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I. INTRODUCTION 
This paper compares two statistical 

approaches to evaluating the quality of 
survey data obtained using different 
measurement procedures to measure the 
same phenomenon• The two approaches are 
the conventional U.S. Census approach 
(Hansen, et.al., 1961), which is also 
called "response bias estimation", and 
the Rasch latent trait approach (Rasch, 
1960/ 1980). Both approaches require at 
least two repeated measures of the same 
Variable. In order to estimate response 
bias, the Census approach regards one of 
the repeated measures as a standard of 
unbiasedness An "intensive reinterview" 
i.e. a reinterview using detailed, 
probing questions that are personally 
addressed to the person whose charac- 
teristics are being measured, is often 
used as the standard. 

This paper applies both approaches to 
data collected using what we call the 
"intensive reinterview design", the 
survey design used by the Census Bureau, 
in the 1976 National Content Test (NCT), 
to evaluate alternative question versions 
that were proposed for the 1980 Decennial 
Census. This design, which is also the 
basis for the 1986 NCT (currently in the 
field), has three features: i) random 
assignment of households to (mail out/ 
mail back) questionnaire panels; 2) an 
intensive reinterview on the same topics 
(about two months after the initial 
interview in the NCT); and 3) indepen- 
dence of response errors in repeated 
measurements of the same units. The last 
assumption, analogous to the Rasch 
assumption of "local independence" 
(discussed in the following), is needed 
to assure that bias from the initial 
interview does not contaminate the rein- 
terview standard of unbiasedness. Due to 
memory effects, the validity of this 
assumption may be poorly controlled by 
design. Moreover, differences between the 
initial interview and reinterview data 
might result from changes in the popula- 
tion rather than from any difference in 
the measurement procedures. 

Section II compares the assumptions of 
the two approaches. Section III compares 
the results of applying the approaches to 
two binary test items, "work limitation" 
and "work prevention" due to disability, 
from the 1976 NCT. Section IV concludes 
that the two approaches differ fundamen- 
tally in their assumptions and implica- 
tions for data content evaluations. 
Section V provides a short bibliography 
of each approach. 

II. ASSUMPTIONS 
Display 1 of Table 1 defines symbols 

for the observed cell frequencies of the 
"standard tables" from the intensive 
reinterview design that are utilized by 
both approaches• Within each of two 
experimental questionnaire panels, Panel 
A and Panel B, initial interview respon- 
ses are cross-classified by the reinter- 
view responses of the same respondents. 
Using the symbols a, b, c, and d to 
denote the cells of each 2 x 2 standard 
table is a convention in Census Bureau 
reports (e.g., U.S. Bureau of the Census, 
1985). This convention assumes that each 
initial interview question version and 
the reinterview question version have 
only two response categories, denoted 
"Yes" and "No" in Table i. We shall show 
that the assumptions of the Census and 
Rasch approaches lead to different 
parametrizations of the expected cell 
frequencies of the standard tables. 

Consider first the conventional census 
approach. This approach arises from the 
"fixed bias version" (e.g. Lessler, 1984, 
pp. 413-414) of a general model for the 
decomposition of total survey mean-square 
error (Hansen, et.al., 1961; Bailar, 
1976). Let Q = the true population 
proportion having the characteristic; 
let q = the sample proportion responding 
"yes" in one of the experimental panels 
(either Panel A or Panel B); and let qr = 
the sample proportion in the reinterview. 

Assuming that qr is free of response 
bias and that the sampledesign 
(including any coverage improvement or 
nonresponse reduction procedures) is such 
that sample proportions are unbiased 
estimators of population proportions, the 
mathematics of expectation imply 

MSE(q) = SV(q) + [E(q) - Q]2, (i) 

where MSE(q) is the mean-square error of 
q, SV(q) is the sampling variance of q, 
and the expectation is taken over all 
possible samples given the sample design. 
The last term is the squared response 
bias. It follows that an unbiased 
estimator of the response bias is the ne__~t 
difference rate (NDR): 

NDR = q- qr 
= (a + c)/N - (a + b)/N 

= (c - b)/N 

= R2P - Rln, (2) 

where n = b/(a + b) is the false negative 
rate, i.e. the estimated proportion of 
those who have the characteristic, 
according to the reinterview, who were 
misclassified in the initial interview, 
p = c/(c + d) is the false positiv~ rate, 
i.e. the estimated proportion of those 
who do not have the characteristic, 
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according to the reinterview, who were 
misclassified in the initial interview, 
and R 1 and R 2 = (i - RI) are the 
proportions responding "Yes" and "No", 
respectively, in the reinterview. In 
practice, biases due to nonresponse and 
incomplete coverage are likely to be 
present, but, provided these biases are 
constant across panels, comparing NDR's 
still gauges the relative response biases 
of the alternative question versions. 

