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SUMMARY 

Data are simulated for several subpopula- 
tions for a two-stage cluster sampling design 
using mixtures of Dirichlet-Multinomial distri- 
butions. The performance of chi-squared test 
statistics for comparing vectors of proportions 
for several cluster samples are compared using 
the simulated data. The type I error level 
performance and the power of the chi-squared 
tests are obtained for certain combinations of 
parameter values. These chi-squared tests 
include the Wald test statistic, Wald (1943), 
modified chi-squared test statistics as 
developed by Rao and Scott (1981), Scott and 
Rao (1981), and tests based on a probability 
model as developed by Koehler and Wilson (1986) 
and Wilson (1986). 
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i. Introduction 

Methods for the analysis of categorical data 
have been extensively developed for simple 
random sampling with replacement. These simple 
samples provide vectors of observed frequencies 
that are closely approximated with multinomial 
or binomial distributions, and as such the 
sampling procedure is sometimes referred to as 
multinomial sampling. For this kind of 
sampling, conditions under which the Pearson 
goodness-of-fit statistic and log-likelihood 
ratio goodness-of-fit statistic have the same 
asymptotic chi-square distributions have been 
established and widely published. The regular- 
ity conditions given by Birch (1964) are 
frequently cited. A simple theoretical devel- 
opment of a similar set of conditions was 
recently presented by Cox (1984). 

During the last decade various procedures 
have been proposed for obtaining test 
statistics for hypotheses when the data are 
obtained from some complex survey. These 
include papers by Brier (1980), Rao and Scott 
(1979, 1981) Holt, Scott and Ewings (1980), 
Wilson (1984), and Koehler and Wilson (1986). 

The usual formulas for the Pearson and log 
likelihood ratio statistic generally do not 
provide reliable chi-square tests even for very 
large samples. Koehler and Wilson (1986) 
considered tests for the equality of vectors of 
proportions when the data are obtained from 
several independent two-stage cluster samples. 
They showed that such test statistics can be 
classified into three methods. One method is 
to construct appropriate quadratic forms, which 
are often referred to as Wald statistics. A 
second method requires probability model to 
describe the variation in the true vectors of 
proportions across all clusters for each 
population. Examples of this approach are 
given by Brier (1980), Wilson (1984) and 

Koehler and Wilson (1986). A third approach 
requires only partial information about the 
covariance matrix of the observed vector of 
frequencies. Examples of this approach are 
given in Bedrick (1983), Scott and Rao (1981) 
and Rao and Scott (1979). 

In this paper test procedures from these 
three different methods are investigated to 
obtain a simulated comparison of their 
performance in testing the equality of vectors 
of proportion for two stage cluster samples. 
The power of the selected test statistics are 
computed and comparisons are made of the 
attained level of significance. Confidence 
intervals are constructed for different 
procedures of estimating the clustering effect. 

2. Two Stase Cluster Sample Model 

Consider comparing vectors of proportions 
from J populations. The members of each 
population are classified into the same set of 
I mutually exclusive and exhaustive categories. 
For the j-th population, the true proportion of 
members in the various categories are given by 

the vector ~j = (~lj ..... ~2j' ~Ij )'' where 
I 

1 = .Z 1 ~i" for each population. Estimates of 
the ~ue vectors of proportions are obtained 
from independent two-stage cluster samples from 
each population. Each population consists of a 
number of clusters. A sample of K. clusters is 
randomly selected with replacement3and with 
probability proportional to size (pps) from the 
j-th population. Furthermore, a random sample 
of n.. secondary units is selected with 

K 
repl~cement from the k-th cluster selected from 
the j-th population and each sampled unit is 
classified into one of the I mutually exclusive 
categories. Conditionally on the cluster 
selected, the vector of observed frequencies 
for the k-th cluster selected from the j-th 
population, X._ = (X .... X~._, .... X .... )', has 
a multinomial~istri~ion ~ith parameters O., 
= (p .... p ........ p.._)', where ~._ is th~ 3K 

i K zJK K K 
true ~ector of proportions for the ~articular 
cluster selected. 

