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ABSTRACT 

A class of generalized score tests for the 
analysis of multidimensional contingency tables 
from complex survey data is presented. The tests 
are asymptotically optimal and robust. Further- 
more, these tests do not have the problems of in- 
stability that are sometimes encountered by the 
use of Wald type statistics in analysing these 
data. These problems are eliminated by working 
with the principal components of the observed 
count vector. The theory is used to analyze data 
from the October 1980 Canadian Labour Force 
Survey. 

1 . INTRODUCTION 

It is well known that the standard X 2 methods 
for the analysis of categorical data arising from 
complex surveys could give seriously misleading 
conclusions. This is so because the type I error 
rate might be greatly inflated. We consider 
mainly three methods proposed in the literature 
for analysing survey data, namely, (i) the 
Weighted Least Squares (WLS), (ii) the Adjusted 

X 2 , and (iii) the Jackknifed X 2 . The WLS 
method discribed in Grizzle, Starmer, and Koch 
(1969) for simple random samples, was extended by 
Koch, Freeman, and Freeman (1975) to the case of 
complex samples. Fellegi (1978, 1980), Rao and 
Scott (1979, 1981, 1984), Holt, Scott, and Ewings 
(1980) and others have considered adjusting the 

standard X 2 by a scale factor in order to take 
account of the impact of the survey design. The 
third method due to Fay (1979, 1985) also adjusts 

the standard X 2 but by means of jackknifing the 

X 2 statistic. 

The two methods, namely, the Adjusted X 2 and 

Jackknifed X 2 were developed with the objective 
of controlling Type I error. By contrast the WLS 
method provides an asymptotically optimal method 
based on Wald type statistics. However, as noted 
by Fay (1979, 1985) and others, the finite sample 
behaviour of WLS test statistic would generally 
be unstable with regard to the true asymptotic 
2 

× distribution. This is due to inefficient es- 
timation of covariance matrix of sample estimates 
for various cross-classifications (or domains) 
under complex designs such as multistage strati- 
fied cluster sampling. As a result the estimated 
covariance matrix is often nearly singular with 
the consequence of a serious effect in its inver- 
sion required in the computation of WLS statistic. 
This in turn would greatly inflate Type I error 
rate giving rise to misleading conclusions. 

Recent results of Thomas and Rao (1984, 1985) 
indicate that within the scope of their simulation 
study for testing goodness-of-fit under cluster 

sampling, the two tests namely Jackknifed X 2 and 

Rao-Scott second order corrected X 2 perform better 
than WLS Wald type test despite its optimality. 
Thus the problem of instability mentioned above 

seems to overshadow the optimality of the Wald 
type statistic. It may be noted that for simple 
random samples~ the instability problem under WLS 
approach does not usually arise because of the 
availability of exact formulas for the covariance 
matrix under consideration. The details for the 
case of simple random samples are given in Singh 
( 1 9 8 6 ) .  

In  t h i s  p a p e r  an a l t e r n a t i v e  method p r o p o s e d  
e a r l i e r  i n  a t e c h n i c a l  r e p o r t  ( S i n g h ,  1985) i s  
d e s c r i b e d  which  p r o v i d e s  an a s y m p t o t i c a l l y  o p t i m a l  

test statistic (to be denoted by Q(T))" with true 
2 

X limiting distribution. The test Q(T) requires 
a consistent estimate of the covariance matrix but 
is not susceptible to the problem caused by its 
near singularity. In section 2, we state the 
problem with some preliminary considerations. In 

section 3, the test Q~T)" is described and its 
asymptotic behaviour is given in section 4. An 

application of Q(T) to a logistic regression 
analysis of the October 1980 Canadian Labour Force 
Survey (LFS) data is given in section 5. Finally, 
some discussion and remarks are presented in 
section 6. 