Generally, the Census approach assumes 
that each person in the population has a 
"true state" that corresponds to one of 
the response categories of a question. 
This seems more reasonable for some types 
of questions, e.g. male vs. female, than 
for others, e.g. prevented from working 
vs. not prevented from working. In 
contrast, the Rasch approach assumes that 
persons vary on an underlying continuum 
called the "latent trait". For example, 
persons might vary continuously between 
"not at all limited in working" and 
"totally prevented from working." Lessler 
(1984) points out that the existence of 
true states (by implication, the concept 
of response bias) has often been ques- 
tioned when the phenomenon being measured 
seems "subjective" Or "sensitive". 

We think the Rasch approach clarifies 
the motivation for questioning the 
assumption in such cases: Assuming that 
the characteristic varies continuously 
and that the ~uestion is sensitive. 
slightly varying the wording or sequen- 
cing might change the ~ of the 
question, i.e. the restrictiveness of the 
implicit definition of the characteris- 
tic. If so, it is unreasonable to inquire 
which of two question versions is least 
biased because the two versions might 
yield different population proportions 
responding "Yes" but still be equally 
accurate, in the sense of discriminating 
among persons who have more or less of 
the characteristic. In the language of 
Rasch, this occurs if the item threshold, 
i.e. the level of the underlying latent 
trait that is required, on average, to 
produce a "Yes" answer, is higher for one 
question version than for the other. 

Like Hansen, Rasch sought to separate 
the effects of the measurement procedure 
from the effects of the sampling proce- 
dure. However, rather than partitioning 
total error into measurement and sampling 
components, Rasch aimed to construct the 
measuring instruments in such a way that 
their properties could be analytically 
separated from the characteristics of 
particular samples. Rasch's concept of 
"measurement objectivity" specifies that 
the item threshold of a measuring instru- 
ment should be invariant when the instru- 
ment is applied to different subsamples 
of subjects. For example, a yardstick 
would be seriously impaired (would lack 
"objectivity") if it measured differently 
depending upon whether a rug, a table, or 
a picture was being measured (L.L. 

Thurstone, cited in Duncan, 1984). 
Rasch claimed that two properties of 

measuring instruments, logistic form and 
local independence, were necessary and 
sufficient for measurement objectivity. 
Rasch proved the sufficiency of these two 
conditions; their necessity was proved by 
Douglas and Wright (1986). Consider 
either Panel A or Panel B and let Pji = 
the probability that the jth respondent 
in the panel gives a "Yes" response in 
the initial interview; let Pjr = the 
probability that the jth respondent gives 
a "Yes" response in the reinterview; and 
let tj = the value of a positive random 
variaSle, the unobserved latent trait 
value of the jth respondent (assumed 
unchanged between interviews). 

The assumption of logistic form states 
that 

Pji = itj/(l + itj) 
and Pjr rtj/(l + rtj) (3) 

where i and r are the item parameters, for 
the initial interview and reinterview 
measurements respectively. (Equivalently, 
the logit of the response probability 
equals the sum of a subject parameter and 
an item parameter. ) The item threshold 
of a question is simply the reciprocal of 
the corresponding item parameter in (3) . 
Model (3) is also called the simple (one 
parameter) logistic model for binary 
responses (e.g. Andersen, 1980, Chap. 6). 

The assumption of local independence 
states that the initial interview and 
reinterview probabilities for the jth 
respondent can be multiplied to get 
interview-reinterview joint probabili- 
ties. That is, the probabilities that the 
j th respondent is tabulated in cells a, 
b, c, and d of the standard table are: 

Pja = irtj2/[( 1 + itj)(i + rtj)!, 
Pjb = rtj/[(l + itj)(i + rtj~] 
Pjc = it./[(l + itS)(I + rtj)] 
Pjd = i/~(i + itj)~l + rtj)]. (4) 

The expected frequencies are obtained 
by summing each probability in (4) over 
the sample. In Panel A, we sum each 
probability from j = 1 to j = NA: 

E(a) = irA 2 ; 
E(b) = rAl; 
E(c) = iAl; 
E(d) = A 0 (5) 

A2, AI, and A 0 denote sums of terms 
involving the tj's and are called the 
"composition parameters" for two "Yes" 
answers, one "Yes" answer, and no "Yes" 
answers respectively. In Panel B, denote 
these parameters using B2, BI, and B 0. 