A two dimensional table of frequency totals 
can be constructed in which the rows correspond 
to the I categories and the columns correspond 
to the J populations. The j-th column of this 

K. 
table consists of the vector X. = Z 3 X of 

population. The total frequencies for the j-t~ 3 = '~'k 
total number of observations obtained from the 

K. 
j-th population is N.I k J I = Z3 In'k" For the 
sampling scheme consldered=Ne~e, an unbiased 
estimator for ~. is 

^ 

3.  Wald S t a t i s t i c s  
C o n s i d e r  t e s t i n g  t h e  n u l l  h y p o t h e s i s  H : 

~j = 'g~o' j = l , 2  . . . . .  J ,  f o r  some unknown v e c t o r  
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i~, against the general alternative. When H 
true an u n b i a s e d  e s t i m a t o r  o f  ~" i s  g i v e n ° b y  

^ J ^ 

~r = Z ~. ~, w h e r e  t h e  w e i g h t s  a r e  any  
'~ j=l 3 

constants s u c h  t h a t  1 = ~. 1 ~. and ~ > O, f o r  
j = I, 2 .... , J. It ~.s ~asi~y show~ ~hat the 
c o v a r i a n c e  m a t r i x  f o r  ~-,~,g i s  

Z. = S - 2~.S + ~ t ~2tS (3 1) ~j j ~ j -I t' 
w h e r e  

Ko 
Sj = Mj + Nj2( ~31n~k - Nj)Z%wj £(p~j £ - ~ j )  

(p~ £ - ,~)' (3.2) 

and 

= N_l[diag( ) - ~'] 
Mj J , 

(3.3) 

where diag(~.) denotes a diagonal matrix with 
the elements~of ~. on the diagonal, and the 
last sum in (3.2)~3is across all clusters in the 
j-th population with weights w. _ equal to the 
proportion of the population i~ Zthe £-th 
cluster. The matrix of covariances between ~°- 

and ,~- ~ is '~ 
'b 'b 

Zij = -e.S - ~.S + ~t e~S . (3.4) mi 3 J =i t 
The matrix I with diagonal blocks given by 
(3.1) and off-diagonal blocks given by (3.4) is 
the covariance matrix for the vector of random 
deviations 

: <3 5) 
'~ '~i '~ ' '~2 '~ ' .... '~3 '~ " 

The evaluation of the test statistic 
necessitates the estimation of the covariance 
matrix Z. A consistent and nearly unbiased 
estimator of Z is obtained by replacing S. in 
(3.1) with 3 

K° 

SJ 3 J (Kj-I) Zi3__inij k-~j k-~j 

where 
+ (l-aj)Mj, (3.6) 

= N_l[diag( ^ ) - ^ ~' 

K. 2 (N~- Nj (Kj ) aj = (Kj-l)(~3__injk-Nj)/ -I - 

~J_-In~k ) , 

^ -I 
and P"~km,~= n..X. k is the vector of observed 
propo~£ions3fo~ the k-th cluster sampled from 
the j-th population. The estimate of the 
covariance matrix is denoted by Z. If n. = n. 
for all clusters sampled from the j-th pg~ula -3 
tion, a. = I and (3.6) reduces to 

3 
^ ^ ^ 

Sj = nj(Kj-l)-I Zi=iKJ (~k_~j)(P~jk_~j),, (3.7) 

which is an unbiased estimator for S.. There 
are other acceptable estimators for ~ which 
provide essentially the same value of the test 
statistic for large samples but may result in 
slightly different values for smaller samples. 

Clearly, Z and Z are singular matrices. 
Nonsingular covariance matrices^can be obtained 
by deleting some elements from d, but it is 

'b 

notationally more convenient to retain 
redundant differences iD d and use a 
generalized inverse of Z in the definition of 
test statistics. Consequently, a Wald 
statistic for testing the equality of the 
vectors of population proportions is 

X 2 = d'Z-d. (3.8) 
W '~ '~ 

Following Moore (1977), this statistic has a 
limiting central chi-square distribution with 
degrees of freedom equal to the rank of Z when 
the null hypothesis is correct. 

The Wald statistic in (3.8) reduces to the 
Pearson chi-square statistic for testing 
independence, 

X 2 J I ^-i ^ ^ 2 
P = Zj=INjZi=I~ i (~ij-~i) , (3.9) 

^ 

when Z is ~he usual estimate of the covariance 
matrix of d for s~mple random sampling. This 
occurs whe~ S. = M. in (3.7) for j=l,2 ..... J, 
which must occur w~en n., = l for all sampled 

3 m z clusters. For large n., values, X may be 
2 3K P 

much larger than X when there is substantial 
variation among theWobserved vectors of 
proportions for the clusters sampled from a 
particular population. Consequently, the type 
I error level of the test may be greatly 
inflated if the Pearson chi-squared test is 
used for a table of frequencies obtained from 
two-stage cluster sampling. This fact is 
demonstrated in Section 7. 

