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1. INTRODUCTION 

In recen t  years,  small  area  es t imat ion has become an 
importar~t concern for survey organizations.  For 
example,  Stat is t ics  Canada increased its emphasis on 
small a rea  es t imates  in response to user requi rements .  
The production of such small  a rea  s ta t is t ics  is being put 
into place by using existing adminis t ra t ive  files and/or  
survey files. The production may be as simple a m a t t e r  
as geoeoding the files, provided that  their  coverage is 
sa t i s fac tory  and tha t  their  variables correspond con- 
ceptual ly  to the required s ta t is t ics ,  and tabulat ing them 
at the  small  area  level. It may be as complex as using 
several  files together ,  working out relationships 
be tween  variables available in survey files, and applying 
these relat ionships to the larger  adminis t ra t ive files, 
which are likely to contain fewer  variables. This kind 
of modelling was implicit in the early development  of 
the so-called synthet ic  es t imat ion  techniques,  where it 
is assumed that  the models developed for the larger  
areas hold for the small areas.  If this assumption fails, 
synthet ic  es t imat ion  will be biased; to use synthet ic  
es t imat ion  without validation or evaluation is a risky 
gamble.  

Purely synthet ic  es t imat ion methods have been pro- 
posed by Oonzalez and Hoza (1975), and Levy (1978). 
Several  authors have noted tha t  the bias potent ia l ly  
produced by purely synthet ic  methods can be reduced 
through procedures tha t  essential ly combine a synthet ic  
component  with another  component .  Such es t imators  
have been suggested by Schaible (1979), Fay and Herr iot  
(1979), Drew, Singh and Choudhry (1982), Sarndal 
(1984), Hidiroglou and Sarndal (1985), Fuller  and Har t e r  
(1985), and Srinath and Hidiroglou (1985). The approach 
used for arriving at the weighting of the two com- 
ponents differs amongst  the aforement ioned authors.  

The number  of da ta  points real ized in a given domain is 
not control led at the select ion stage. The analyst must 
make the best of the random number of observations 
tha t  happened to fall in the domain. Inference condi- 
t ionally on a suitable s ta t i s t ic  (such as the real ized 
domain sample count) strongly suggests itself.  The 
basic motivat ion for the research  reported in this paper  
can be briefly s ta ted  as follows: it is required to 
develop an approach to condit ional inference for small  
areas tha t  is s i tuated in the  randomizat ion theory 
context .  

This point of view led us (in Section 3) to cons t ruct  
cer ta in  new es t imators  for (small) domains. In the 
following sections, we analyze the design-based condi- 
t ional  propert ies  of these and other  possible es t imators .  
In the randomizat ion theory mode of inference,  there  is 
no sys temat ica l ly  developed conditional approach; some 
steps in this direct ion are taken in this paper. By 
contras t ,  in the model-based approach to survey sam- 
pling, conditional arguments  in sampling have been used 
by Holt and Smith (1979), Royall  and Cumberland (1985) 
and others.  Their work pointed to important  questions 
in conditional inference from surveys and motivated 
in teres t  in the conditional approach. However,  these 
papers are not in par t icular  concerned with the domain 
es t imat ion  problem. 

2. STANDARD ESTIMATORS FOR AN ARBITRARY 
SAMPLING DESIGN 

Suppose that the population U = (1,..., k, ..., N} is 
divided into D non-overlapping domains U i, ..., U d, ..., 

U D. An estimate is required for the total (or the mean) 

of the variable of interest for each domain. In prac- 
tice, the number of domains, D, is often quite large: 
several hundred or more is not atypical. Let N d be the 

known size of U d. We further assume that the popula- 

tion is divided according to a second classification 
criterion into G non-overlapping groups U.I, "'" U.g, 

..., U.G. The number of groups, G, is usually modest, 

say, around 10; in any case, G is assumed small 
compared to D. 

The cross-classification of domains and groups gives 
rise to DO population cells Uda 3 d=l, ..., D; g=l, ..., G. 

Let N dg be the known size of U dg. 

Then the population size N can be expressed as: 

D D G 
N = z N d = z z (2.1) 

d=l d=l g=l Ndg 

Let s denote a sample of size n drawn from U under 
a given probability sampling design, p(s), such that 
P(kes) = ~k > 0 for all k and P(k and ~es)= ~k{~> 0 for all 

k~. Any given sample s will distribute itself in a 
random manner across the domains U d and the popula- 

tion cells Udg. Denote as s d and Sdg the parts of s that 

happen to fall, respectively, in U d and Udg. Let n d and 

ndg, which are random variables, be the respective 

sizes of s d and Sdg. We then have that (2.1) holds for 

< max (n, Nd_).{~ lower case n's as well, and that 0 < ndg_ 

The variable of interest, y, takes the value Yk for the 

k:th unit .  For d=l, ..., D, we seek to estimate the 
domain total t d = z Yk = zUdYk. 

keU d 

(If A is any set of units, let us write z A for r .) 
keA 

The expansion es t imator  (EXP), or Horvi tz-Thompson 
es t imator ,  is given by: 

^ 

= yk/~k (2.2) tdEXP Zs d 

The pos t -s t ra t i f iea t ion  e s t ima to r  based on G-group 
counts (POSG/C) is defined as: 

G 

tdPOSG/C = g=l Ndg YSdg (2.3) 
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where N dg is known and 

= (z yk/~k) / (r i/nk) YSdg Sdg Sdg 

is the sample-weighted mean of the ndg 

If ndg = 0, we define YSdg~ to be zero. 

y-values in Sdg. 

