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I. INTRO~ION 
This paper discusses the use of stochastic 

regression coefficients (SRC) models for 
analyzing survey data. These models permit 
different regression coefficients in different 
small groups of the population, an important 
advantage when analyzing large heterogeneous 
populations. The model groups can often be 
expected to overlap with the design clusters 
which by their nature are homogeneous with 
respect to economic and socio-d~phic 
characteristics. The variation of the group 
regression coefficients can then be modelled as 
a function of known characteristics of the 
design groups. This has an important impact on 
the inference process and allows the problem of 
design selection bias to be dealt with more 
easily. The special features of the design 
require some alterations and modification to 
classical inference procedures but also offer 
some additional inference methods which employ 
the known selection probabilities. 

The analysis of survey data using SRC models 
is currently being investigated at the Research 
Triangle Institute (RTI) under an ongoing 
research project with the National Institute of 
Child Health and Human Development (NICHD). The 
data base used for the analysis consists of data 
from the National Health and Nutrition 
Examination Survey II (NHANES II), conducted 
between 1976-1980, complemented with 1980 U.S. 
Census data. 

The sampling design used for the NHANES II is 
discussed in the next section. This design is 
typical of many other designs used in large 
scale surveys and motivates some of the analysis 
procedures discussed in subsequent sections. 
section 3 deals with the estimation of the 
regression coefficients and their expectations, 
and Section 4 deals with the estimation of the 
unknown variances. Empirical results of the 
NHANES analysis are presented in Section 5 to 
illustrate some of the procedures discussed in 
previous sections. 

2. THE NHANES DESIGN 
A detailed description of the NHANES is given 

in MzEDwell et al. (1981). The ~ S  consists 
of a stratified multistage probability cluster 
sample of households in the U.S. At the first 
stage, primary sampling units (PSUs) that 
coincide with counties or groups of contiguous 
counties and selected for the National Health 
Interview Survey were stratified into 64 
"superstrata" based on size, income and racial 
distribution. One PSU was selected from each 
stratum with probability proportional to size 
(PPS). In order to oversample persons with low 
incomes, Enumeration Districts (EDs) within the 
selected PSUs were sorted into poverty and non- 
poverty strata. EDs were then selected 
separately within each stratum with PPS. 
Households within EDs were clustered into 
segments of eight adjacent addresses, and a 
systematic sample of segments was selected 
across all the EDs with no more than one segment 
per ED. At the final stage, persons were 

selected one per household, roughly, with young 
and old age groups being oversampled. 

3. MODEL AND ESTIMATORS 
In what follows we refer to the population 

groups with different vectors of coefficients as 
EDs because these are the groups used in the 
eapirical study. Let Yii be the value of the 
dependent variable for uf~t j of ED i and xij 

the corresponding values of (k+l) independent 
variables so that xij I = I. The vector values 

of Y and the design matrix X observed for ED i 
will be denoted by Yi and X i. The orders of Yi 

and X i are (mi×l) and (mix(k+l) ). It is not 

assumed that m i > k+l and often m i = i. 

3.1 The Model 

~i = Ai ~ + ~i ; E ~i = O , E ~i ~i = A (3.2) 

[~0 2 ~ It is assumed where A = diag , 61, .... 

also that E[~ i ~] =O and that residuals 

pertaining to different EDs are independent. 
The matrix A i is of order [ (k+l) x (k+l) (p+l) ] 

and has the form A i = I ~ a i where ~ denotes the 

Kronecker product and a i represents the ED 

characteristics with ail - I. (In the NHANES 

example, typical ED characteristics are income 
and education levels, race composition, etc. 
See Section 5 for the exact definitions used in 
the analysis). 

The v e c t o r  : - ~0' ~1 " '"  ~ i s  of  o r d e r  

s o  t h a t     erent 
% J 

cients ~j are assumed for different components 

~ij of the vectors ~i" In a special case A i = I 

implying that the coefficients ~ij ' i=1'2'"" 

can be considered as random drawings from some 
contain distribution with mean 7j and variance 

3 
Inserting (3.2) into (3. i) yields the 

following model for the sample observations: 

Y~i = xi a i  ~ + x i  !li + ~ i  = x i  ~ + / J i  
(3.3) 

T. [Bi ~=0i, 

Notice that the l-th row of the matrix 

[: xi l  = ~i '  x i n  ~ai' " ' "  Xilk ~ai (3.4) 
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Thus, the model defined by (3.3) can be 
considered as an extension of the model defined 
by (3. i) obtained by adding the regressors 
included in A and the first-order 
(multiplicative) interactions between the 
regressors in X i and A. Furthermore, in many 
applications the regressors in A are of similar 
nature to those in X i so that to same extent 
(3.3) represents a polynomial regression 
equation. The model for a sample of n EDs can 
be written compactly as 

* [I Y = X ~+~ ; E B =O , E ~ =V (3.5) 

where yT = [YI "'" Y~' x*T = [XlT "'" XnT] ' 

= ~i "'" ~ and V is block diagonal with 

3.2 Estimation of 

The matrix X would usually be of full rank 
. 