The accuracy of the large sample chi-squa~e 
approximation for the null distribution of X 

w 
is greatly influenced by the accuracy of Z as 
an estimator for Z. A substantial number of 
sampled clusters is required to accurately 
estimate large covariance matrices. When a 
large number of clusters cannot be sampled from 
each population, it may be advantageous to 
describe variation among clusters within 
populations with a more parsimonious model. 
The Dirichlet-multinomial model described in 
the next section uses only one parameter to 
account for among cluster variation within each 
population. 

4. Probability Model 
Brier (1980) used the Dirichlet-Multinomial 

model to develop chi-square tests for models 
fits to contingency tables obtained from a 
single two-stage cluster sample. Under the 
model the vectors of category proportions for 
the clusters in the j-th population have a 
Dirichlet-distribution with mean vector ~ . The 
properties of this model have been studie~ by 
Mosimann (1962) and Good (1965). Koehler and 
Wilson (1986) extended the model to obtain 
chi-square tests for comparing vectors of 
proportions obtained from several independent 
two-stage cluster samples. A test for 
assessing fit of the model was also presented 
in Wilson (1986). 

In this simulated study we consider among 
others, three chi-square tests as developed by 
Koehler and Wilson (1986) under the Dirichlet 
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Multinomial model. The test statistics 
considered for testing H : 7. = ~ , j=l,2,..., 

o '~ '~ 
J; are 

= Z N C ~ ( - (4 i) 
M 3= I J J i=I ~ ~ij ~i ) 

where C. measures the clustering effect in the 
jth population. Koehler and Wilson (h986) gave 
three different methods of computing C=, 
thereby producing three c~hi-square tests. The 
first method estimator (C.~) uses properties of 
the Dirichlet-multinomial3~odel and assumes 
that a sufficiently large number of clusters 
are sampled from the j-th population so that 
properties of a multivariate normal distribu- 
tion can be used to accurately approximate the 
covariance matrix. ~enote the resulting 

chi-square test by ~MB. 
^ 

A second estimator for C. (C.) assumes that 
the covariance matrix is di~gon~Y, but uses the 
data to estimate the variances~ Denote the 

resulting chi-square test by ~MV" 

The third estimator for C. (C.) uses a 
W 

direct estimate of the covar~anc~ matrix. It 
does not assume that this covariance matrix is 
a diagonal matrix, nor does it use the idea of 
approximating normality through a transforma- 
tion of the vector. Denote the resulting test 
statistic by X~ w. 

Each method ~Sr estimating C= results in a 
lack-of-fit test for the Dirich~et-Multinom%al 
model Denote these lack-of-fit tests by X- , 
2 " 2 BJ 

X- , and x- , respectively A detailed discus- 
J ]~J 

s~on of these lack-of-fit test are given by 
Wilson (1984). An approximate distribution and 
test for the statistic C. have also been 
considered by Wilson (19~6). 

5. Partial Information on Covariance Matrix 
Rao and Scott (1979) and Scott and Rao 

(1981) have developed a first order correction 
for which the Pearson chi-square statistic is 
divided by an estimated average design effect. 
We examine the performance of some of these 
adjusted tests. Other modified versions of the 
usual Pearson statistic have been considered by 
Holt, Scott and Ewings (1980), and Bedrick 
(1983) to name a few. In this study we consi- 
der three modified chi-square ~est s~atistics. 
These three test statistics, X , X and 
2 SB RSV 

XRS W are similar except that t~e estlmated 
2 

average design effects are~ifferent. For XRS B 
the averag~ design effect ~ is based on the 
estimator CjB through the formula 

J ^ 

o= (J-l) -I Z C (I- N N -I 
j=l jB j )" 

2 2 
Similarly,^ XjRSV and XRS W are calculated based 

on CjV and CjW respectively. 