Clearly, the expected cell frequencies 
of (5) satisfy measurement objectivity 
because the item parameter of the initial 
interview instrument, relative to the 
reinterview item parameter (assumed 
constant across panels), can be estimated 
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using E(c)/E(b) = i/r, which does not 
depend on the values of the tj's in the 
particular sample. In the Rasch approach, 
the invariance of t~e ratio E(c)/E(b) 
across diverse subpopulations becomes a 
key empirical question. 

Duncan (1984) shows that the 
composition parameters generally measure 
the effects of sample heterogeneity with 
respect to the latent trait. Consider the 
usual measure of association, the odds- 
ratio, applied to £he fourfold table in 
(5): [E(a)E(d) ]/ [E (b) E (c) ] = A2A0/AI 2. 
Given the Rasch parametrization, then, 
the odds-ratio is strictly a function of 
the composition parameters. If we set tj 
= t, a constant, for all j, then the 
odds-ratio equals unity (Eqs. (4)-(5)), 
implying that there exists no association 
between the interview and reinterview 
measurements. In the language of the 
Census approach, it follows that the 
reliability (response consistency) of 
measurement is no greater than expected 
from chance. Hence, while the Census 
approach interprets reliability (for 
binary data, the inverse of what is 
called "response variance") as a property 
of the measuring instrument, the Rasch 
approach interprets reliability as 
gauging heterogeneity of the population 
on the unobserved latent trait. 

When subjects are randomly assigned to 
panels, as in the intensive reinterview 
design, the distribution of the latent 
trait can be assumed to be the same, 
except for random error, in each of the 
experimental panels. Applied to (5), this 
implies that the composition parameters 
differ across panels only as a function 
of panel differences in the experimental 
item parameter. Hence, if panel item 
parameters are inferred to be equal, 
random assignment makes possible a test 
of the Rasch assumptions of logistic form 
and local independence (Section III). 

Rather than summing over the sample, 
as in (5), Cressie and Holland (1983) 
integrate the joint probabilities against 
the density of the latent trait in the 
population. Using this approach, they 
prove that the composition parameters are~ 
the moments of a positive random varia- 
ble. For each 2 x 2 table of Table i, 
Display i, this implies that the odds- 
ratio must be greater than or equal to 
unity. Note that these conditions are 
satisfied for the data of Table 2. 
Display 2. When more than two repeated 
measures or more than two response cate- 
gories are available, the moment inequa- 
lities imply "isotropy conditions" (Hout, 
et.al., 1986, following G.U. Yule) that 
must be satisfied for a unidimensional 
Rasch model to be tenable. 

Displays 2 and 3 of Table 1 show the 
Census and Rasch parametrizations, res- 
pectively, of expected cell frequencies, 
assuming multinomial sampling and the 
intensive reinterview design. The Census 
parametrization has one degree of freedom 

because random assignment to panels and 
the common reinterview procedure (i.e. 
the same reinterview procedure being used 
in each panel) imply that the reinterview 
marginal proportions R 1 and R 2 are 
constant across panels, except for random 
error. Note that the response bias is no__~t 
a parameter. Indeed, the NDR is not a 
sufficient statistic for any parameter of 
any elementary discrete sampling model, 
nor for complex sampling extensions of 
such basic models (e.g. Cox, 1970, Chap. 
2). The Rasch parametrization has zero 
degrees of freedom, but, significantly, 
the assumption of a common reinterview 
implies that r is constant across panels 
(hence, is not subscripted in Table i, 
Display 3). As shown in III, this makes 
it possible to estimate the panel item 
parameters i A and i B. 