2. THE PROBLEM AND PRELIMINARIES 

Suppose that the population of interest is com- 
posed of I disjoint domains (subpopulations or 
cells), and ~i denotes the parameter of interest 

pertaining to the ith domain, i = I, 2 ..... I. 
For example, the v.'s may be populationpropor- i 
tions (or counts). The theory presented is also 
applicable to the more general case of domain 
means (or totals). Consider a model for v.'s as 

1 

H 0" v i = vi(O) where h(v i) = x~O, (2.1) 

for i = 1 ..... I. In (2.1), x's are known forming 
an I x r matrix of full rank r , 0 is a r-vector 
of unknown paramters, h is a continuously differ- 

-i 
entiable one-to-one function so that h exists. 
The function h includes, among others, the 
commonly used functions such as log and logit. 

^ 
We will use v.'s, the survey estimates of v.'s 

1 1 

to make inference about H 0 . The reason for 
^ 

using v. 's is not due to sufficiency arguments be- 
i 

cause likelihood function is difficult to obtain 
for a general sample design. We choose to use 
^ 
v.'s because they are generally available for large 
s~ale surveys conducted by various organizations. 
We shall assume that under an appropriate central 
Iimit theorem 

A 
-MVN (v ,  r / n )  (2.2) 

^ 
where  v i s  t h e  I - v e c t o r  o f  v A. ' s  and t h e  symbol  
"'~" s t a n d s  f o r  " a s y m p t o t i c a l l ~  d i s t r i b u t e d  a s "  and 
n d e n o t e s  t h e  t o t a I  s amp le  s i z e .  

I t  i s  known t h a t  t h e  p r o b l e m  o f  t e s t i n g  f i t  o f  
t he  model H 0 can  be r e d u c e d  a s y m p t o t i c a l l y  f o r  

local alternatives to that of testing a linear 
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hypothesis for Gaussian case with an appropriate 
covariance matrix. Let C(~) denote the class of 
tests for Hn based on statistics ~. Then it can 
be shown foYlowing Lehmann (1959, pp. 304-313) 
that for nonsingular F, an asymptotically optimal 
(uniformly most powerful invariant) test in the 

class C(O) has the rejection region 

Q(e °) _> c . (2.3) 

The test statistic Q(e °) is given by 

Q(e °) = Y(e°) , A Y(0 °) - Z(e°) ' A Z(0°), (2.4) 

where y(@O) = (A _ ~(O0)) ,  B = ( ~ / ~ 0 ) ,  

A = nF -I Z(@ °) : B' A Y(O °) A = (B' A B) -I 

O . 
and O Is some fixed point in the r-dimensional 
parameter space specified by H 0 . Note that B 

is I x r matrix. The asymptotic null distribu- 
2 

• For tion of the test statistic (2 4) is Xi_r. 

computing Q(eo), eO can be replaced by any root 
^ 

n-consistent estimator @ of @ under H 0 , and r 
A 

by a consistent estimator T. Some remarks about 

the possible choices of ~ will be made later in 
this section. 

If r is singular with rank s(<I), then an 
A 

asumptotically optimal test based on n can be 
obtained by using a g-inverse of r. This con- 

sideration is useful for motivating the test Q(T) 
described in the next section. Consider the g- 
inverse of F obtained from its spectral decom- 
position In other words, let P. be the nor- 

" i 

mailized eigen vector corresponding to the ith 
largest positive eigen value Xi' i = i, 2, ..., s. 

Let A denote a g-inverse of F/n, defined by 
S 

S 

&s : n iZ__l (PiP~/~i) . (2.5) 

Now the test statistic Q for the case of singular 
T can be obtained from (2.4) by using A s instead 

-i 
of nT throughout the expression and the asymp- 

2 
totic null distribution of Q would then be Xs_r. 