P = (P+l)(k+l). For known variances ~ and , 

the best linear unbiased (BLUE) generalized 
least squares (GLS) estimator of ~ under the 
model is 

[x.Tv I x.l i x .Tv I (3.6) 

In practical applications the variances are 
unknown and have to be estimated from the 
sample. Inserting these sample estimators into 

(3.6) yields the empirical estimators ~E" 

Assuming that the variance estimators are ^ 
consistent, the asymptotic distribution of ~E is 

under general conditions the same as that of 
A 

, Anderson (1973). 

The OLS estimator of ~ is 

[x* x*l (3.7) 
A 

Under the model ~LS is unbiased and under mild 

conditions it is consistent. 

The performance of ~BLU and ~LS depends on 

the noninformativeness of the design. A design 
is noninformative if the selection of the sample 
is independent of the model regression 
residuals. Under an informative design, the 
model holding for the sample data is different 
from the model holding in the population, and in 

A 

such cases estimators like ~ and ~LS can be 

severely biased. This may happen in the NHANES 
case, for example, if not all of the design 
characteristics determining the selection of EDs 
are included in the vectors ai, so that 

f[~i.ai, i~SEI # f[~ilail where S E denotes the 

sample of EDs. See e.g., Holt Smith and Winter 
(1980) for discussion and references on the 
notion of informative designs. 

A simple way to deal with the informativeness 
of the design is to weight every observation 

vector _ _[Yij'xijl by the inverse of its selection 

probability. The weighted least squares (WLS) 
estimator can be written as 

~WLS ^ = [ x*T W X*I -I x*Twy (3.8) 

where W is a diagonal matrix with the sampling 
weights on the main diagonal. The estimator 

~LS is again unbiased and consistent under the 

model. However, its main property is that it is 
approximately design ("P°') unbiased and 
consistent for the Census vector ~CEN which in 

turn is model (" ~") unbiased and consistent for 
~. The census vector is the estimator that 

would have been obtained in case of a census. 
For a definition of consistency in finite 
population sampling, see e.g., Isaki and Fuller 
(1982). 

It follows from the discussion above that ~WLS 

is approximately unbiased and consistent for 

with respect to the P~ distribution. The 

variance of ~LS can be decomposed as 

{ (3.9) 

where M denotes the population size. Eq. (3.9) 
implies that in practical situations where the 
sampling fractions m/M are very small, estima- 

tons of Varp~[~WLSl can be obtained by estimat- 

Var [~wx.~ ] . Such estimators are calculated ing 

for general multistage probability sampling 
designs by the ccmlronly used software packages 
for regression analysis of survey data such as 
SURREGR (Holt 1977), OSIRIS (1979) and SUPERCARP 
(Hidiroglou et. al, 1980). 

3.3 Prediction of ~iWhen Variances are Known 

The use of SRC models requires the specifica- 
tion of the target vectors of coefficients. In 
general, these will be of the form 

N N 

~c = F. Ci ~i with • C. = 1 where "N °' denotes 
i= 1 i= 1 l 

the number of population EDs. Simple examples 
are (i) C i = I/N (ii) C i = Mi/Mwhere M i is the 

1 
size of ED i and (iii) C i = ~ for i~UT, C i = 0 

otherwise, where U T is a subgroup (domain) of T 

EDs defined by the ED characteristics. For 

known variances a 2 and ~j, j=0...k, the BLUE 

predictor of ~ under the model is 
N A 

= F. C i ~i where for i~SE, 
i=l 

^ ^ T V?I - X i (3 I0) ~i = Ai ~ + A X i ii i 
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A 

and ~i =Ai ~ otherwise (Pfeffexmann, 1984). 

properties of ~i are with The distributional 

respect to the joint {-distribution of the ~i's 

and the Yij's given the selected sample. 