III. EVALUATION OF WORK DISABILITY ITEMS 
Display 1 of Table 2 shows Panel A and 

Panel B question versions for measuring 
work limitation and work prevention from 
the 1976 NCT. Display 2 of Table 2 shows 
standard tables for two binary response 
variables, "limits or prevents work" and 
"prevents work", that were constructed 
using these data. General rules for par- 
titioning the likelihood-ratio chi-square 
statistic (Goodman, 1969) were applied to 
each of the panel comparisons of Table 2. 
For each binary variable, the chi-square 
for the total difference between Panels A 
and B (3 df) was decomposed into three 
independent chi-square components (i df 
each), using first the Census parametri- 
zation (Table i, Display 2) and then the 
Rasch parametrization (Table i, Display 
3): 
Total panel difference: Apply the usual 
chi-square test of row-column indepen- 
dence to the 2 x 4 table (3 df): 

T = laA b A c A dAl 
aB bB CB dB 

Census decomposition: Apply the usual 
chi-square test to each of three 2 x 2 
tables (i df each): 

CI= l aA+bA CA+d A 
aB+bB CB+dB I 

C2= l a A b A 3= I CA d A 
a B bBl C c B dBl 

C1 tests the equality of reinterview 
margins (which should not be rejected, 
given the design), C2 tests the equality 
of false negative rates, and C3 tests the 
equality of false positive rates. 

R asch decomposition: Apply the usual 
chi-square test to each of three 2 x 2 
tables (I degree of freedom each): 

RI= I bA c A bB CB I R2= [bA+CA aA+d A leA dA 
bB+CB aB+dBI R3= aB dB I 

R1 tests the equality of item parameters, 
R2 tests the equality of inconsistency 
ratios, and R3 tests the equality of the 
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distributions of consistently classified 
cases. Generally, the sum (R2 + R3) tests 
the hypothesis that the composition para- 
meters are invariant across panels. But, 
given random assignment to panels, if the 
first hypothesis, i A = iB, is not 
rejected, then the sum (R2 + R3) tests 
the Rasch assumptions• 

Display 1 of Table 3 shows the results 
of the alternative decompositions. With 
regard to "limits or prevents" neither 
approach can have a basis for preferring 
either panel since the chi-square for the 
total panel difference (3.0, 3 df) is not 
significant• Given the randomization and 
that R1 is not significant, the sum (R2 + 
R3) tests the Rasch assumptions (X 2 = 
i.i, 1 df) With regard to "prevents" 
the Census approach infers a panel 
difference in the false positive rate (C3 
= 7.1, 1 df), while the Rasch approach 
infers a panel difference in the item 
threshold (RI= 7.0, 1 df). 

Display 2 of Table 3 shows the para- 
meter estimates ~orresDo/idinq to the chi- 
square components of Display 1 and their 
standard errors assuming simple random 
sampling• Although the NDR is not a 
sufficient statistic, the Census approach 
still infers (e.g. using a two-sample 
t-test, with a pooled variance estimate 
computed from the standard errors) that 
the Panel A version of "prevents" is more 
biased than the Panel B version, since 
the NDR in Panel A (0.89) is further from 
zero than the NDR in Panel B (-0.24). The 
Rasch approach infers that the item 
threshold of Panel A (-0.6, on the log 
scale) is lower than the item threshold 
of Panel B (0.2, on the log scale). 

It is not surprising that the Census 
approach tends to find a significant 
difference in the NDR whenever the Rasch 
approach finds a significant difference 
in the item threshold, since the two 
measures are mathematically closely 
related (Table 3, Display 2, column 
headings) . The main difference is that, 
while the Census approach refers each NDR 
to a standard of zero bias, the Rasch 
approach compares the raw magnitudes of 
the item thresholds. Since, unlike the 
NDR, the item threshold is scale-free, 
setting r = 1 in in computing i A and i B 
(in each panel, given the common reinter- 
view) is justified in Table 3, Display 2. 

The differences between the Census and 
Rasch approaches may not be fully evident 
from the binary response case of Tables 
1-3. Unlike the Census model, the Rasch 
model can be readily extended to the 
evaluation of ordinal, nonnumeric data. 
Indeed, since it assumes that the trait 
varies continuously, the Rasch approach 
encourages collecting data on as many 
"degrees" or "levels" as are affordable. 
For example, we might hypothesize that 

I I  I I  t the categories "not limited", limited 
l l  l l  and prevented comprise what Masters and 

Wright (1984) call a "unidimensional 
rating scale model". However, Hour, 

et.al. (1986) argue that, when three or 
more ordered categories of response or 
more than two repeated measures are 
available, the existence of multiple 
dimensions of meaning of a question is 
a central issue. Given ordered polytomous 
responses, they show how it is sometimes 
possible, depending upon the magnitudes 
of population correlations among the 
dimensions, to empirically distinguish 
multidimensional from unidimensional 
Rasch models. For example, in measuring 
disability, two dimensions of meaning 
might be i) the medical degree of limita- 
tion and 2) the degree of sensitivity to 
the labels "limited" and "prevented". 

