the table are all different from 
the sam ple mean of the un m asked• 

Correlation coefficients between variables were 
calculated (see Table 2). None of the correlations 
obtained from our data is significantly different from 
the original ones. However, both coefficients obtained 
from the other scheme are significantly different• 

Table 3 has the results of the multiple regression in 
which all the variables were masked• Our data (with 
V(e) = .25 V(x)) provides more reliable results• 

Tables 4 provides the M SE, F values and the 
variance of t~e dependent variable explained by the 
regression (R ~'). Our data gives MSE values close to 
those of the unmasked, but the other data does not. 
The percentage of variance is higher in our results 
than under the other scheme. 

IV. Concluding Remarks 

So far properties of the new masking scheme have 
been considered and so me examples of application 
have been shown• However, the power of limiting the 
disclosure by this scheme has not been tested• We are 
planning on embarking on the experiment using Paass' 
software which was developed for his reidentification 
study• It should be noted that as far as our scheme is 
concerned, the probability of reidentification can be 
manipulated by using the "a" value• It is possible since 
by lowering the "a" value, we can shift the weight 
toward the mean and thus reduce the reidentifiability 
of the respondents• However, since the correlation 
structure can be maintained, i f  necessary by 
adjustment, the regression can be run on the data 
without adverse effect• 

A lot more questions remain to be answered 
concerning this scheme• These will be investigated as 
soon as ti m e per mits. 
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In/ If n .~ n, then the a values in (6) would be 
differen½ for each i. 

2-m This is the model Spruill used for her experiment. 
However, this can be changed by using correlated 
noise, which ensures unbiasedness of the correlation. 
This lat ter  approach was used in my experiment. 
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APPENDIX 

Table L-Comparison of Means, n=2000 

Item I Va r l  I Vat2 1 V a r 3  .... 

Unmasked ~b2.44 903.90 i 099.68 
I*  Our Scheme 2* 876.77 939.48 1134.33 

Our Scheme 886.85 954.22 1148.71 
3* Our Scheme 901.12 975.03 1169.0 

Other Scheme 833.06 962.47 1091.67 

Our scheme i ,  2,3 corresponds to the scheme with 
V(e) is 25%, and 100% of V(x) in that  order. 

Item 

Table 3.--Regression Coefficients 
- All Vats Masked 

Unmasked 0 u rs* Other 

x I -.01 -.02 .01 
x 2 .18 .18 .23 
x .68 .69 .65 
S~ope 972 937 951 

* Our scheme 1is used 

Table ;L-Correlation Coefficients 

Item 

Var I 
vs 

Var 2 

Var 3 
vs 
Var 4 

Unmasked 
OurScheme 1 
OurScheme 2 
Our Scheme 3 
Other Scheme 

.74 

.74 

.74 

.74 

.68 

.76 

.76 

.76 

.76 

.82 

Table ¢,-A N 0 V A Based on Regression - All 
Variables M asked 

I tem Unmasked 1 Ours 
= ,  

Other 

MSE 6796.5 6781.5 7287.1 

F 508.16 522.42 411.24 

R 2 43.30 43.98 38.20 
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