A second type of post-s t rat i f ied es t imator  is based on G 
group ratios (POSG/R): 

fi 

tdPOSG/R gZ_ ) (2.4) -1 Xdg (YSdg/xSdg 

where ~Sdg is defined analogously to ~Sdg, and Xdg is 

the known population tota l  of x for the dg:th cell. If 

ndg = 0, define Ysdg/xsdg~ " as zero (arbitrarily). 

The EXP est imator  is ra ther  inefficient (see below); it 
serves here mainly as a benchmark against which the 
behaviour of other es t imators  is compared. 

The synthetic est imation technique is also well known. 
Here too, we consider a "count version" and a "ratio 
version": For the count version, the implicit model is 
that  the y -mean  of each group is the same across all 
domains d. For the rat io version, the implied model is 
tha t  the ratios Yk/Xk are constant  within the given 

group, irrespective of the domain. If these assumptions 
of homogeneity across domains fail, the SYN es t imator  
can be seriously biased. 

The synthetic-count es t imator  (SYNG/C) is defined by: 

G 

tdSYNG/C = g_Z_ I Ndg Ys.g (2.5) 

where Ys = (Zs Yk/~k ) / (Zs i/nk) (2.6) 
• g .g .g 

is the sample-weighted mean of y in the set 
D 

S.g = dU1 Sdg, which is the part of the sample s that  

belongs to the group U.g. 

The synthet ic-rat io  es t imator  (SYNG/R) is defined by: 

G 

I:dSYNG/R = gZ__l Xdg Rg (2.7) 

with Rg = (Xs Yk/~k ) / (zs Xk/~k )" (2.8) 
• g .g 

The variance of the SYN est imators  is ordinarily very 
small. Consequently, if in a given domain the bias also 
happens to be small, it is almost impossible, for any 
other  est imation technique, to produce a be t t e r  result  
(smaller MSE). But the possibility of a substantial  bias 
(and large MSE) is a considerable handicap in the SYN 
method, which can therefore  not be seriously recom- 
mended. 

3. GENERALIZED REGRESSION TECHNIQUES FOR . . . .  

AN ARBITRARY SAMPLING DESIGN 

The construction of the generalized regression 
es t imator  involves the fit of a linear regression model 
of y, the variable of interest ,  on x, a p-vector  of 
auxiliary variables: The model, denoted ~, postulates  
that  Yl' "'" YN are independent and 

I 

E{(y k) = XkS; V{(Y k) = v k. 

If all N points (Yk' Xk) were observed, the generalized 

least squares fit of this model would lead to es t imat ing 
S by 

B =Q-lq 

X I Xk. k XkYk. 
where -Q = ZU Vk and -q = ZU Vk 

However, in practice,  Yk is observed for kes only, and 

according to a sampling design with inclusion probabili- 
t ies =k" Therefore B is in turn es t imated by 

x x' -I ~k-k XkYk. 
"B : vk k ) vk --T 

^ 

We assume that  B is design consistent  for B. For the 

k:th unit, let Yk = Xk ~ be the predicted value and 
^ 

ek = Yk-Yk the residual. Siirndal (1984) proposed the 

following es t imator  of td: 

^ ^ 

tdRE = r u d Yk + r s d ek/=k" (3.1) 

The first  t e rm will be called the synthetic  term: 

I:dSY = ZU d Yk = (ZU d Xk)' ~~' (3.2) 

whereas r Sd ek/= k will be called the correct ion term.  

The la t t e r  te rm corrects ,  approximately,  for the bias 
that  is generated if the synthet ic  te rm alone were used 
to es t imate  t d. (In particular,  (2.5) and (2.7) are 

special cases of (3.2).) 

As is evident from (3.1) and (3.2), these estimators 
require that the domain sum x Ud X~k be known from 

auxil iary sources (but individual x k - values need not be 

known). Now, _tdRE is a consistent est imator of t d. It is 

easily seen that the (unconditional) bias vanishes 
asymptotically:  

^ I 

_ = _ . - Xk)] E(tdRE) t d E[B (zSd Xk/~ k zUd 

I 

-" - B. {E(Xsd X/~k)  .x } =0 .  
k - r U d k  
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The domain estimator tdRE takes a step in the right 

direction: Auxiliary information is judiciously used and 
strength is "borrowed" by fitting a model with a limited 
number of parameters. Hidiroglou and Sarndal (1985) 
proposed that further improvement can be obtained by 
modifying tdRE slightly: 

,, ,, ZSdek/Xk 
tdMRE = Z U d Y k + N d ~ (3.3) 

d 

where Nd : Zsdl /~kand (Zs d 

zero if s d is empty. 

ek/~k)/~l d is defined as 

A comparison of tdRE and tdMRE suggests that  the 

la t te r  formula has advantages.  Firstly, tdMRE 
^ 

ordinarily has a smaller variance than tdR E because of 

the ratio fea ture  of the correct ion term.  Secondly,  as 
^ 

it will be seen in Section 5, tdMRE has conditional 

~roperties which are more favourable than those of 
tdR E. Thirdly, for an SRS design, tdMRE (unlike tdRE ) 

is design consistent.  That is, td = td when the event 

s d = U d occurs: this property,  however,  does not hold 

for a general design neither for tdRE nor for tdMRE" 

In samples in which n d is ex t remely  small (say, five or 

less), the variance of the correct ion term (in ..tdRE as 

well as in tdMRE ) can be large. This volatil i ty can 

cause "unacceptable est imates".  In order to control the 
volatil i ty of the correct ion te rm and reduce the risk of 
unacceptable est imates,  we suggest to apply a 
"dampening factor"  to the correct ion term of the 
^ 

tdMRE formula, but only the below average values of 

~1 d. The result is the "dampened regression est imator":  

tdDRE 

=I zUd 

ZU d 

r s ek/x k ^ 
Yk + Nd d i f  N d >_ N d 

SSdek/~k ,, 
Yk + (~)h Nd Nd if N d < N d. 