Notice from (3. I0) that the optimal estimator of 
~i fDr i~s E is the same as the optimal estima- 

tor of its expectation. For the sampled EDs 
these estimators are corrected by taking into 
account the deviations of the observations ~i 

for their expected means. In cases where the 
target vector ~ is a population average, these 

correction factors would usually have a minor 
effect on the estimator. Thus, an alternative 
predictor of ~ in such situations is 

N ^ ^ 
Pc = F. C i A i ~ where ~ can be any one of the 

i=l 
estimators discussed in the previous section. 

The estimators considered so far assume that 
N 

the weighted averages C A = E C i A i are known. 
i=l 

When this is not the case, they can be estimated 
using the sampling weights, i.e., 
^ 

% -  r %A iw i / . r  5" (3.~) 
itS E x~S E 

^ 

The estimator C A is an example of the use of the 

design in an essentially model based analysis. 

4. ESTIMATION OF THE UNKNOWN VARIANCES 

4.1 Maximum Likelihood Estimators 

Estimation of the unknown variances e2and ~, 

j=0,...,k is needed for three main reasons: (i) 
^ 

for calculating the empirical estimator ~E and 

the correction factors defined by equation 
(3. i0), (ii) for testing hypotheses regarding 
the variation of the vectors of coefficients, 
and (iii) for constructing confidence intervals 
for the unknown coefficients. Variance 
estimation in SRC models, or more generally, in 
variance component models has been a major area 
of research in recent years. Methods with known 
properties and feasible computational algorithms 
have been developed and they are widely 
discussed in the literature (see e.g., Searle, 
1971, Harville, 1977, and the more recent 
article by Henderson, 1984). 

In this section we discuss possible ways of 
deriving nkxximam likelihood estimators (m.l.e.) 
for the unknown variances. In particular we 
emphasize that m.l.e, can be obtained by 
repeated use of regression software routines 
without the need for further software 
development. This has some additional 
advantages which are outlined following the 
description of the computations. 

The results presented below are borrowed from 
results on variance estimation in the 
'classical' variance components model for which 
the V-C matrix of the residuals is linear in the 
unknown parameters. The general model defined 

by (3. I) and (3.2) falls under that category as 
can be seen by rewriting equations (3.3) in the 
form 

Y = x :I + Uo,{ o + Ul,{ 1 + . . .  + Uk~ k + £ ( 4 . 1 )  

where U j is a block diagonal matrix of order 

(m×n) with the i-th block being the j-th column 
X i (j) of the design matrix X i, and 

~j = [719, 729 ... 7nj~. The vector ~j consists 

of the deviations [~lj-aT ~j] of the 

regression coefficients in the various groups so 

that Var[~j] = ~jI n and E[~i~3] = 0 for i#j. It 

follows that 
k 

Var[Yl = Ej=0 ~J UjU3+ e2 I m = v (4.2) 

The model defined by (4. I) and (4.2) is the 
classical mixed model of variance components. 
Assuming that the error terms ~j and g have a 

normal distribution, the likelihood equations 
are (Anderson, 1973), 

B ~  = c 

where 

(4.3) 

(4.4) 

= trace [v-l [%Up] V -I [UqUq]] 

T 2 

The conmon statistical software packages such as 
SAS and BMDP do not include procedures for 
solving the likelihood equations (4.4) for the 
general case where the elements of the matrices 
X* and Uj are different from zeroes and ones. A I 
SAS procedure which puts out a SAS data set 
containing the coefficients for the system (4.4) 
for given (prior) values of the elements of V 
has been written at North Carolina State 
University (Giesbrecht, 1985). Iterating on 
this system of equations with newly obtained 

estimators for ~ used as prior values for 

defining V in the next iteration yields m.l.e. 
of the unknown variances provided the system 
converges and no negative values are 
encountered. 
An alternative procedure to obtain m.l.e, is 

to transfer the problem into a problem of 
generalized regression analysis. This is done 
by fitting a linear model to the squares and 
cross products of the residuals 

#ij = j - xij ~ ,i.e., 
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2 : ÷ ÷...+ ÷ 

: ~ij ,I g 

E[~ij ~i*j*] : 0 for i#i* 

(4.5) 

T T 6x 

+ (4.6) 

Cov[#ij#il ,#i.j .#i.1. ] =0 for i#i* 

Equations (4.5) follow directly from (3.3). 
Equations (4.6) translate equations (19) of 

