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I. Introduction

The Monthly Retail Trade Survey is a panel survey
that provides retail sales information from a
probability sample. The list sample for any given data
month consists of certainty units from a fixed panel
and sampling units from a rotating panel. The
certainty units report the sales monthly; while the
sampling units from the rotating panel report both
current and previous month sales every three months.

The missing item of the current month retail sales
is imputed by multiplying the nonresponding unit's
previous month sales (reported or imputed) by a
measure of trend (the so called ratio of identicals)
computed from those responding units whose size and
kind of business characteristics are similar to the
nonresponding units. The trend is calculated based on
the weighted sum of the current month sales and the
weighted sum of the previous month sales for each
adjustment cell, The sample is partitioned into
imputation cells defined by kind of business (3-or-4
digit Standard Industrial Classification (SIC) code is
used), firm size (Group I and Group II; Group I has 3
different firm sizes (1-3, 4-10, 11+ establishments),
Group I is the firm with 11+ establishments and
certainty alpha) and size of sales (defined
arbitrarily). Missing previous month sales for a
sampling unit in a rotating panel is imputed in the
similar fashion using historical data.

In this paper, we compare several ratio and
regression adjustment procedures and a variety of
imputation cell formations under a Monte Carlo
study. We treated data reported in the Monthly Retail
Trade Survey from 9 SIC's as our complete data set,
and assumed that the data were missing at random.
The missing items were imputed by different
imputation procedures. The bias and mean square
error (MSE) of the estimated totals for the given data
set are derived in the following section. The
conclusion in the study will be sum marized in section
II.

II. Monte Carlo Study

In Huang (1984), a Monte Carlo study was carried
out to evaluate different imputation procedures based
on a given set of complete data (reported list sample
from SIC 562 in the December 1982 Retail Trade
Survey). Five sets of incomplete data were generated
from the complete data. For each of the five sets,
data were randomly suppressed from each imputation
cell of complete data according to its current
imputation rate. The reader is cautioned that since
only five incomplete data sets were used, the results
of the comparisons may not give an accurate picture.
In the following, the bias and MSE of the estimated
total for a given complete data set were derived under
the assumption that the missing data are a random
sample of the complete data set.

A sample of size n is assumed to be drawn from a
population of size N. Only one imputation cell is
assumed. The sampling unit i has inclusion proba-

bility LI In a sample of size n, there are n, units

reported, and n. units not reported. In the following

we treat these reported n, units as our complete data

set. Assuming the nonresponse mechanism Iis
ignorable, i.e., the data are missing at random, the
incomplete data sets are generated in which n'; units
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are suppressed randomly from the complete data set of

1, units, and different ratio type

procedures are used to impute n'; missing units of y

imputation

values (current month sales) using the auxiliary
variable x (previous month sales), which is available
for all n, units.

Let Y be the estimated total using the complete
data set of n, units

Let Ybe the estimated total using incomplete data
set of n, units, of which n'r, units are reported,

and n'—r; units are imputed, i.e.,

~ n r n ; ~

Y= % y./m. + I y./m,
. i . i
i=1 i=1

where
yl = Rn' x1 , i=1 ,...,n'; y
r
n =n'_ + n'—,
r r r
Rn' is one of the four ratio type estimators in
r

(2.1)~2.4) using n' r units,
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R M is the current imputation ratio.

The summations in (2.1)«2.4) are over the n,
reported units in practice, over n;, units in the Monte

Carlo study. In addition for R (M)’ the

factor'1/n'r is wused in the Monte Carlo study,

whereas in practice the factor 1/nr is used. We also

assume that the nonresponse rate is such that

\]

lim f =
1 n'=

n'— > ® r

r

lim n' /n_ = f—
R =""r r
n'— > r

r

where f_ is fixed, and 0 < f_ < 1.
r r

Lemma 1. Under above notations and assumptions, for



large n'r,,
BE -1 [ n) f-niom) 2 o)
r r {=1 1 1
=0, if An, - gD
where r

Rn is any of the four ratio type estimators (2.1)-(2.4)
usipng the complete data of size n, , E(” | nr) is the
expectation over all possible samples of size n';
drawn from n,.