It is instructive to note that Q(@O) can also 
be obained as a score statistic (see Cox and 
Hinkley, pp. 321-324) by employing the approxi- 
mate likelihood of ~ obtained by (2.2). Q(o °) can 
be termed as a Generalized Score Statistic (GSS) 
as in Singh (1986). It follows from the above 

observation that in the family C(A), the test 

Q(@O) is also optimal in the sense of Wald (1943). 
Specifically, it is asymptotically admissible, 
most stringent and has best average power over 
certain surfaces, and unique up to asymptotic 
equivalence. ^ 

We make a few remarks about the choice of 0 . 
We can use role of O, say 0-, obtained from the 
likelihood function under the assumption that the 
data were generated by a simple random sampling 
plane Such estimators are commonly known as 
pseudo role and have been used quite often for 
complex designs (Imery, Koch and Stokes, 1982). 

Another useful choice of ~ is that of the mle 
corresponding to the likelihood of v obtained from 
the asymptotic distribution• We denote this 

estimator by @. This approach is equivalent to 

the minimum X2-type estimation• It also turns out 

that, for @o = ~, the test statistic Q(@O) 
simplifies because the second term in the expres- 
sion (2.4) becomes zero. Furthermore, if the 
model H 0 is found to be adequate, then an asympto- 

tically efficient estimator of ~ can be obtained 

by using @ in (2.1). Such an optimal property is 
not known for estimator of ~ based on @. For 
details see Kumar and Singh (1986). 

A 
Even if F were nonsingular, its estimate F 

may be nearly singular in the sense that some of 
its eigen values are near zero. Such cases are 

likely to arise when ~ is calculated for complex 
survey designs. In these cases the test statistic 
Q of (2.3), although asymptotically optimal, would 
be unstable with regard to the type I error rate. 
The situation is similar to that for WLS test 
mentioned in section I. To circumvent this in- 
stability problem with Q, it seems reasonable to 
modify Q by dropping a few components correspond- 
ing to small eigen values as described in the next 
section. Notice that the statistic Q(S) (for F 
singular case) can be viewed as a special case of 
modification when components of Q corresponding to 
zero eigen values are dropped. 

3. THE TEST Q(T) 

Let ~i >- ~2 > "'" >- XI be the eigen values of 

F as before. Some of the Xi's may be zero depen- 

ding on s (rank of F). In the following we assume 
that whenever F is unknown, it will be replaced by 
a consistent estimate. We prescribe a very small 
nonnegative number ¢ , e.g., .005 or .01 as work- 
ing values of ~. Now define 

• > ~} (3 i) T = max {t t > r and X[t]/X[I ]- , 

where r is the number of model parameters under 
and 

I 

X[t] = i~t Xi' t = 1 ..... I. (3.2) 

Note that T depends on ~ and is equal to its maxi- 
mum value s: when ~ = 0. Let 

A T = ni~ I= (P.P'/Xi i i ) ' (3.3) 

where P. is the eigen vector corresponding to X. . 
1 1 

The matrix A T may not be uniquely defined for cases 

where some of the X i's are equal. 

3.1. A TEST OF GOODNESS-OF-FIT 

We define the test statistic Q(T) for testing 
the goodness-of-fit of the model H 0 as follows" 

Q(T) (8o) = y(eO),bTY(eO ) _ ZT(@O) ,ATZT(@O) (3.4) 

where Z T and A T are defined as in (2.4) by re- 
O 

placing A by AT, and @ is a fixed point in the 

parameter space under H^ . We say that the model 
is inappropriate for thUe data when Q(T)(8o) is too 
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large. The asymptotic distribution of the test 
2 

statistic under H 0 is XT_r• It should be remarked 

that T, though random when ~ is empolyed, can be 
regarded as fixed for our asymptotics (see 
Proposition 4. i). 

As before, O 0 can be replaced by any root n- 
consistent estimate of O. For example, the pseudo 

mle O may be used• Another choice O can be ob- 
tained by minimizing the expression 

(A _ ~(e)), AT (A - ~(o)) (3.s) 

It may be noted that" (i) O depends on A T , i.e•, 

different values of T will give different ~. and 
(ii) the minimum value of (3.5) is indeed Q(T) (~) 
because the second term on the right side in (3,4) 
becomes zero. 