(3.4) 

h 
The exponent h in the dampening fac tor  (Nd/Nd)is 
a suitably chosen non-negative constant;  we suggest 
h=2 as a general  purpose value. (We have examined 
al ternat ive values; see Section 7.) The correct ion term 
is defined as zero whenever s d is empty.  

4. CONDITIONING IN THE CONTEXT OF 
RANDO MIZATION THEORY 

In the context  of randomization theory, expected value 
and variance are interpreted with re ference  to repeated  
draws of samples s under the fixed probability 
sampling design p(s). Let ~ be the set of all possible 
different  sets s. Conditioning means that  a t tent ion is 

focused on samples s having some specific property 
(for example, samples s that  contain exact ly  10 
observations from the d:th domain). The collection of 
samples s that  display the specific property form a 
subset ~e of ~, where the subscript c (here and in 

other  symbols used below) indicates "conditional". 
Thus, conditional expectat ion (c-expectat ion) ,  condi- 
tional bias (e-bias) and conditional variance 
(c-variance) derive their  in terpreta t ion from repeated 
draws of samples s according to the design p(s), but 
such that  s obeys se~ c. The conditional probability of 
drawing s is 

Pc(S) = p(s) / z p(s) .  
SE~ c 

The c -expec ta t ion  of an es t imator  td = td (s) is: 

Ec(~Cd) = E(2CdlS~;c) = Z 

SE{ c 

td(s) Pc(S), (4.1) 

the c-bias is Bc(t d) = Ec(t d) - t d, and the c-var iance  
is: 

Vc(td) = E(tdlSE{c) - [Ec(td)]'. (4.2) 

By "the conditional approach" to the construction of a 
confidence interval for td, we mean: an approximately 

e-unbiased es t imator  _td is considered (that is, Ec(~ ~)_ -" 

td). For the e-var iance ,  V fi~), we assume that  a 

e-consis tent  est imator ,  Vc(td), can be found. An 

approximately 100(l-a)% conditional confidence 
interval  for t .  is then constructed as: 

G 

1:d + Zl_a/2 ~/vC(td ) (4.3) 

where the constant  Zl_a/2 is exceeded with probability 

a]2 by the unit normal variate.  (Here we assume that  

the distribution of td' given se~ c, is approximately 

normal.) In repeated draws of samples, roughly 

100(i-a)% of all samples s obeying se~ c will contain the 

true tota l  t d. 

It follows that  since the approach gives a c -coverage  
ra te  of roughly 1-a for any specific set ~c' the 

unconditional coverage is automatical ly  about 1-a. 
That is, unconditionally speaking, nothing has been lost 
by conditioning; the confidence s t a t ement  is valid 
conditionally as well as unconditionally. By contrast ,  in 
the unconditional approach one would find the 
unconditional variance, Vu(td), then find a consistent 

es t imator  thereof,  ~u(td),_ and use it to construct  the 

unconditional confidence interval: 

td -+ z 1-a/2 ~fVu (td) (4.4) 

In this procedure, the coverage ra te  in repeated  
samples will be (roughly) the desired 1-a 
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unconditionally, tha t  is, over all possible samples sa~. 
However, e-condi t ional ly  on s in some ~c C ~, the 

confidence level will ordinarily differ  from the desired 

l-a, even if t~ is e-unbiased.)  
L [  

5. CONDITIONAL AND UNCONDITIONAL 
PROPERTIES UNDER SIMPLE RANDOM SAMPLING 

In the domain es t imat ion problem, on what set ~; e 
should one condition? When the ~k'S are arbi t rary,  it is 
reasonable to consider the conditioning set  ~c composed 

of all s in which the es t imated  domain size N d is 
constant  (or near-constant ,  since N d is general ly  not 

integer). To sys temat ica l ly  carry  out an analysis of the  
conditional behaviour of es t imators  may not be easy in 
the  ease of arbi t rary inclusion probabilit ies.  In one 
important  case it is, however,  r a ther  simple, namely,  
when the design p(s) is simple random sampling without 
rep lacement  (SRS). Consider SRS with n units drawn 
from N, so tha t  ~k = n/N for all k and ~k~. = n(n-1)/N(N- 

1) for all k~9.. We shall let  ~;e be subset of all s for 

which 1~ d = Nnd/n is a fixed positive constant .  That is, 

the s ta t i s t ic  conditioned on is the real ized sample 
count, n d, in the domain. For SRS, the "tilde means" of 
the type used in (2.4) become straight  a r i thmet ic  
means, which will be denoted by overbar: Ys = r s Yk/n; 

x s- = z s xk/n, etc.  

Let ~c be the subset of ~; containing the samples s for 

which n d is fixed. Let  us study the bias, variance and 
mean square error  (eonditionaUy as well as 
unconditionally) of some of the proposed es t imators .  

In the absence of auxiliary information,  the  s t ra ight  
expansion es t imator  (EXP) given by (3.2) would have 
been used. Although unconditionally unbiased, this 
e s t imator  has, for n d >_. 1, a conditional bias given by 

N 
Bc(tdEXP) : (~ n d Nd ) - - YUd 

This bias is near zero only if the real ized domain 
sample count n d is near its expected value n Nd/N. 