6. Design of Simulation Study 
In order to study the performance of the 

test statistics discussed in the last three 
sections a simulation study was performed, 
since it was not very convenient to obtain the 
exact distribution for these statistics. The 

data were generated from two stage cluster 
sampling schemes. Brier (1978) method of 
generating Dirichlet variates from Beta random 
variables was used to simulate the data. 
Thomas and Rao (1984) have used this 
distribution to study exact levels of 
chi-squared goodness-of-fit statistics. 
Sampling schemes examined here are obtained 
from selected combinations of the given 
parameters which are defined as i) I, the 
number of categories which was chosen to be 5 
based on a simulation study conducted by Thomas 
and Rao (1984), ii) K, the Dirichlet constant, 
iii) n, the number of units drawn per cluster, 
iv) ~, the model probability vector, v) r, the 
number of independent clusters, vi) a, the 
nominal significance level for the test 
statistics and vii) J, the number of subpopula- 
tions. The values considered for the para- 
meters are K = 5; a = .05; r = i0, 25, 50; n = 
I0, 25, 55; I = 5;_~i = (.2, .2, .2, .2, .2)' 
~9 = (.50, ~20, .i~, jl0, .05)' and ~3 = (.80, 
.U5, .05, .05, .05); = 2 and 3. Sampling 
from populations with the same Dirichlet prior 
ensured that the hypothesis was true and all 
population parameters are known exactly. These 
tests would check the type I error performance 
of the various test statistics under two stage 
cluster sampling. Though adequate control of 
significance levels is essential if a test 
statistic is to be useful, no comparison of 
competing statistic is complete without a 
comparison of their powers. Power values were 
obtained by comparing vectors of proportions 
for data drawn from populations with different 
model probability vector. 

The performance of tests to check the model 
assumptions was also investigated. Confidence 
intervals for the estimators of the clustering 
effects were also obtained. 

7. Results of Simulation 
All results given represent the proportion 

of actual rejections of a true hypothesis of a 
5 percent nominal level and 1200 independent 
trials. 

7.1 Wald Statistics 
Table 7.1 gives the actual significance 

levels (SL) for the Wald test statistic and the 
Pearson statistics (Special Wald) for simulated 
data based on a Dirichlet constant, k = 5. The 
number of clusters vary from i0 to 50. The 
cluster sizes vary from i0 to 55. The data are 
simulated from three different Dirichlet 
Multinomials with prior probability vectors A = 
(.50, .20, .15, .i0, .05)', B = (.20, .20, .20, 
.20, .20)' and C = (980, .05, .05, .05 .05)'. 
The performance of .~ deteriorates when the 
number of clusters decreases, even ~hen the 
cluster sizes are large. Overall X- seems to 

w 
work best when the data are generated from a 
Dirichlet distribution with model probability 
vector ~ = (.20, .20, .20, .02, .20)'; and a 
large n~mber of clusters. The significance 
levels for the Pearson statistic, X are 
greatly inflated, the levels range ~rom 12 to 
28 percent. These findings are in part similar 
to the results of Thomas and Rao (1984) for 
goodness-of-~it hypothesis. The significance 
levels for X- are about twice the corresponding 

D 

values for ~. Table 7.1 also shows that ~ 
w w 
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Table 7.1 

Actual Significance Levels for the 
Wald Test Statistic and Pearson Statistic 

n ~i ,62 z SL (X2) SL (X$) 

i0 I0 A A .10 .25 
25 A A .13 .28 
55 A A .i0 .28 

25 I0 A A .07 .14 
25 A A .08 .16 
55 A A .08 .17 
25 B B .05 .14 
i0 C C .08 .15 
25 C C .08 .17 

50 i0 A A .06 .12 
55 A A .07 .13 
55 A A .07 .13 
i0 B B .06 .14 
55 B B .07 .15 

k = 5 ~ = .05 
A = (.50, .20, .15, .i0, .05)' 
B = (.20, .20, .20, .20..20)' 
C - (.80, .05, .05, .05, .05)' 

is sensitive to the non uniformity of the model 
probability vector especially when the number 
of clusters are few. 

Comparison of the powers values of X 2 and X 2 
are given in Table 7.2 for the case of ~0, 25 p 
and 50 clusters. The test statistic, X has 
increased power values as the numbe~ of w 
clusters increases. In all cases X- was more 

w 
pQwerful than X . This result is expected as 
X~ makes use of Pall^the information on the 

z 
c~usters, whereas X uses the summarized data. 