3.2 NESTED MODELS 

Let X = (x I , x 2 ..... , xi)' be partitioned as 

(XI, X 2) where X 1 is I x p and X 2 is I x q 

(p + q = r). Then the model (2.1) may be written 
as 

h ( v )  = X0 = XI@ 1 + X202 , ( 3 . 6 )  

where h(~) = (h(~l), h(~2) ...... h(~l))" @l is 

a p-vector and @2 is a q-vector. We are inter- 

ested in testing the hypothesis H I • 02 = 0 given 

the model H 0 is accepted. Let 8" (~I' 0), where 

~i is a ~n-consistent estimate of 81 under H I and 

0 is a q-vector of zeros. Then the test statistic 
for the nested model HI. 0 (H I given H0) is given 
by 

Q(T)(~I) _(T) A _(T)(8*), (3 7) 
1 • 0  = q l  ( 8 1 )  - qO 

_ (T) A 
where ql (81) is the goodness-of-fit test 

statistic for H 1 (non-nested) with p parameters. 

is simply the computed value of the expression 
0 * 

(3.4) when 8 = 8 . It is not a goodness-of-fit 

statistic for H 0 because O* is not a consistent 

estimator of @ under H 0. The statistic (3.7) is 
2 

distributed as Xq under Hl(g~ven H 0 and we reject 

HI. 0 for large values of q{ ~T 

An alternate asymptotically equivalent test for 
the nested problem can be based on the difference 
between goodness-of-fit test statistics for H I and 

H respectively, i e Q~T)(~I) _ Q~T)(~) where 
A 0 " • , 
O denotes a root n-consistent estimate of O under 
H 0. Here two sets of estimates of @ will be re- 

quired and sometimes, the difference may turn out 
to be negative for finite samples. The situation 
is analogous to that encountered with Pearson- 

2 for simple random samples Fisher's XpF 

3.3 AN INTERPRETATION OF Q(T) 
A practical interpretation of Q(T) statistic 

can be given as follows. First define 

MT- (PI' . . . .  %) '  " " ~ '  C : .~B 
(3.8) 

~(0) = M~v(0), and D T = d i a g  (X 1 . . . . .  XT) 

I t  i s  i n t e r e s t i n g  to  no t e  t h a t  Q(T)- o f  (5 .4)  can 
be e x p r e s s e d  as 

nU(O o ) ,  DTIU (0 o) 0 o 1C)-1 o) -n(V( ) ' ( C ' D  T V(O (3 .9)  

U(@ °) = W - ~,(0°),  V(0 °) = C'DT1U(@ ° ) -  . where 

It is seen from the above representation that 

Q(T) is a generalized score statistic (GSS). It 
is based on the first T principal components W (of 

A) whose approximate likelihood is given by 

W "~ MVN (V, DT/n),  (5 .10)  

In the  c l a s s  C(W) of  t e s t s  based  on W, Q(T) i s  
a s y m p t o t i c a l l y  op t ima l  f o r  our  problem.  I t  i s  due 
to  t h e  f a c t  t h a t  the  o r i g i n a l  problem about  I -  
dimensional v is reduced to testing a hypothesis 
concerning T-dimensional parameter ~ specified by 

-i 
H~ • lJ = M~ h (X@) ( 3 . 1 1 )  

where X = (Xl, x 2 .... , xi)'. 

The test Q(T) - is expected to control the in- 
flation in type I error rate for finite samples 
when Q (based on F- without any modification) may 

be unstable. In fact Q(T) " is a conservative test 
for H 0 because H 0 is a subset of H~. This pro- 

vides additional insurance for controlling type I 
error rate. In addition to the above property, 

the test Q(T) for small e will be nearly optimal 

for H 0 in the class C(v A) when compared to the test 
A 

Q. This is so because v and W will be close in 
the sense that principal components provide the 
best way for dimensionality reduction with minimum 
loss of information (see Rao 1973, po 592). Thus 
in the absence of instability in Q, the test Q(T) 
will be robust for fairly small e. A test for 
checking instability is given in the next sub- 
section. 