Proof:

Since yi = R X, , it can be proved that

~

- Y " .
= ] 2
Rn + Op(n r ) for Rn and Rn

1 1
" r r r
being any form defined in (2.1) - (2.4) using n'r. and
n, units respectively.
We then have
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When Rrl isa form of R(”,

r

n.y -
r — (y, - R x.,) = 0, and hence
. . i n i
i=1 i r

E((Y - ¥) [ n) =0,

Lemma 2. Under the notation and assumptions defined
in this section, for large n'r, s
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Rn is an estimator defined in (2.1) ~ (2.4) using the
r
complete data set of size n.
Proof:
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Lemma 3. Under the notation and assumptions defined
in this section, redefine vy = in for i=1,..., n'; ,

where R is a preassigned value, then
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Proof: Since R is a fixed value, by the definition of

[}
N =

3
-

yi = in, and the missing at random assumption of
n'; missing units of ¥is following the similar proof in
Lemma 1 and 2, we can easily derive the results,
Lemma 4, The bias and MSE of the estimated
totalY given n,, by using Ropt to impute missing y;, is

n'
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Proof':
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Ropt is a function of n, units of a complete data set
which is the population that the incomplete data
samples are randomly generated in the Monte Carlo
study. For a given complete data set of size

A

R is a fixed value,

v Ropt Following the similar proof

n
asin Lemma 3, we have the results,

An estimator of Ropt by using n', reported units in

the Monte Carlo study is

1 | 1
1 n', Xy oAy o 1ont Xy
n' (2 2 n'_ -1 z T, )
N r i=1 ™ r i#j i%j
R = 5
opt n' x. n'— =1 n' x.x,
- (" =)
n' s n' ~ 1 . ML,
r i=1 ™ i#j i%j
for n' > 2. (2.6)
Lemma 5. The bias and MSE of the estimated
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totalY given N, by using Ropt to impute missing ¥i is
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E(Y -~ V) |n) 2 o= & = (y; Ropt 1)
r i=1 7,
i
T [ -
+nr,(nr 1) gr 1(y~,\ )
n, (nr - 1) faj MMy 1 opt i
.~ R X.) .
(yJ opt J)
Proof:

Following the similar proofs in lemmas 1 and 2, and
the fact that for large n'r,
R %

R = Ropt + Op(np

opt ), the results follow.

To use ﬁopt We need to know the number of
nonresponse ite ms n'; , and the number of response
items n'r in the sample, If the factor

(n'; - 1)(n'r -1)

isnotused inR___, then
opt
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It can be shown that when R(S) Xj is used to impute

missing Yir for large n',, the bias and MSE of Y for a

r-’
given complete data set n, are giveninlemma 1 and 2,
where

2
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If the inclusion probability m is not used in (2.7), we
have

n'r n'r 2

=(I x,vy.)/7 (% x.)
. ivi . i
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(6)

R (2.8)

which is the least squares estimate of R of the ratio

model with constant error variance (i.e., y=Rx+e, e

is independently identically distributed with mean zero
2

and variance ¢ ). It can be shown that the bias and



MSE of Yfor a given complete data set are given in

lemma 1 and 2 with

~
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If the ordinary regression estimator is used to impute
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then the bias and MSE of Y for a given complete data
set n,, are given in lemma 1 and 2, with
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The above results can be extended to more than
one imputation cell if we generate the incomplete data
set from the complete data set independently for each

imputation cell, Let Y Yk be the estimated totals of

k!
the incomplete data set and the complete data set

respectively from imputation cell k, k=1,...,K.
Then
- K . K
Y= 1Y , Y= LY .
k=1 K k=1 %

Let nr,k be the sample size of the reported data of

imputation cell k, and we randomly suppress n'; units
k
from this complete data set. Let n, be the sample size

of the complete data set from all K imputation cells,
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The bias of the estimated totalY given the complete

data set is

E(Y ~Y) | n)