At taching a conditional eonfidenee interval  to tEXP is 

thus in general  not meaningful; nevertheless ,  it is 
instruet ive to observe tha t  a e-unbiased es t imator  of 
the e -var iance  for tdEXP is given (if n d >_. 2)by:  

^ Nn d 2 1 i S2 

Vc(tdEXP) : (-~-1 C~dd-~dd)Sd (5.1) 

where S 2 = 1 2 
Sd   d(Yk -  Sd) 

and - = Yk/nd, Ys d Zs d 

and tha t  an unbiased es t imator  of the uncondit ional 
varianee for tdEXP is given by: 

" ' 1 1) n d - I  ' 
Vu(tdEXP) = N (~-  n--TT- {Ss d 

n d n d _2 

+ _ Ysd } (5.2) 

As is easily shown, the e -var iance  of which (5.1) is an 
unbiased es t ima te  is an increasing function of n .  for 
0 <_. nd/N d <_. 0.5 (which is ordinarily the  most impor tant  

range of n d -va lue s ) .  Thus, a weakness of the EXP 

es t imator  (in addition to the condit ional bias) is tha t  its 
conditional var ianee ordinarily increases (rather  than 
decreases,  as seems reasonable) when the data  base in 
the domain expands. As for the unconditional var iance 
es t imator  (5.2), one can show tha t  it is e-biased.  

Thus for two reasons (e-bias of the e s t ima to~  and 
inereasing tendency of the eondit ional varianee) tdEXP 
is unsuitable for the  eonditional approach. 

Let  us turn to the  post -s t ra t i f ied  es t imators  POSG/C or 
POSG/R given, respect ively,  by expressions (2.3) and 
(2.4). They are (nearly) unbiased, both eonditionally and 
uneonditionally. Here, one can easily take the  
conditioning argument  one step fur ther  and condition 
not simply on the domain eount n d, but on the individual 

eell  counts ndg, g~l,  ..., G. Then the conditional 

e s t ima tor  of var iance for tdPOSG/C (derived from the 

> 2,  c-var ianee)  is, if all ndg_  

,, ,, G N, ( i  i S' 
: r. - NTg) , (5.3) Vc(tdPOSG/C) g=l dg ndg Sdg 

while an es t ima to r  of var iance suggested by the  
unconditional var iance (via an analogy involving the 
s tandard rat io es t imator)  is 

Vu( dPOSG/C) : 
G ndq-i 2 

g__Z 1 n-i SSdg , (5.4) 

where S 2 is defined analogously to S 2 . Formula  (5.3) 
Sdg s d 

will give approximately  valid conditional eonfidenee 
intervals,  whereas (5.4) will not. This fae t  is i l lus t ra ted 
empir ieal ly by Table 1, Seetion 7. 

6. CONDITIONAL ANALYSIS FOR ESTIMATORS 
BASED ON REGRESSION 

To fac i l i t a te  a conditional analysis, under SRS, of 
^ ^ ^ 

tdDRE, tdMRE and tdSY, let  us express eaeh of them in 

a suitable form. Given SZ{e, we shall assume tha t  the re  

is a eonstant  vec tor  value, B e , for which B is 
e -consis tent ,  namely,  

x ' _ XkYk) E -kXk) ]} i {E[(z s Is ~c ]} 
B c = k I c v k 

_ gc, (6.1) 
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say. (c-consistency should in a more formal analysis be 
placed in a context where n d increases, with 

proportional increases in n and hi.) Define a 
"conditional residual" for the k:th unit as 

Eck = Yk - x.'B.K.C (6.2) 

The conditional behaviour of t'dSY can be analysed 

through the following identity for the deviation of the 
es t imator  from the true value td: 

tdSY td E + ' (B Bc) (6.3) - = -  r U d ck t x d - -  

where txd = z u x k. 
d 

Correspondingly, for the es t imator  tdMRE we have 

Z E s d ck 
tdMRE - t d :- zUd Eck + N d n d - A d (6 .4 )  

rSd x k 
with a d = (N d nd - txd ) ( ~ -  Bc), 

while the identity for tdDRE is: 

Zs d Eck 
tdDRE - td = - SU d Eck + {~)h Nd nd 

A d (6.5) 

if ~t d < N d, whereas for ~d >-- Nd' _tdDRE - td is given 

by the right hand side of (6.4). In these expressions, 
r Ud Eek is a constant. Looking at (6.4), the random 

variable A d is of lower order of importance than N d r Sd 

Eck/n d, since (hi d r Sd xk/n d - t xd), a vector  with 

e -expec ted  value zero, has a c-var iance of the same 
order as that  of N d r s d  Eek/n d, and since B -  B 

converges conditionally to the vector  0. 

Thus, for sere, 

t dMRE-  td ; - rUd Eck + Nd rsd Eck/nd,(6.6) 

where =" expresses "of the same order in probability". 

Similarly, in (6.5), a d is of lower order than the terms 

that  precede, so that: 
^ 

tdDRE - td " - ZU d Eck + (~_~)h Nd r Sd nd Eck 

+ ( i -  (~T) h) t'xd (B- Bc) (6.7) 
0 

^ ^ ^ 

when N d < N d, and fo r  N d _> N d, tdDRE -t d is given 

by (6.6). 

For the difference (~. - B e) appearing in (6.3), (6.5) and 

(6.7), we have, for sE ~e, 

^ = Z XkXk)-I XkEck . .Qc 1 XkEck 
B - B c ( S v k ZS V k Zs v k 

(6.8) 

. 

Here we have used that  r. s Vk is e-consistent  for Q-e 

(rather than for Q. = z U Vk ). Now, it is easily 

derived that:  

Ec(-B) - Bc " -Qc 1 (gc - -Qc Bc) - O. (6.9) 

The c-bias for the three est imators follows from (6.3), 
(6.6), (6.7) and (6.9): 

^ 

Bc(tdSY) "_  r Ud Eck (6.10) 

^ 

Bc(tdMRE ) -" 0 (6.11) 

^ 

Bc(tdDRE ) " 

0 i f  Nd >- Nd 
^ 

(I (~_~)h) Eck i f  Nd < Nd _ _ zUd 
( 6 . 1 2 )  

Here, (6.11) shows that  tdMRE is approximately 

c-unbiased whatever the value of nd. The expressions 

(6.10) and (6.12) contain the residual sum r Ud Eek. 