(T) 
3.4 WHEN TO USE Q 

The test Q IT)" is based on the premise that we 
are willing to sacrifice some information in the 
data whose contribution to Q is believed to be 
unstable. Naturally it leads to the following 
question. How to perform an instability check for 
Q for a given data? The following test can be 
used for the above problem. 

For a given e > 0, level ~, if 
2 

Q(S) _ Q(T) > x~, s-T , (3.12) 

then we say that there is an evidence of insta- 

bility in Q and Q(T) should be used. 
(Z) 

4. ASYMPTOTIC DISTRIBUTION OF Q 

First we show that the random variable T de- 
fined by (3.1) for a slightly modified e con- 
verges in probability to T O where T O is T 

corresponding to the true F. This implies that T 
can be regarded as fixed for our asymptotics. 
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Prgpositipn_4,_!. Assume that 

I l l  - r l l  = O p e l )  , ( 4 . 1 )  

where II " II is the Euclidean norm for a matrix 
and n is the total sample size. Also let e be 

g* modified to defined by 

e = e - 8 n, 0 < B n < e, 8 n + 0but ~n8 n ÷ ~ (4.2) 

* 
Then, T(e ) + T0(c ) (in prob) as n ÷ ~ . (4.3) 

We shall outline the proof. It follows from 

• I) - X ° the condition (4 that /n (~i i) , i = 1 ,S, 

are bounded in probability where ~? is the ith i 

largest eigen value of the true F. This implies 
that for u = I, 2, .... s. 

~n [ Gn(U) - G(u) I = 0p(1) (4.4) 

where G (u) = }, /), 
n [s-u+1] [I] 

and G(u) is the corresponding function for F. 
Clearly both G and G are increasing with values 

n 
between 0 and I. Now, for a given e > 0, let us 
define a random variable. 

= G -I (~* * Un n ) = inf{u: Gn(U) >-~ } (4.5) 

By analogy with empirical distribution functions 
for discrete distributions, it follows from 
Kulperger and Singh (1982) that 

U G -I (e* -I = ) ÷ U = G (a) in probability (4.6) 
n n o 

which implies that 

+ 1 ÷ T (~) = s - U + 1 in prob T(e ) = s - U n o o " 

A possible choice of Bn is (log n/n) ½ c as sug- 

guested in Kulperger and Singh (1982). The mod- 
ification term Bn will be almost zero for very 

large n. It may also be noted that the condition 
(4.1) would generally be satisfied for commonly 
used estimation procedures of F by appealing to 
an appropriate CLT. 

Henceforth we shall regard T as fixed asymp- 
totically. The next proposition states the 

asymptotic distribution of Q LTJ" " for testing 
goodness of fit of H 0 . 

Proposition_ 4 .2 , Under H0, Q(T) m XT-r2 (4 .7) 

The proof follows from the observation (3.9) 

that the Q LTJ" " statistic coincides with the Q 
test statistic (defined by 2.4) applied to the 

' based on the T-dimensional modified hypothesis H 0 

transformed data vector W. The next proposition 
gives tlie asymptotic test for goodness~ of fit. 

LProposition 4.3. Under H 0 

2 (4 8) Q(S) _ Q(T) ~ ×s-T 

To prove the above proposition, note that 

Q(S) _ Q(T) equals 
-I -I 

Y' [(As-As B(B'bsB ) B'bs) - (A T-  ATB(B'ATB) B'AT)]Y 

= Y' AY (say) (4.9) 

Now it is seen that AF/n is idempotent using the 
relation ~ F-A T = nk T . The rank of A can be 

s 
shown to be s - T from Khatri (1968). See also 
Rao & Mitra (1971, p. III). Hence, the propo, 
sltion. The final proposition states the asymp- 
totic distribution of the test statistic for a 
nested hypothesis. 