P 

Table 7.2 

Comparison of Powers of the Wald Statistic 
and the Pearson Statistic 

r n ~I ~2 P°wer (X2) Power(X~) 

I0 i0 A B .75 .71 
i0 A C .88 .67 
25 A B .70 .69 
25 A C .85 .65 
55 A B .85 .67 

25 i0 A C .92 .85 
25 A B .90 .81 

50 25 A B .93 .86 

A = (.50, .20, .15, .i0, •05)' 
B = (•20, •20, .20, .20, .20)' 
C = (.80, .05, •05, .05, •05'; 

7.2 Probability Models 
Table 7.~ compares the a~tual significance 

levels of ~MB" ~MW' and XDM v for a range of 
values of c±usuer sizes and selected numbers of 
clusters. The Dirichlet constant parameter, k 
is equal to 5. 2 

The test statistic, x- performs well The 
• -]9 B 

significance lev~l ms qu1~e stable• In all the 
cases examined ~M- exhibits a lower signifi- 

2 
c~nce2 level than -])MWX- or X-MV. The statistic 
~MW is quite insensltive-~o the cluster size 

or the number^of clusters. The significance 
levels for __ ~MV are greatly inflated at times. 
It improves i~ performance as the number of 
c~uster increases, but, for small cluster sizes 
~MV had significance levels as large as 22 
percent. 

Table 7.3 

Comparison of Actual Significance Levels for 

(Dirichlet Multinomial Model) 

r n '~i ~ ~2 SL (XI~MB) SL (XI~MW) SL (XD2MV) 

i0 I0 A A .06 .17 .20 
25 A A .06 .15 .22 
55 A A .05 .15 .21 

25 10 A A .05 .15 .08 
25 A A .06 .23 .ii 
55 A A .06 .25 .i0 
25 B B .05 .20 .08 
i0 C C .07 .23 .ii 
25 C C .07 .29 .12 

50 i0 A A .06 .Ii .07 
55 A A .06 .12 .08 
I0 B B .05 .12 .07 
55 B B .06 .14 .08 

k = 5 e = .05 
A = (.50, .20, •15, .i0, •05)' 
B = (.20, •20, .20, .20..20)' 
C = (•80, •05, •05, •05, .05)' 

2 2 2 
Estimates of powers for --DMBX- _, uX~ ~, and XDM V 

are compared in Table 7.4 for selec~Wed 
combinations of cluster sizes and n~mber of 
clusters• In all cases ~mined, X- was the 
m~st powerful• For large numbers of clusters 
X- was more powerful than x- Thus the 
-])MV -])MW" 
significance l~vels and the power values 
suggest that --n~,aX- should be used only for 
samples Includ~ a large number of clusters 
from each population• However, in cases of 
large number of clusters X~ would provide a 
more reliable tess and would be just as easy to 
compute• Since X- does not require a model 
for the distributWon of the true vectors of 
probabilities among clusters, it is sometimes 
recommended when a large number of clusters are 
sampled_from each population• The ease with 
which x z can be computed and the power and 

I-DM B 
reliability of it is an important considera- 
tion. The chi-square approximation is more 

Y 2 
accurate for .~M- than X 2 both in the case 
of few sampled c~usters a~d a larse number^of 
sampled clusters Like X-both x- and x z 

• w --DMV o Nhe are both sensitive to the non unilormity 
model probability vector. 

Table 7.4 
Comparison of Powers of the 

~MB, ~MW' and ~M v 

r n ~I ~2 P°wer(~MB)P°wer(~MW)P°wer(~MV) 

i0 I0 A B .93 .83 .77 
25 A B .90 .80 .75 
55 A B .93 .82 .74 
i0 A C .92 .84 .71 
25 A C .93 .84 .71 
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Table 7.4 (Continued) 

Comparison of Powers of the 

~MB' ~MW' and ~MV 

r n ~i ~2 P°wer(~MB)P°wer(~MW)P°wer(~MV) 

25 25 A B .94 .74 .87 
i0 A C .94 .79 .91 

50 25 A B .93 .87 .92 
I0 A C .93 .88 .92 
55 A B .93 .84 .92 

A = (.50, .20, .15, .i0, .05)' 
B - (.20, .20, .20, .20, .20)' 
C = (.80, .05, .05, .05, .05)' 