Although in principle dependent on nd, this sum is in 

many practical settings roughly constant as n d varies. 
In fact, as shown below, 

: E k (6.~3) rUd Eck rUd 

where E k = Yk-  x~B is the unconditional residual. In 

view of (6.13), we conclude from (6.10) that  the e-bias 
^ 

of tdS Y, seen as a function of n d, is essentially 

constant. This is confirmed by our empirical evidence 
(see Graph 1). Moreover, from (6.12) we see that  

tdDRE is approximately e-unbiased when 1~ d _> N d- 
^ 

Otherwise, tdDRE has a e-bias which beeomes in- 

creasingly large as 1~ d decreases away from Nd, and as 
^ 

N d approaches zero, the e-bias of tdDRE obliques to- 

wards the constant e-bias level of tdS Y. This behavior, 

too, is confirmed by our empirical work (see Graph 1). 

Turning now to e-variances and their estimation, we get 
from (6.6), for n d >_ I, 
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^ 

(tOMRE) d n o - ~dd ) N d - 1 
Vc . N 2 ( I  i 

- -  2 

zUd(Eck - EcU d) 
(6.14) 

with EcU d r Ud Eck/N d. The expresssion has this 

form since, given nd, the sample s d real ized in the 

domain behaves as a SRS selection of n d from N d. 

Consequently, a c -cons is tent  variance es t imator  is, for 
n d >_ 2,: 

- )2 

^ ^ 2 1 1 zsd(ek - esd 
VC(tdMRE) = N d(ndd- N-rid ) n d - I (6.15) 

where esd is the mean of the residuals e k for kEs d. In 

deriving this expression we have replaced the 

theore t ica l  residual Eck = Yk-X'~k~~B~ in̂  (6.15) by the 
sample-based residual e k = Yk - X'~k~B, which for any k 
is e -eonsis tent  for E ok" 

Remark. An uneonditional variance es t imator  is given 
by: 

^ ^ 2 1 N i )  
Vu(tdMRE ) = N (~ -  

2 2 

zsd(e k - esd) + n d (1-nd/n) esd} 
{ n-1 (6.16) 

Given our conditional outlook, we favour the use of the 
e -var iance  es t imator  (6.15)^ for the eonstruet ion of 
eonfidence intervals with tdMRE. Formula (6.16) gives 

incorrect  conditional (but correc t  unconditional) 
eonfidence levels. 

Remark.  We shall also use (6.16) when forming 
^ 

confidence intervals with the es t imator  tdDRE. This 

will tend to overs ta te  the c-var iance  for 1~ d < N d- 

However, it turns out that  the ove r s t a t emen t  helps to 
maintain a correct  conditional coverage ra te  for small 
n d - values. (The normali ty assumption is not adequate  

for small rid; a constant  g rea te r  than 1.96 = z0.975 (for 

a = 5%) would be needed to give roughly 95% 
conditional coverage rate.) 

Remark.  The correet ion te rm in tdRE given by (3.1) 

involves a direct  expansion es t imator  in the residuals. 
^ 

Therefore  tdR E will suffer from drawbacks similar to 
^ ^ 

those observed ear l ier  for tdEXP: The es t imator  tdR E 

is c-biased,  thus unsuitable for conditional confidence 
s ta tements .  

7. RESULTS FROM THE EMPIRICAL STUDY 

In order to confirm and i l lustrate  the conditional and 
other  results  discussed in the preceding sections, we 
carr ied out a simulation study involving repea ted  draws 
of simple random samples. This study can be sum- 

marized as follows. The province of Nova Seotia was 
ehosen as our population with N = 1678 sampling units 
(unincorporated tax filets). The variable of interest ,  y, 
is Wages and Salaries, and the auxiliary variable,  x, is 
Gross Business Income (Income, for short). It is 
assumed that  x 1, ..., x N are known. Domains of the 
population were formed by a cross-classif icat ion of four 
industry types (i=l, ..., 4) with eighteen areas (a=l, ..., 
18). The industry types were Retai l  (515 units), 
Construction (496 units), Aeeommodat ion (114 units) 
and Others (553 units). The areas were the 18 eensus 
divisions of the province. This produced 70 non-empty 
domains (out of the 72 possible domains, two had no 
units). Thus, 70 domain tota ls  tai, are to be es t imated  
every t ime a sample is drawn. The domain index d used 
in earl ier  sections is expressed in our empir ical  study, 
by the double index ai. Consequently, ear l ier  notat ion 
sueh as U d, s d, n d, Sdg~ ndg ... now becomes Uai, Sai, 

nai , Saig ~ naig ... The overall  correla t ion eoeff ic ient  

between x and y was 0.42 for Retail ,  0.64 for 
Construction, 0.78 for Accommodation and 0.61 for 
Others. The average domain size was 28.6 for Retail ,  
27.5 for Construetion,  7.1 for Accommodation and 30.7 
for Other. The overall  average domain size was 24.0. 
The smallest  domain has 1 unit; the largest  130 units. 

For the Monte Carlo simulation, 500 simple random 
samples, s, eaeh of size n=419, were se lec ted  from the 
population of N=1678 units, and for each sample, a 
number of es t imators  were calculated.  (The sampling 
f r ac t ion  is thus 419/1678 = 25%.) The se lec ted  sample 
units, within each sample, were classified by domain 
(that  is, by industrial type and eensus division), as well 
as by Ineome Group, indexed by g=l,  ..., G. Two income 
groupings were used: (i) G=3 groups with income 
classes given by $25K-$50K, $50-$150K, and $150K- 
$500K; (2) G=I, whieh means that  no income grouping 
was a t t empted .  The average behaviour of the 
es t imators  is summarized below through (i) conditional 
performance measures; (ii) overall  unconditional 
performance measures. These are defined in detai l  
below. 