Pro posStion 4.4 Under the nested model HI.0, 

Q (T) ~ 2 
1.0 Xq (4.10) 

The proof is similar to that for the proposition 
Q(T) 4 .3 .  The quadra t i c  form 1.0 can be expressed as 

 iA ]Y(Ol  
= Y' AY (say) (4.11) 

where B 0 and B 1 denote the matrices B computed 

under H 0 and H 1 respectively• Now in new of the 

relation which follows from the fact that B 1 is a 

submatrix of B0, namely 
-I -I -i 

B0(B~6TB0) B~bTBI(BIATB1) Bl= Bl(BibTB1) B1, (4.13) 

we can show that AF/n is idempotent and of rank 
q from Khatri (1968). Hence, the proposition. 

5. AN APPLICATION TO THE LABOUR FORCE SURVEY DATA 

We shall apply the Q(T) - method to the October 
1980 labour force survey (LFS) data analysed 
earlier by Kumar and Rao (1984) and Roberts, Rao 
and Kumar (1986) using adjusted X 2 and then com- 
pare the results. The data consist of males aged 
15-64 who were in the labour force and excluded 
full-time students. Two factors, age and education, 
were used to explain the variation in employment 
using a logit model. Ten age groups [I0 + 5j, 
14 + 5j], j = I, 2 ..... I0 were formed and the 
midpoint 12 + 5j (=Ai, say) was assigned to re- 

present age for all persons in the jth group. 
Similarly each person was assigned one of the six 
values for education, E~(~ = 1 .... , 6) represen- 

ting 7, I0, 12, 13, 14 and 16 as median years of 
schooling. They considered fitting the following 
logistic regression model to the survey estimates 
of employment rates (~i~) for the table of 60 

cells cross-classified by age and education. The 
model is 

vj~ A 2 2 
- Bo+ BIAj + 82 j + B3E~ +B4E~ " (5.1) ~n 1 - ~j~ 

It should be mentioned that LFS design employed 
a stratified multistage cluster sampling with two 
or more stages of sampling. The survey estimates 
A 
vj~ were adjusted for post-stratification using 

the projected age-sex distribution at the provin- 
cial level. 

The model (5.1) can be expressed in the notation 
of section 2 by numbering the sixty cells lexico- 
graphically. Thus, (5.1) can be rewritten as 

h(v) = XO, (5.2) 

where v is the vector of employment rates, h is the 
logit function, X is a 60 x 5 matrix with ith row 
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(1 A i , A 2 ' i' Ei' E ), and O is (80 , 81 , 82 , 83 , 84)'. 

We also have 

B = H - I x  w i t h  H = ( ~ h / 3 , ) =  D- ID? 1 (5 3) 
' V Z -X) " 

where Dv and DI_ v are diagonal matrices with di- 

agonal elements given by the subscripts. 

The estimated covariance matrix ~ as obtained 
by Kumar and Rao (1984) was singular with rank 
58 because two cells had zero observed unemploy- 
ment rates. For e = .01, T turns out to be 51. 
Using the pseudo-role of @ (under product binomial 

sampling), we get Q(T) and Q(S) as 

Q(513 (~) = 53 .5 ,  Q ( 5 8 ) ( 0 - )  = 86.64 where ( 5 . 4 )  

0-= (-2.76, 0.209, -0.00217, 0.0913, .00276)'. 

Since the difference, Q(58) " _ Q(51) (= 33.14) is 
when referred to a X 2 distri- highly significant 

bution, it indicates possible instability in Q(S) 
I 

and therefore, the test Q IT)" " is recommended. The 

test Q(51) accepts the model H_ at 5% because u 
2 = 62.83. The test Q~58) on the other 

X.05,51-5 
hand rejects H 0 as expected. If we use a higher 

e, then we would of course expect to favour H 0. 

For instance, with e = .05, T = 37 and 

2 = 46 19 (5 5) Q ( 3 7 ) ( ~ )  = 29 .99  < × . 0 5 , 3 7 _ 5  " " " 

The conclusion based on Q(T) agrees with that of 

Rao-Scott's adjusted X 2 used in the earlier 
analysis Note that the first order corrected G 2 

" c 

was found to be 53.7 which favours H 0 when re- 
2 

ferred to a X55 distribution. It may be pointed 

out that for G 2 , X 2 distribution is used only as 
c 

an approximation to the true limiting null dis- 
tribution which is known to correspond to a linear 

2 
combination of × variables. 