N 

Anderson (1973) to the present model. Let ~i 

be the vector of squares and cross products of 
the residuals ~ij corresponding to ED i and 

arranged in sore convenient order, and define 

~= [~I...~. Let Z i be the matrix consisting 

of the rows [zlj,l I and [zTjl,01 arranged in 

the same order as the elements of ~i and define 

(4.6) 

* [] [ that ~i = Zi~ + ~i' E r i = 0, E rir i = A i 

where A i is defined by (4.6). The linear model 

holding for ~ is 

* [ ] t! = 7,g + r ;  ~. =o,9 . ,  ~. = A ~ i a g / t l . . . / t  n ( 4 . 7 )  

It follows from (4.7) that for a given, 'known' 
V-C matrix A, the BLUE estimators of the unknown 
variances are obtained as 

"* [ 1 
6 = z TA -I z-1 z TA-I ~ (4.8) 

Notice from (4.5) that as long as some of the 

ED' s contain more than one observation, ~0 and 

62 can be estimated separately. 

Anderson (1973) has shown that m.l.e, of 

can be obtained by iterating between (4.3) and 

(4.8) with ~ replaced by --[Y - X*~J.^" (See also 

Brown and Burgess, 1984 for further discussion 
and examples. ) Thus, an alternative to solving 
the system of equations in (4.4) is to solve 

equation (4.8) with B = (Y - X ~). 

It is important to emphasize that the cross- 
products of residuals ~ij and ~i'5" pertaining 
to different ED's i and l* are no£ considered in 
the model (4.7). This is so because for i#i* 

E(~ij~i,j,) = Cov(~ij~i,j,,~pq,) = 0 (4.9) 

Thus, the set of cross-products {@i5fli,5,,i~i*} 

have zero expectations and they are uncorrelated 
with the squares and cross-products of residuals 

N 

included in the vector ~. Their inclusion in 

the model (4.7) has therefore no impact on the 

estimation of ~ . 

The inmadiate implication of (4.9) is that for 
situations in which there are many ED's with 
only a few observations in each, employing the 
model (4.7) and iterating between (4.3) and 
(4.8) is a s~ple operation. Notice in this 
respect that 

v-1 = diag[Vll...Vnl] , V?II= [a2Imi + XiAxT]-I 

[i x ix x i 62 i+~2A-i -I 

^ ^. 

so that the computation of ~ and ~ involves 

only the inversion of matrices of orders (k+l), 
(k+2) and (k+l) (p+l). 
4.2 Estimation of Variances of Variance 

Estimators Under Informative a~d 
Noninformative Desions 

Estimators for the model based variances of 
the variance estimators are readily obtained 
from (4.8) and are given by 

- 
^ 

where A denotes the estimator of A obtained in 
the last iteration of the procedure described 
above. 

Design based estimators of the vatiances and 
^. 

covariances of ~ can be obtained using a survey 

regression software package such as SURREGR 
(Holt, 1977). The use of such estimators 
becomes essential when the design is 

^. 

informative, in which case ~ has to be replaced 

by the probability weighted estimator in each 
stage of the analysis. 
Another important advantage of the regression 

method for deriving m.l.e, is that it permits a 
simple way of constraining the estimates to 
nonnegative values. An unconstrained solution 
of the likelihood equations can yield negative 
variance estimators. Instead of solving (4.8), 
one can solve the minimization problem 

~n [[~- Z6*]T A -I [~ - Z~*]] (4.12) 
>_0 

By iterating between (4.3) and (4.12) with the 

most recently obtained estimators of ~ inserted 
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in V and A to obtain new estimators, the 
solution of (4.12) reduces to a problem of 
minimizing a quadratic function subject to 
linear inequality constraints for which there 
are computer programs available. Brown and 
Burgess (1984) discuss the use of constrained 
variance estimators and give empirical results 
which illustrate important features of the 
approach. 

5. EMPIRICAL STUDY 
5.1 Statement of Problem 
The method of fitting stochastic regression 

coefficients models was applied to NHANES II 
data to assess the relationship between blood 
lead and blood pressure. Several articles 
appearing recently in the literature have dealt 
with this problem using data from both the 
NHANES I and NHANES I I surveys. Pirkle, et al. 
(1985) found a significant relationship between 
blood lead and both systolic and diastolic blood 
pressure in white males aged 40-59 years while 
controlling for other dietary and anthroporetic 
blood pressure correlates. Harlan, et al. 
(1985) also found blood lead to be a significant 
predictor of both systolic and diastolic blood 
pressure in men aged 12 to 74 years, but not in 
women. Shaper and Pocock (1985) used data from 
the British Regional Heart Study and in contrast 
to the other studies found no significant 
relationship between these two variables in 
middle-aged men. 