K -
= IEWY, ~Y) {n )
k=t KK "k
Kk Mr  Op
. K k 1 7
== I n L T eki’
k=1 "r i=1 ki
K
where
Wi = yki - Rn xki , k=1,...,K, 1=1,...,nr .
r k
Kk
Rn is a ratio estimator of (2.1) to (2.4) and (2.6)~
r
k

(2.8) using the complete data set of size n‘"k from each

imputation cell k. For the regression estimator

~

defined in (2.9), e, is defined in (2.12) for each
imputation cell. Similarly, the mean square errors of
the estimated total Y given the complete data set can

be written as

E(Y ~Y¥) | n)

K - 2
= ¥ E((Y, ~Y) | n )

k=1 k k r'k
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=tore Ty K J J

Under the assumption that the data are missing at
random, we have already shown that the bias and MSE
of the estimated total given the complete data set
using various ratio and vregression imputation
procedures are functions of residuals of the complete
data, and the nonresponse rate of each imputation
cell, To compare different ratio and regression
imputation procedures defined in (2.1) -~ (2.4) and (2.6)
- (2.9) empirically, we can thus compute these biases
and MSE's using Monthly Retail Trade Survey reported
data and current nonresponse rates without randomly
generating all possible incomplete samples.

The Monthly Retail Trade Survey reported data of
December 1982 for nine SIC's were used to compare
the bias and MSE of the estimated totals of the
different ratio and regression type imputation
procedures. The trends are calculated from the
reported data of each imputation cell by these
different estimators. The trends calculated by the
optimum ratio procedure and the current imputation
procedure are fairly close for most SIC's. (See Huang
(1986)). The bias and MSE of the estimated totals by
using these different imputation procedures are
tabulated in Tables 1.1 and 1.2. Algebraically, we
have already shown that given the complete data set,
the current imputation procedure is unbiased with
respect to the estimated reported total for each



imputation cell, and so are the empirical results. The
relative biasses (bias/estimated reported total) of the
other ratio imputation procedures are relatively small,
less than 3% for most data.

The optimum ratio imputation procedure, ﬁopt ,

gave the minimum mean square error among all the
ratio type imputation procedures. However, the gain

in efficiency of R in comparing with the current

opt
imputation procedure is at most 0.002. The current
imputation procedure is fairly competitive with the
optimum ratio imputation procedure and is easier to
compute.

Note that all the inferences of the Monte Carlo
study are restricted to the data we used. The
derivations of the bias and MSE are based on the
assumption that the data are missing at random. The
data used for the Monte Carlo study were examined to
investigate the validity of this assumption. The
imputation rates by sales classes of each imputation
cell were calculated. There is no apparent relationship
between item nonresponse rates and sales classes, The
imputation rates by regions of each imputation cell
were also calculated. The imputation rates are
different for different regions but there is no specific
pattern.

Based on the current imputation procedure, we also
used mean square error (MSE) criterion to evaluate
different imputation cell definitions, e.g., to answer
the question of what quantiles (median, 1/4 or 1/8 or
1716 quantiles) should be used for the cutoff of sales
size classes if sales sizes are used within each firm
size (group I and II) for imputation cell definition as
opposed to the current fixed cutoff. The reported data
for 9 SIC's from December 1982 were used. The
empirical results showed that for SIC 562 the smaller
the imputation cell is, the better the MSE. However,
the most drastic reduction in MSE is the cell definition
using 1/4 quantiles as sales cutoffs. There was an
approximate 44 % reduction in MSE as compared to the
MSE under the current imputation cell definition.
Using 1/8 quantiles as sales cutoffs a further 6%
reduction over 1/4 quantiles was observed; and using
1/16 quantiles a further 3% reduction over 1/8
quantiles was observed, Overall, the e mpirical results
varied by SIC's. In 6 of 9 SIC's, the reductions in MSE
ranged from 12% (-3%) to 59 % (44 %) by using 1/8 (1/4)
quantiles instead of the current fixed cutoff, Most of
these reductions in MSE came from group II, For SIC's
541, 551, and 5813, there was little, if any, gain in
using any of the quantiles considered. (See Huang
(1986)).