The simulation ineluded the "eount version" DRE 
est imator :  

G ^ 

= s {Naig Ys • taiDREG/C g=l .ig 

^ 

+ - - Ys )} (7.1) Fai Naig (Ysaig . i g  

(Nai/l~ai) (l~ai/Nai)h- 1 where Fai = if l~ai >_. Nai and Fai = 

if l~ai < Nai. Here l~aig = Nnaig/n, l~ai = Nnai/n, and 
m 

YS..lg and Ysaig are s traight  means. The "rat io version" 

DRE es t imator  is 

G 
taiDREG/R g=l ig 

+ Fai Naig (Ys a - Ri ~ )} (7.2) 
ig g Saig 

with ~ig - Ys.ig/Xs.ig" The es t imator  (7.2) is genera ted  
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by the general formula (3.3) if the underlying model is 
taken as: 

E(Yk) : Big Xk; V(Yk) : O~g x k, (7.3) 

for units k in the  i:th industrial  type and g:th income 
group; i=1, ..., 4; g=l,  ..., G. In the  ease  of G=3 groups 
(defined as ment ioned above), this implies tha t  each 
simple random samp].e of size_ 419_ is used to e a l eu l a t e  
12 slope es t imates ,  Big = Ys.ig/Xs.ig, where Ys.  and 

Xs .  are s t ra ight  means. .lg 
. l g  

We also used the model (7.3) with G=l, meaning that a 
single slope was estimated for each industry type. 

The count version (7.1) of the  DRE e s t ima to r  is 
genera ted  by the  model (7.3) with x k = 1. With G=3, we 

then have 12 p a r a m e t e r  e s t ima tes ,  Big = Ys.  " With 
. l g  

G=l,  the count  version of the DRE is less in t e res t ing ,  
since industry type by i tself  will pick up only a modest  
amount  of the  to ta l  var ia t ion in y. 

The simulation study also included the EXP, POSG/C, 
POSG/R, SYNG/C and SYNG/R estimators given by 
formulas (2.2)-(2.7), with ~k = n/N = 0.25 for all k (since 

simple random sampling was used). For these 
estimators, too, we considered the cases of G=3 and 
G=I income groups. 

A. CONDITIONAL PERFORMANCE MEASURES 

For each domain,  the  500 r e p e a t e d  samples  were  
dis t r ibuted over  the d i f fe rent  rea l ized  domain sample  
eount  values nai. For a fixed value of nai, and for 

domain ai, the  condit ional  pe r fo rmance  measures  were  
computed  over  tha t  subset  of the  500 samples  for which 
the  domain sample count was exac t ly  nai. 

The following condit ional  pe r fo rmance  measures  were 
ea leula ted:  (a) Rela t ive  Condi t ional  Bias (RCB); 
(b) Root Condit ional  MSE (RCMSE); (e) Condit ional  
Standard Error (CSE); (d) Condit ional  Coverage  Ra te  
(CCR). 

Because of space constra int ,  we l imit  ourselves here  to 
a graphical  i l lustrat ion of these  resul ts ,  involving one 
se lec ted  domain; namely,  Retai l ,  Region 8, with 
Nai = 23; E(nai) = 5.75. Since the synthe t ie  e s t ima to r  is 

considerably c-biased,  for this domain it is of in te res t  ~ 
to  observe how a l t e rna t ive  e s t ima to r s  behave.  The 
graphical  comparison involves the  EXP es t ima to r  and 
severa l  e s t ima to r s  based on G=l  group: POS1/C, 
POS1/R, SYN1/R, and DRE1/R (with h=2). The main 
conclusions from Graphs 1 to 4 are  as follows: 

(a) Relative Conditional Bias (RCB). 

If t . is one of the  e s t ima to r s  studied,  the  RCB was 
a l  

ca lcu la ted  as 

^ R ^ 
RCB(tai) = 1 rZ (tai r 

= I  9 
- tai)/tai 

(b) 

(c) 

(d) 

where t .  is the value of the e s t ima to r  t . in the  
a l , r  a l  

r : th  of the R, say, samples  (out of the  500) for 
which the sample count in the  ai : th domain equals 
the fixed number  n .. As seen in Graph 1, the RCB a~ 
curve of the SYN1/R es t ima to r  is s i tua ted  at  an 
essent ia l ly  constant ,  c lear ly  non-zero level  over  
the  ent i re  n . - range .  Confirming the  theory  in al 
Sect ion 6, the  DRE1/R e s t ima to r  is seen to be 
essent ia l ly  e -unbiased  when nai is g r ea t e r  than  

expected;  below the  expec ted  value point,  the RCB 
of DRE1/R inereases  as nai approaches  zero, at  

whieh point it tends  to join the RCB curve of 
SYN1/R. The POS1/R e s t ima to r  displays a RCB 
curve near  the  zero level,  while EXP is heavily 
e-b iased ,  except  in the immedia te  vicinity of the  
expec ted  value point.  

Root Conditional Mean Squared Error (RCMSE). 

This measure was ca lcu la ted  for a given domain 
and n . - v a l u e  as 

a l  

^ R 2 

RCMSE(tai) = {1 r=Zl (i;ai,r- tai) }½" 

For the two domains in question, we see from 
Graph 2 tha t  the  DRE1/R es t ima to r  behave best  in 
terms of RCMSE. It is followed by the SYNI/R 
and POS1/R estimators, while the EXP estimator 
falls way behind the others, due in large part to a 
considerable e-bias. 