Tab le  1" Q(T) and Adj X 2 Using Pseudo Mle 

N%%ted . . . . . . . . . . . . .  Q CT) . . . . . . . . . . . . . . . . .  A d 3 x  
H y p o t h e s i s  e ::= .Oh .... ~ "  . 0 - i - e  0 ( R a o - S c o t t )  
given H 0 T = 37 T = 51 T = 58 G z 

c 
81 = 0 102.3" 178.12" 261.85" 168.4" 

82 = 0 65.05* 112.94" 156.51" 102.1" 

83 = 0 0.17 0.65 2.94 1.01 

P-value >.65 >.40 >.08 >.30 
84 = 0 1.73 0.425 .01 0.46 

P-value >.15 >.50 >.90 >.45 
83=84=0 71.34" 124.92" 227.93* 172.1" 

82=84=0 85.34* 118.17" 156.38" 106.3" 

*P-value < .0005 

Several nested hypotheses were also tested 

using Q[T)" . These are summarized in Table 1 

along with the values of G 2 obtained from the 
c 

earlier analysis of the same data. For the nested 

hypothesis HI. 0 iT 4 0 given H0, we use the 

test statistic QI.0 of (13.7) and we obtain 

(151) (.0-(1)) = 0 425 (5 6) 
Q1.0 " 

where ~ - ( 1 ) =  ( - 3 . 1 0 ,  0 .211 ,  0 .00218 ,  0 . 1 5 0 9 ) ' .  

The estimate 0 -(I) is the pseudo-role under the 
model H I • 84 = 0. It is seen that the hypothesis 

HI.0 is accepted by referring Q~51).0 to a ×12 dis- 

tribution. As seen from Table I, the results 

based on Q(T) for e even as high as .05 agree 
with those for e = .01. Moreover, they are all 
in agreement with the conclusions based on G2. 

c 
The test for nested hypothesis suggest that 84 

can be dropped. So we also computed the test Q(T) 
for H 1 . It is found that 

Q~51)(0-(1)) = 54.211, Q~37)(0-(I)) = 32.15, (5.7) 

2 
which when referred respectively to X with 47and 
33 d.f show that H 1 is accepted by the data. 

6. DISCUSS ION 

It is seen that the well-known multivariate 
technique of principal components can be used to 
provide an important statistical method for model 
testing for survey data. The essential idea in 

the construction of Q[T)" " is to sacrifice some 
information in the data that give rise to possibly 
unreliable components in the metric defined by 

nY'F-Y. The modified metric corresponding toQ IT)" 
is defined by Y'AT Y where ~T can be interpreted 

as a truncated g-inverse of F/n. The test Q~T)r ~ 

provides an alternative to WLS, Adjusted X 2 and 

Jackknifed X 2 approaches. It would be desirable 
for future investigations to perform a simulation 
study for level and power comparisons similar to 
Thomas and Rao (1984,  1985) .  

I t  may be n o t e d  t h a t  f o r  F n o n s i n g u l a r ,  t h e  

t e s t  Q o f  (2 .4 )  o r  Q[T)" " (wi th  T = I)  i s  a sympto-  
t i c a l l y  equivalent to WLS test. Thus WLS test 
can also be modified in a similar fashion if so 
desired. However, since the WLS test statistic 

uses transformed data h(~), it might also en- 
counter another kind of instability namely, due 
to extreme behaviour of the function h for cer- 

tain values of ~. Clearly, this will not be so 

with Q or Q(T). Finally we remark that the 

statistic Q(T) provides a general recipe whether 
A 

represent domain proportions or means or any 
other statistics. However, the methods based on 

correcting X 2 do not seem to be applicable to the 
more general case of domain means. 
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