I, Summary

We have evaluated the bias and MSE of the
estimated totals using different ratio and regression
type imputation procedures (including the currently
used imputation procedure) under a Monte Carlo study
for a given data set.

Under the assumption that the data are missing at
random, the bias and MSE of the estimated total using
different ratio type imputation procedures with
respect to the estimated reported total were derived
for the given reported data. An optimum ratio
imputation estimator was also derived along with
several variants. The bias and MSE were calculated
for each of nine SIC's using December 1982 retail sales
data. For the given data set, the empirical results
showed that the estimated total using the current
imputation procedure is unbiased and has the second
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smallest MSE among all ratio type
procedures in the study.

Since the decrease of the MSE by using the
optimum imputation procedure is trivial, and extra
computation and information are needed to implement
this optimum imputation procedure, we do not
recommend any changes of the current ratio type
imputation procedure in the Monthly Retail Trade
Survey.

For the given data set, there is no apparent
relationship of nonresponse rate with sales within each
imputation cell for all nine SIC's,

In the current imputation cells, for some SIC's, the
number of establishments in Group II dominates the
number in Group I; for other SIC's, the number of
establishments in Group I dominates the number in
Group II. The empirical results suggested that for
some of the nine SIC's included in the study, we can do
better by using alternative imputation cells, i.e., use
sales quantiles-as cutoff's within groups as opposed to
the current fixed sales cutoffs. The decrease in MSE
in 6 of 9 SIC's ranges from 12% to 59 % by using 1/8
quantiles. We recom mend that changes in the current
imputation cells definition be considered, especially
where empirical studies show that a significant
reduction in the MSE can be achieved by increasing the
number of imputation cells, We also suggest that
further similar empirical studies be carried out on
recent monthly data to provide a basis for changes in
cell definitions for other SIC's, This will tell us
whether there is a gain in using alternative imputation
cells and what quantiles to use for a given SIC in a
given month.

imputation
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N{%
562 (Women's Ready-to-Wear Stores)
(%)
§21 (Buflding Materials Stares)
(%)
§31 (Department Stores)
{%).
541 (Grocery Stores)
(%)
551 (Motor Vehiclte Dealers)
(%)
572 (Household Appliances, Radio,TV Stores)
(%)
5812 (Eating Places)
(%)
5813 (Drinking Places)
(%)

592 (Liquor Stores)
(%)

SIC
562 (Women's Ready-to-Wear Stores)
521 (Building Materials Stores)
531 (Department Stores)
541 {Grocery Stores)
551 (Motor Vehicle Dealers)
§72 (Household Appliances, Radio/TV Stores)
5812 (Eating Places)
5813 (Drinking Places)

592 (Liquor Stores)

n

1445

635

7557

2428

753

500

1531

420

542

TABLE 1.1 The Bias (Relative Bias (%)) of the Estimated Total
By Using Different Imputation Procedures

Estimated

Reported Total r(1)

1,636,658,834 0

(0

1,933,849,833 0

(]
14,758,285,090 0
(0)
12,374,995,572 0
(0)
14,565,413,603 0
]

571,806,693 0
0

6,055,819,018 0
(W]

642,146,909 0
©

1,740,095,873 0
(0)

December 1982

r(2) e x(4)
4,745,104 18,303,757
(0.290) (1.118)
7,282,673 14,289,364
(0.377) (0.739)
202,901 71,895,263
(0.001) (0.487)
51,782,545  -13,933,939
{0.418) (-0.113)
14,544,381 59,662,581
(0.100) (0.410)
6,876,815 2,920,688
(1.203) (0.511)
2,022,721 31,004,652
(-0.033) (0.513)
-163,904 -647,688
{-0.026) (-0.101)
3,303,540 3,987,841
(-0.190) (0.229)

Ropt

29,244,857 -495,262
(1.787) (-0.030)

24,869,789  -133,689
(1.286) (-0.007)