7.3 Partial Information 
2 2 2 

Significance levels for X , X and X 
....... RSB .RSV RSW 

are given in^laD±e i.m. ine slgnlilcance 
Z 

levels for XRS R are quite stable. As the 
number of clusters increases, the ~erformance 
of X- improves The statistic XY had 

RSV " RSW 
sign1~icance21evels as high as 28 percent. The 
values for XRS W are greatly inflated. In all 

2 had smaller significance levels. cases XRS B 

Table 7.5 

Comparisons of Actual Significance Levels for 
2 

~SB, ~SV, and XRSW 

(XRs B ) SL (XRs V ) SL(~s W ) r n ~I ~2 SL 2 2 

i0 I0 A A .05 .18 .13 
25 A A .05 .19 .13 
55 A A .04 .18 .13 

25 i0 A A .04 .08 .14 
25 A A .06 .I0 .22 
55 A A .05 .I0 .24 
25 B B .04 .08 .20 
I0 C C .06 .09 .21 
25 C C .07 .i0 .28 

50 I0 A A .05 .06 .Ii 
55 A A .06 .08 .12 
I0 B B .05 .06 .19 
55 B B .05 .08 .14 

k = 5 ~ = .05 
A = (.50, .20, .15, .I0, .05)' 
B = (.20, .20, .20, .20..20)' 
C = (.80, .05, .05, .05, .05)' 

A comparison of powers for the three 
statistics in Table 7.6 shows that XRS B is the 
most powerful and very stable ~or comparing 
proportions The powers for X- and X-_ 

" RSV R W 
fluctuate sreatly. For a large numbe~ o~ 
clusters X- is more powerful than X- . 

_ RSV _ RSW 
For the comparison of vectors o~ proportions 

f~om several populations, the clki-square test 
2~, provided by the estimators C.~, j = I, 

D 
MB.., j; for the Dirichlet Mult~nomial model 

is quite similar to a modification provided 
by Rao and Scott (1979) and Scott and Rao 
(1981). Thus, when the sampling scheme 
involves complex samples from several different 
populations, a simple improvement to the method 

of correcting chi-square tests is to compute an 
average design effect for each population, and 
average them to obtain a single correction 
factor only if they are reasonably similar. 
Otherwise, the chi-square test statistic should 
be modified by using a different correction 
factor for each population.^ The latter type of z 
correction is provided by x- for comparing 

-~MB 
vectors of proportions for several populations. 

Table 7.6 
Comparison of Powers of the 

2 2 and 2 
XRS B, XRS v' XRS W 

r n ~ Power 2 ~ ~ I~ 2 (XRs B) Power( SV ) Power( SW ) 

I0 I0 A B .94 .80 .85 
25 A B .92 .77 .83 
55 A B .93 .76 .82 
10 A C .93 .75 .86 
25 A C .94 .73 .85 

25 25 A B .93 .89 .75 
I0 A C .94 .91 .80 

50 25 A B .94 .93 .87 
i0 A C .93 .93 .88 
55 A B .93 .91 .R5 

A = (.50, .20, .15, .I0, .05)' 
B = (.20, .20, .20, .20, .20)' 
C = (.80, .05, .05, .05, .05)' k = 5 

7.4 Lack-of-fit Tests 
Table 7.7 gives the actual significance 

level~ for the lack-of-fit tests, X- , x- , 
2 B" IV" 

and Y~. for selected cases of cluste~ sizes, 
w 

and selected numbers of clusters when the data 
are simulated from three Dirichlet Multinomials 
with different model probability vectors. 
T~ble 7.7 indicates that~Y~, is unacceptable, 
X~ z. is very stable and X~Z..W~mproves in its 

v3 
performance as the number ~f clusters 
increases. In all cases X~. exhibits a lower 
significance level without~ei~g excessively 
conservative. The statistic X B. is slightly 
sensitive to the non uniformity3of the model 
probability vector. 