Because the main goal of the empirical study 
was to investigate methodological issues as 
opposed to deriving the "best" explanatory 
model, it was decided to begin with previously 
published model equations, thereby taking 
advantage of the extensive variable selection 
procedures used to derive these models. 
Analysis was thus carried out on the subgroup 
consisting of all males aged 12-74 years using 
Harlan's model as a basis. 

5.2 Model Definitions and Results 
In order to fit SRC models to NHANES data, it 

was decided to define population subgroups 
according to EDs, (the design clusters selected 
at the second stage of the NHANES sample) for 
two reasons: (i) EDs are generally thought to 
be homogeneous clusters of households, and (ii) 
design information and selection probabilities, 
were available for each ED. This information 
had been merged from the 1970 U.S. Census tapes 
onto the NHANES II sample of household segments. 

As explained above, the model for diastolic 
blood pressure derived by Harlan, et al. (1985) 
for males aged 12-74 years was used as a basis 
for fitting stochastic regression coefficients 
models to the NHANES data. This model was refit 
to the sample after deleting observations for 
which the ED affiliation was missing (n = 2676 
versus n = 2818 in Harlan' s analysis). The 
model results are presented in column 5 of Table 
i. The coefficients were estimated by 
probability weighted least squares using RTI's 
survey regression software package SURREGR 
(Holt, 1977). 
SRC models as defined by equations (3. I) and 

(3.2) were fit to the data. The vectors of ED 
specific regression coefficients were modelled 
as functions of the following ED 
characteristics: medium family income, 

proportion of non-whites, proportion of persons 
aged 25+ with less than 9 years of education, 
urban/rural living areas, and a poverty stratum 
indicator. The domain of analysis consisted of 
I, 892 EDs. 

The significant 7 coefficients of the models 
identified for the regression coefficients 
(equation 3.2) are presented in columns 2-4 of 
Table i. As can be seen, a significant portion 
of the variation among the ED specific 
regression coefficients for age, age , race and 
particularly blood lead is explained by two ED 
characteristics; the proportion of non-whites 
and the proportion of persons with education of 
less than 9 years of school. 

The last column of the table was calculated as 

and ~ni~ are the ED sizes and selection prob- 

abilities respectively. The entries of this 
column estimate the average regression 
relationship in the finite population and are 
found to be very similar to the coefficients 
obtained by Harlan's model presented in Table i. 

~mma~ 
The results obtained at this stage suggest 

that whereas a unique regression equation can be 
assumed to assess the average effect of the 
regressors included in the original model, such 
a model may be inappropriate for studying the 
relationships in subdoma~s of the population. 
Obviously, a more extensive analysis is needed 
to support these early suggestions. We have 
started prograTming the estimation of the 
unknown variances using the procedures described 
in Section 4. At the same time, we are trying 
to locate some additional variables to be 
incorporated in the regression equation 
explaining the variation of the regression 
coefficients among the population EDs. 
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TABLE i. MODELS IDENTIFIED FOR DISTINCT COEFFICIENTS, ESTIMATES OF REGRESS ODEP~ICIENTS 

Models Identified I 

ED Characteristics 

Est. of Coefficients 

Unique_ Weighted Avg& 
j Coeff. Constant Prop. Non. W Prop. Edu. < 9 Reg Line 2 of ED Coeff. ~ 

Coefficients 

Intercept 43.486 -17.871 37.407 38.492 

Age 

Body mass 

Race 

Ra~x~ 

0.449 0.987 0.524 0.539 

- O. 004 -0.010 - O. 005 - 0.005 

Lead (in) 

Hemoglobin 

Serum zinc (in) 

0.960 0.949 0.960 

8.332 - 0.812 2.328 

0.091 

-7.241 6.298 1.378 1.095 

1.207 1.258 1.207 

- 3.223 - 3.263 - 3.263 

iTable shows significant coefficients at the 0.07 level in the equaion 

E(Bik) = 70k + ail 71k + "." + aip Vpk 

2Model published by Harlan et al. (1985). 

3Coefficients estimated as 
A n A n 
~i = (Z M i A i ~WLS/Hi) /Z 

1 1 
Milni 
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