To make progress with Rasch, one also 
needs to investigate departures from 
measurement objectivity by testing the 
invariance of the ratio c/b across sub- 
classes of nonexperimental variables that 
are thought to be strongly related to the 
trait being measured or to the way a 
question is interpreted (Duncan, 1984), 
e.g. medical condition and type of work 
in evaluating work disability items. 
Potentially, one might be able to 
untangle the different ways that 
respondents interpret a question. 

IV. CONCLUSIONS 
i.) The Census and Rasch approaches 

differ in their assumptions about i) the 
relationship of the fixed response cate- 
gories of a survey item to the phenome- 
non being measured, ii) the type of res- 
ponse format to be analyzed, and iii) the 
class of probability distributions, 
continuous vs. discrete, that is appro- 
priate for modeling the data: The Census 
approach assumes that respondents have 
true states that correspond to the 
response categories of a question• This 
implies that no information is lost if 
each response category is analyzed sepa- 
rately by dichotomizing the data as in 
Section III. The net difference rate 
(NDR) seems appropriate for normally 
distributed data, but the NDR is not a 
sufficient statistic for discrete 
sampling models. The Rasch approach 
assumes that respondents have values on 
an underlying continuum called the latent 
trait and that a respondent's probability 
of a giving a particular answer to an 
item measuring the trait is determined, 
via the logistic function, by that 
respondent's trait value. The assumptions 
of logistic form and local independence 
follow from the prescription of measure- 
ment objectivity and lead to reinterpre- 
tations of two conventional census evalu- 
ation concepts, response bias (reinter- 
Dreted as a difference in item thres- 
holds) and response consistency (reinter- 
preted as depending upon the heterogene- 
ity of the population being measured as 
well as upon the particular measuring 
instrument). The Rasch approach favors 
analyzing the original response format of 
a question (preferably, more than two 
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ordered responses and/or more than two 
repeated measures) rather than any 
collapsed version of the data. The Rasch 
approach always estimates parameters of 
elementary discrete sampling models. 

2.) The Rasch model is more readily 
tested than the Census model. Applied to 
contingency table data, the Rasch assump- 
tions imply i) a specific loglinear model 
called quasi-symmetry (Bishop, Fienberg, 
and Holland, 1975, Chap. 8), ii) moment 
inequalities called "isotropy conditions" 
(Cressie and Holland, 1983; Hout, Duncan, 
and Sobel, 1986), and iii) invariance of 
item parameters across subclasses of non- 
experimental control variables (Duncan, 
1984). In the two evaluations of this 
paper, each restricted to two measures of 
a binary response variable, quasi- 
symmetry has zero degrees of freedom 
(hence cannot be tested), the isotropy 
conditions are satisfied, and tests of 
invariance of meaning across 
subclasses are not applied. As shown in 
III, random assignment to panels provides 
an additional means of testing the Rasch 
assumptions in the case that panel item 
parameters are inferred to be equal. The 
Census assumption of an unbiased reinter- 
view, on the other hand, cannot be tested 
unless one has available a third set of 
measurements for the same subjects that 
can be assumed to be still more accurate. 

3.) In the Rasch approach, three 
criteria of good measurement supplant the 
Census criterion of unbiasedness: i) the 
degrees to which different question 
versions measure purely what they are 
intended to measure (unidimensionality), 
ii) the costs and benefits of different 
item thresholds for data uses and iii) 
the degrees of stability of the item 
parameters of different question versions 
(invariance of "meaning"). These criteria 
seem more complex to apply than the 
Census criterion of unbiasedness. 
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Table i, Display i: General symbols for cross-classifications of initial 
interview and reinterview binary responses. Display 2: Census parametriza- 
tion (i df). Display 3: Rasch parametrization. Define N A = aA+bA+CA+dA = 
sample size of Panel A and N B = aB+bB+CB+d B = sample size of Panel B. 