Conditional Standard Error (CSE). 

This measure  was ca lcu la ted  as the  average  of 

{Vc(tai)} ½ ^  over  those R samples  tha t  yielded a 

given n a i - v a l u e  in a given domain ai. That  is, the  

CSE is proport ional  to the  average  length of the  
condit ional  conf idence in terval  ea lcu la ted  by (4.3). 
(As it makes l i t t l e  sense in this comparison to  
include es t imators  for which the re  is no valid 
design-based confidence in terval  procedure,  we 
could not consider  the  SYN1/R es t ima to r  in 
Graph 3. Graph 3 shows decreasing CSE curves for 

and _ ~iPOSI/C (which is intuitively taiDREI/R 
^ 

sound) while the CSE curve for tiEXP increases 

with nai (which underscores the less satisfactory 

performance of this estimator). Formula (6.15) 
was used for the DRE1/R estimator; (5.3) with G=I 
was used for POS1/C. 

Conditional Coverage Rate (CCR). 

This pe r fo rmance  measure  was computed  for  a 
given ai and n . as 

a l  

R 

CCR(~ai) = 1 r=Zl ic,r((:ai) ' 

where le, r (~i)~ = 1 if the r-th conditional 

confidence interval based on t .  contains the true al 

total tai , and zero otherwise. The nominal rate 

95% was used in the simulation. The intervals 
were computed using formula (4.3), inserting the 
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appropriate  conditional variances.  Graph 4 shows 
tha t  the CCR curve for taiDRE1/R is roughly 

constant  at  (but somet imes  a bit short of) the 
nominal 95% rate.  This sa t i s fac tory  per formance  
is also observed when nai is less than expected,  

despite a cer ta in  conditional bias in the e s t ima to r  
^ 

for this range of nai-values.  For taiPOS1/C , the 

CCR is also reasonably well maintained near  the 
nominal 95% rate,  except  for nai values near  zero. 

(The normal approximation is then inadequate.)  The 
^ 

CCR curve for tdEXP is close to 95% only if nai is 

near  its expected value, since it is only in this 
neighbourhood that  the  e-bias  of tdEXP is small.  

Table 1 i l lustrates (for the domain Retail ,  Region 
8) the differences tha t  may arise be tween the 
conditional and uncondit ional approaches,  for the 
POS1/C and DRE1/R es t imators .  CSE and CCR 
denote conditional s tandard error  and conditional 
coverage ra te .  Viewed as functions of nai, both 

concepts are well-behaved for the two es t imators :  
CSE decreases  as n . increases,  and the CCR is al 
roughly constant  throughout  the range of n .- al 
values. (DRE1/R performs be t t e r  in the l a t t e r  
respect) .  On the whole, both CCR's are, however,  
on the short side of the  nominal 95% rate ,  
suggesting tha t  the CSE formula underes t imates .  

As i l lustrated by the last four columns of Table 1, 
the unconditional approach is unsuitable when valid 
inferences are required for a fixed domain sample 
count. In the ease of both es t imators ,  the  
unconditional standard error  (USE; given by (5.4) 
with G=I, and (6.16)) is increasing with nai, 

cont rary  to what is reasonable.  Consequently,  the 
unconditional coverage ra te ,  UCR (while near  95% 
on the average over all n .-values) is 100% for al 
large nai-Values, but drops toward zero for small  

n .-values. 
al 

13. OVERALL UNCONDITIONAL PERFORMANCE 
MEASURES 

These serve to measure the  bias and the MSE of the 
various es t imators  over all 500 repea ted  samples and 
over all A domains of a given industry type (A = 18 
except  for Accommodat ion,  where A = 16). Since 
collapsed over all nai-Values, these  measures are 

unconditional in nature.  As before,  _tai,r denotes  the 

e s t ima te  obtained by a cer ta in  es t ima tor  tai in the  r - t h  

repea ted  sample.  

The Overall  Absolute Rela t ive  Bias (OARB) was 
calcula ted as 

" 1 A 5 0 0  ,, 

: z I z ( tai ,r / tai  -I) I ARB(tai) ~ a=l r=l 

The Overall  Relat ive Efficiency (OREFF) was 
calcula ted as 

EFF(tai ) : {M--S-E (tai) / MS---E (taiEXP)} ½ 

where 

A 500 
I (~ _ ta ) MSE(ai) = ~ z z 

a=l r=l ai,r i 

For this level of comparison, we examined the 
expansion es t imator ,  EXP, the pos t -s t ra t i f ied  
es t imators  POS1/C and POS1/R, the synthet ic  
es t imators  SYN1/C, SYN3/C, SYN1/R, SYN3/R, the 
dampened regression es t imators  DRE1/C, DRE3/C, 
DRE1/R and DRE3/R, each with h = 0.5, 1.0, 2.0, 8.0. 
It is not possible here to show detai led results  from the 
s imulat ion for each of these es t imators .  We limit 
ourselves to a brief summary.  

The results on OARB were as follows for the EXP 
estimator and for the regression-based estimators of 
ratio type with G-l: 

Estimator 
Industrial  

Type EXP POSI /R  SYNI/R D R E I / R  
0~:2) 

Retai l  0.02 0.11 0.32 0.09 
Construct ion 0.02 0.05 0.16 0.05 
Accommodat ion 0.04 0.27 0.41 0.24 
Other  0.02 0.05 0.26 0.08 

In t e rms  of OARB, the es t imators  thus rank as foUows 
from most favourable (low OARB) to least  favourable 
(high OARB) : 1. EXP; 2. POS1/R and DRE1/R 
(essential ly tied); 3. SYN1/R. Given what is known 
from theory,  there  are no surprises in this ranking. One 
notes that  all es t imators  except  EXP are more heavily 
biased in Accommodat ion,  where domain sizes are very 
small  and zero domain sample counts f requent ly  occur.  
One consequence is tha t  the DRE1/R es t ima tor  will 
of ten  equal the SYN1/R es t imator ,  with increased bias 
as a result .  