72,247,748 -340,476
(0.490) (-0.002)

24,927,603  -409,314
(0.201)  (~0.003)

61,644,105 -3,169,391
(0.423)  (-0.022)

5,941,472 -266,227
(1.039)  (-0.047)

47,959,481  -720,701
(0.792)  (-0.012)

-151,990 59,308
(-0.024) {0.009)

1,672,854  -345,361
(0.096) (-0.020)

TABLE 1.2 The MSE of the Estimated Total By Using Different Imputation Procedures
{And the Ratio to its Current Imputation Procedure)

n

1448

6

@

5

7557

2428

7

o

3

500

1531

420

542

/(D)
122,250,188
(1)
373,293,260
1)
148,129,951
1)
975,155,627
o))
2,617,510,636
8Y)
25,604,966
(1)
410,794,971
v
4,150,594

O]
110,351,071
(

R(2)

December 1982

R(3)

149,423,484 485,083,727

(1.2223) (3.9680)
508,178,456 634,679,773
(1.3613) (1.7002)
148,187,203  5,362,890,768
(1.0004) (36.204)
2,732,067,367  1,383,526,763
(2.8017) (1.4188)
2,906,824,784  4,919,457,310
{1.1105) (1.8798)
60,624,441 41,244,917
(2.3677) (1.6108)
477,812,049 1,134,373,917
(1.1631) (2.7614)
4,205,883 4,691,465
(1.0133) (1.1303)
150,489,266 183,571,784
(1.3637) {1.6635)
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r(H

542,620,951
{4.4386)

810,125,338
(2.1702)

5,363,246,499
{36.206)

2,492,746,633
{2.5563)

5,040,731,723
(1.9258)

52,676,300
(2.0573)

1,339,936,313
(3.2618)

4,309,152
(1.0382)

118,555,857
(1.0744)

Ropt
122,151,733
{0.9992)

373,238,170
(0.9999)

148,069,922
(0.9996)

975,070,021
{0.9999)

2,610,996,151
(0.9975)

25,562,855
(0.9984)

410,512,304
{0.9993)

4,145,352
(0.9987)

110,152,107
(0.9982)

R(5)
-18,584,772
(-1.136)

5,946,523
(-0.307)

77,969,143
(~0.528)

1,945,308
(-0.016)

-53,164,307
(-0.365)

-4,071,594
(-0.712)

-18,773,433
{(-0.310)

1,057,819
(0.165)

-2,725,450
(-0.157)

R(5)
254,714,015
(2.0835)

405,332,341
{1.0858)

6,176,598,292
(41.697)

1,306,876,310
(1.3402)

4,108,583,221
(.5697)

35,419,411
(1.3833)

551,848,720
(1.3438)

5,229,200
(1.2599)

119,873,690
(1.0863)

Unit: U.S. Dollars

Regression
R(6) Estimator
-49,527,438 73,566,518
(-3.026) (4.495)
-850,347 8,085,767
(-0.044) (0.418)
-78,411,093 425,515
(-0.531) (0.003)
59,579,151 39,159,736
(0.481) (0.316)
-5,047,197 57,052,376
(~0.035) (0.392)
13,020,508  -2,565,749
(2.277) (-0.449)
-41,890,604 24,760,883
(-0.692) {0.409)
634,619  -2,087,831
(0.099) (-0.325)
-18,100,886 2,683,752
(-1.040) (0.154)
unit: $108
Regression
R(6) Estimator
1,384,741,428  2,236,292,027
(11.327) (18.293)
425,909,403 482,528,485
{1.1410) (1.2926)
6,178,473,892 121,809,138
(41.710) (0.8223)
2,902,580,498  2,341,096,627
(2.9765) {2.4007)
2,689,858,236  5,023,064,502
(1.0276) {1.9190)
134,778,334 83,056,483
{5.2638) (3.2438)
1,168,011,026 669,950,846
(2.8433) (1.6309)
4,577,926 8,792,564
(1.1030) (2.1184)
428,523,608 144,471,410
(3.8833) (1.3092)