DISPLAY A Initial Interview 
Panel A Panel B 

Yes No Yes No 
Reinterview 

Yes a A b A a B b B 

No c A d A c B d B 

D~SpLAY 2 Initial Interview 
Panel A Panel B 

Yes No Yes No 
Reinterview 

Yes NARI(I-nA) NARInA NBRI(I-nB) NBRIn B 

No NAR2P A NAR 2 ( l-PA ) NBR2P B NBR 2 ( l-PB ) 

DISPLAY 3 Initial Interview 
Panel A Panel BNo 

Yes No Yes 
Reinterview 

Yes iArA 2 rA 1 iBrB 2 rB 1 

No iAA 1 A 0 iBB 1 B 0 
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Table 2. Data on Work Limitation and Prevention, 1976 National Content 
Test. Display i: Experimental Question Versions, Panel A and Panel B. 
Display 2: Cross-Classifications of Initial Interview and Reinterview 
Responses (Respondents Aged 18-64). 

DISPLAY 1 
Panel A: Does this person now have a physical, mental or other health 

condition or handicap which has lasted for 6 months or more and which... 
YES NO 

e. Limits the kind or amount of work this person can 
do.............................................. 

f. Prevents this person from working at any job or 
business ........................................ 

Panel B: Does this person now have a physical, mental or other health 
condition which has lasted for six months or more and which limits or 
prevents the following: 

e. Working at any job or business ....... 

DISPLAY 2 

Reinterview 

Prevents 

Limits but 
does not No 
prevent limitation 

LIMITS OR PREVENTS WORK 
Initial interview 

Panel A Panel B 
Yes No Total Yes No Total 

Yes 140 84 224 Yes 158 94 252 
No 86 3047 3133 No 71 3051 3122 

Total 226 3131 3357 Total 229 3145 3374 

PREVENTS WORK 
Initial interview 

Panel A Panel B 
Reinterview Yes No Total Yes No Total 

Yes 84 37 121 Yes 83 48 131 
No 67 3169 3236 No 40 3203 3243 

Total 151 3206 3357 Total 123 3251 3394 

Table 3. Display i: Census and Rasch Decompositions of the Likelihood-Ratio 
Chi-Square for the Total Panel Difference. Display 2: Census and Rasch 
Parameter Estimates. (In parentheses, standard errors assuming simple 
random sampling.) 

DISPLAY 1 
TOTAL CENSUS RASCH 

T C1 C2 C3 R1 R2 R3 (R2 + R3) 
(3 df) (i df) (i df) (i df) (i df) (I df) (I df) (2 df) 

3.0 1.6 0.0 1.4 1.9 0.i 1.0 I.I 

8.5 0.4 1.0 7.1 7.0 1.5 0.0 1.5 

DATA 

limits or 
prevents 

prevents 

DISPLAY 2 CENSUS PARAMETRIZATION 
percentage 

yes, 
reinterview 

=100x(a+b)/N 
Data Panel =I00xRI/(RI+R2) 

limits A 6.7 (0.4) 
or prevents B 7.5 (0.5) 

prevents A 3.6 ( 0.3 ) 
B 3.9 (0.3) 

Base N 
Data Panel (persons) 

limits A 3357 
or prevents B 3374 

prevents A 3357 
B 3374 

false false net 
negative positive difference 
rate (n) rate (p) rate 

=100xb/(a+b) =100xc/(c+d) =100x(c-b)/N 
=100x(R2P-Rln) 

37.5 (3.2) 2.7 (0.3) 0.06 (0.39) 
37.3 (3.0) 2.3 (0.3) -0.68 (0.38) 

30.6 (4.2) 2.1 (0.3) 0.89 (0.30) 
36.6 (4.2) 1.2 (0.2) -0.24 (0.28) 

RASCH PARAMETRIZATION 
item consistency distribution, 

threshold parameter consistent cases 
=in (b/c) 1 =in((a+d) / (b+c)) =in (d/a) 

0.0 (0.2) 2.9 (0.1) 3.1 (0 . I )  
0.3 (0.2) 3.0 ( 0 . i )  3.0 ( 0 . i )  

-0.6 (0.2) 3.4 (0.i) 3.6 (0.i) 
0.2 (0.2) 3.6 (0.I) 3.7 (0.I) 

i. Without loss of generality, we set r = 1 in computing the item 
thresholds. The item threshold is the natural logarithm of the reciprocal 
of the item parameter i in the Rasch parameterization of expected cell 
frequencies, Table i, Display 3. 
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