Table 7.7 
Actual Significance Levels 
for the Lack-of-fit Tests 

2 2 2 
XBj, X~j, XWj 

(Dirichlet Multinomial Model) 

r n 
,u i 

SL 2 2 2 (XBj) SL (X~j) SL (~j) 

i0 I0 A 

25 A 
55 A 
55 C 

25 I0 A 
25 A 
55 A 
25 B 
i0 C 
25 C 

50 I0 A 
55 A 
I0 B 
55 B 

.02 .44 .15 

.03 .59 .19 

.04 .58 .22 

.04 .58 .21 

.05 .95 .14 

.05 .93 .07 

.05 .92 .09 

.05 .94 .07 

.04 .92 .15 

.05 .97 .16 

.03 .65 .03 

.05 .69 .05 

.05 .58 .07 

.05 .68 .06 
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k = 5 ~= .05 
A - (.50, .20, .15, .i0, •05)' 
B = (•20, .20, .20, .20..20)' 
C - (.08, .05, .05, .05, .05)' 

7.5 Interval Estimates for Clustering Effects 
Interval estimates were obtained for each of 

the three procedures described for the cluster- 
ing effect. The proced^ures based on a 
normality assumption (C~) works well when the 
data are simulated fromJ~irichlet Multinomials 
with non uniform model probability vector. In 
all cases the procedures yield confidence 
intervals which are much tighter when the 
number of clusters are larger. For few 
clusters the normality assumption procedure 
based on a diagonal covariance matrix (C. v) 
gave lower bounds les~ than zero which w~ set 
at zero. Estimator C. B produced the shortest 
confidence intervals, j These intervals always 
covered the true value except when the data are 
simulated from a uniform model probability 
Dirichlet vector. The non normality assumption 
procedure, C. gave confidence intervals which 
are shorter ~an the procedures, C=V. The 
results of this study show that th~ procedures 
proposed by Koehler and Wilson (1986) give 
consistently good coverage at the nominal 95% 
rate with a large number of clusters~ However, 
the normality assumption procedure C works 
well for a few number of clusters, jB 

8. Discussion 
Data simulated from Dirichlet multinomial 

distribution with model probability vectors 

. 0 .20, .20)' and = ( 80 . . . .  

.05)', were used to examlne the type i error 
performance and the power of chi-squared test 
statistic for the comparison of vectors of 
proportion from several subpopulations under 
cluster sampling. A study of test statistics 
from three different methods, Wald statistics, 
Probability Models and Partial Information 
suggests that the methods of interest are the 
Probability Models and the Partial Information. 
For Wald statistics the procedure requires a 
considerable number of clusters to achieve the 
desired significance level. The Pearson 
statistic which is a special case of the Wald 
statistic is definitely unacceptable in "qth 
large and small samples• The statistic ~MB of 
the probability model method is the most 
powerful and stable. It achieves the desired 
significance level. However, it requires 
knowledge of the dat~ from each sampled 
cluster The test ~S is the most reliable 

• B 
and stable of the parE1al information method. 
I$ achieves the desired significance level. 
x- requires knowledge of only the estimated 
c~ design effects and the frequency counts 
per subpopulation. 

Thomas and Rao (19~4) found that tests 
formed analogous to x- performed well and 

"-R B 
noted less than desire~ performances of Wald 
tests. However, their work examined goodness- 
of-fit tests under cluster sampling. In this 
study we concentrated on comparing vectors of 
proportions from several subpopulations. The 
interest is in tests of homogeneity. 

Wilson (1984) and Koehler and Wilson (1986) 
presented lack-of-fit tests for checking when 

the data satisfies the assumptions of the 
Dirichlet Mu~tinomial models• In this study we 
found that X~. is a very reliable and powerful 
statistic in ~roviding a check for Dirichlet 
Multinomial data, regardless of the cluster 
sizes, number of clusters selected or model 
probability vector used in generating the data. 
Estimating the clustering effect in a given 
subpopulation depends on the model probability 
vector in ~he Dirichlet distribution. The 
estimator C. B works well when the model 
probabilityJvector is uniformly distribu- 
ted over the categories. The results of this 
study suggest that the Dirichlet Multinomial 
model may be a useful technique for analyzing 
data from two stage cluster samples. The 
process of estimating the clustering effect 
which is reflected in the design effect seems 
to indicate that a test of fit for the model is 
necessary. Care must be taken to ensure that 
the data are not approximated by Dirichlet 
Multinomials based on uniform model probability 
vectors. Further work is still necessary to 
investigate the test of independence and the 
performance of these statistics in non 
Dirichlet Multinomial situations. 
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