As for the other  es t imators  included in the study, the 
following observations were made: 

1. SYN es t imators  (SYN1/C, SYN3/C, SYN1/R, 
SYN3/R): The ra t io  versions had smaller  OARB 
than the count versions, except  for Retail ,  where 
the correlat ion be tween x and y is weakest .  

2. DRE es t imators  (DRE1/C, DRE3/C, DRE1/R, 
DRE3/R, each with h=0.5, 1, 2 and 8): The OARB 
increases ra ther  modestly with the value of the 
exponent h. For a fixed value of h, there  was no 
clear  indication tha t  one of the  four D RE versions 
would have a decidedly smal ler  OARB. There  was 
no clear  evidence tha t  grouping (G=3), as opposed 
to no grouping (G=I), would necessari ly  reduce the 
OARB. 

Turning to the OREFF, we have the  following resul ts  
for rat io  version es t imators  with G=I: 

Estimator 
Industrial 

Type POSI /R  SYNI/R DREI/R 
(h=2) 

Retail 1.24 2.27 1.80 
Construction I. 86 i.  93 2. I0 
Accommodation I. 86 3.27 2.38 
Other 1.64 2.04 1.78 
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Overall, the SYN estimator will outperform all its 
competitors if its bias is small enough in all domains. 
Under this condition, alternative estimators cannot 
overcome the variance advantage of the SYN 
estimator. Here we see that SYN is better than the 
alternatives in the Retail and Accommodation types. 

The ranking (from best to worst) in terms of OREFF of 
the other two estimators is: I. DRE1/R and 
2. POS1/R. The highest efficiency gains (relative to 
EXP) are realized in Accommodation and Construction, 
the industry types with the highest correlation between 
x and y. 

For the other estimators included in the simulation we 
observed the following: 

0 DRE estimators. The OREFF increases with the 
value of h (despite some increase in bias), but not 
markedly beyond h=2. 

. POS, SYN and D RE estimators: not surprisingly, 
for the count  version, G=3 groups gives 
considerably higher OREFF than  G=I group. 
However, for the ratio versions, such an increase 
was not always observed. (DRE3/R was, however, 
more efficient than DRE1/R for all four industry 
types and all h-values.) The comparison between 
G=3/C and G=I/R (which should achieve roughly 
the same purpose), was not conclusive. Sometimes 
the former is more efficient, sometimes the latter. 

8. CONCLUSIONS 

The use of conditional inference has permit ted the 
development of new est imators which have desirable 
conditional properties. It has also shown that  although 
some of the estimators are unconditionally unbiased, 
they can be conditionally biased (EXP, RE). The 
construction of confidence intervals based on 
conditional variances is more likely to achieve the 
target  nominal rates as opposed to those based on 
unconditional variances. 

The dampened regression estimator (DRE) has several 
advantages over the other estimators (EXP, SYN, and 
POS). It is more efficient than either the EXP or the 
POS estimators. Although the SYN estimator may 
under some circumstances (when it is conditionally 
unbiased) be more efficient than DEE, it is biased 
(conditionally and unconditionally). The DRE estimator 
formula is straightforward to apply, and the associated 
conditional confidence interval procedure is not 
complicated. 
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Table  1. Standard error and c o v e r a g e  rate  in condi t iona l  and uncondi t iona l  approaches .  

Reta i l ,  Reg ion  8. 

DOMAIN F R E Q U E N C Y  
SAMPLE OF 
C O U N T  SAMPLES 

CONDITIONAL A P P R O A C H  U N C O N D I T I O N A L  A P P R O A C H  

P O S 1 / C  D R E 1 / R  P O S 1 / C  D R E I / R  
CSE C C R  CSE C C R  USE U C R  USE U C R  

1 7 
2 25 
3 45 
4 59 
5 106 
6 94 
7 77 
8 42 
9 31 

10 10 

. . . .  0 . 0  0 . 0 0  2 3 . 3  0 . 0 0  
1 1 6 . 6  0 . 5 6  9 7 . 8  0 . 8 4  2 6 . 2  0 . 2 8  3 7 . 6  0 . 1 2  

9 5 . 2  0 . 6 7  7 2 . 4  0 . 9 5  3 7 . 9  0 . 5 8  4 0 . 7  0 . 4 0  
8 9 . 8  O. 80 6 9 . 4  O. 98 5 1 . 8  O. 64 5 4 . 5  O. 86 
8 9 . 6  O. 85 6 8 . 8  O. 95 6 8 . 5  O. 82 6 4 . 8  O. 98 
7 8 . 3  0 . 8 7  5 9 . 8  0 . 8 4  7 5 . 4  0 . 8 6  6 8 . 0  0 . 9 8  
7 2 . 4  0 . 8 8  5 6 . 6  0 . 8 3  8 5 . 1  0 . 9 0  7 5 . 4  0 . 9 7  
6 4 . 8  0 . 9 3  5 2 . 0  0 . 8 3  9 0 . 8  0 . 9 8  8 0 . 9  1 . 0 0  
6 2 . 9  0 . 8 7  5 1 . 3  0 . 8 7  1 0 3 . 4  1 . 0 0  9 1 . 9  1 . 0 0  
6 2 . 7  0 . 9 0  5 7 . 8  1 . 0 0  1 1 9 . 5  1 . 0 0  1 1 4 . 1  1 . 0 0  

@ -- e o n f i d e n e e  interval  not de f ined .  
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