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1. INTRODUCTION

In recent years, small area estimation has become an
important concern for survey organizations. For
example, Statistics Canada increased its emphasis on
small area estimates in response to user requirements.
The production of such small area statistics is being put
into place by using existing administrative files and/or
survey files, The production may be as simple a matter
as geocoding the files, provided that their coverage is
satisfactory and that their variables correspond con-
ceptually to the required statisties, and tabulating them
at the small area level, It may be as complex as using
several files together, working out relationships
between variables available in survey files, and applying
these relationships to the larger administrative files,
which are likely to contain fewer variables. This kind
of modelling was implicit in the early development of
the so-called synthetic estimation techniques, where it
is assumed that the models developed for the larger
areas hold for the small areas. If this assumption fails,
synthetic estimation will be biased; to use synthetic
estimation without validation or evaluation is a risky
gamble.

Purely synthetic estimation methods have been pro-
posed by Gonzalez and Hoza (1975), and Levy (1978).
Several authors have noted that the bias potentially
produced by purely synthetic methods can be reduced
through procedures that essentially combine a synthetic
component with another component. Such estimators
have been suggested by Schaible (1979), Fay and Herriot
(1979), Drew, Singh and Choudhry (1982), Sarndal
(1984), Hidiroglou and Sarndal (1985), Fuller and Harter
(1985), and Srinath and Hidiroglou (1985). The approach
used for arriving at the weighting of the two com-
ponents differs amongst the aforementioned authors.

The number of data points realized in a given domain is
not controlled at the selection stage. The analyst must
make the best of the random number of observations
that happened to fall in the domain. Inference condi-
tionally on a suitable statistic (such as the realized
domain sample count) strongly suggests itself. The
basie motivation for the research reported in this paper
can be briefly stated as follows: it is required to
develop an approach to conditional inference for small
areas that is situated in the randomization theory
context.

This point of view led us (in Section 3) to construct
certain new estimators for (small) domains. In the
following sections, we analyze the design-based condi-
tional properties of these and other possible estimators.
In the randomization theory mode of inference, there is
no systematically developed conditional approach; some
steps in this direction are taken in this paper. By
contrast, in the model-based approach to survey sam-
pling, conditional arguments in sampling have been used
by Holt and Smith (1979), Royall and Cumberland (1985)
and others. Their work pointed to important questions
in conditional inference from surveys and motivated
interest in the conditional approach. However, these
papers are not in particular concerned with the domain
estimation problem.
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2. STANDARD ESTIMATORS FOR AN ARBITRARY
SAMPLING DESIGN

Suppose that the population U = {1,..., ky ..., N} is
divided into D non-overlapping domains Ul’ ey U &

U
D
of the variable of interest for each domain. In prac-
tice, the number of domains, D, is often quite large:
several hundred or more is not atypical. Let N d be the

. An estimate is required for the total (or the mean)

known size of U a We further assume that the popula-
tion is divided according to a second classification
criterion into G non-overlapping groups U 1 U ¢
ooy U.G'

say, around 10; in any case, G
compared to D.

The number of groups, G, is usually modest,

is assumed small

The cross-classification of domains and groups gives
rise to DG population cells Udg; da=1, ..., D; g=1, ..., G.

Let N

dg be the known size of U d

g
Then the population size N can be expressed as:

D D G

N= z N, =

r I N (2.1)
d 4c1¢-1 99

Let s denote a sample of size n drawn from U under
a given probability sampling design, p(s), such that
P(kes) = ™ > 0 for all k and P(k and ges)= s 0 for all

k#%. Any given sample s will distribute itself in a
random manner across the domains U d and the popula-

tion cells U dg’ Denote as s d and s _ the parts of s that

dg
happen to fall, respectively, in U d and U g’ Let n d and
0y g which are random variables, be the respective

q and s 9 We then have that (2.1) holds for

]
lower case n's as well, and that 0 < ndg < max (n, ng).

sizes of s

The variable of interest, y, takes the value Y for the

k:th unit. For d=1, ..., D, we seek to estimate the

domain total t, = ¢ y, =Z. V¥,.
d keUd k U d k
(If A is any set of units, let us write A for £ .)

keA

The expansion estimator (EXP), or Horvitz-Thompson
estimator, is given by:

~

t (2.2)

dEXP = s Y/ g

The post-stratification estimator based on G-group
eounts (POSG/C) is defined as:

N G

t = 1 N,y (2.3)
dpose/c = I, Tdg s,

9



is known and

where N dg

v =( y/m) /1 (z. Um)
ysdg (Sdg K/ ™) (Sdg k

is the sample-weighted mean of the n g y-values in s g
If ndg = 0, we define ySd to be zero.

g
A second type of post-stratified estimator is based on G
group ratios (POSG/R):

~ ]

t = 1 X, (y. /x. )
dPOSG/R g=1 dg Sdg sdg

(2.9)

where is is defined analogously to 3}5‘ , and X
dg dg

the known population total of x for the dg:th cell. If

n, =0, definey_ /X as zero (arbitrarily).

dg s g s g

dg 18

The EXP estimator is rather inefficient (see below); it
serves here mainly as a benchmark against which the
behaviour of other estimators is compared.

The synthetic estimation technique is also well known.
Here too, we consider a "count version" and a "ratio
version"™ For the count version, the implicit model is
that the y-mean of each group is the same across all
domains d. For the ratio version, the implied model is
that the ratios yk/xk are constant within the given

group, irrespective of the domain. If these assumptions
of homogeneity across domains fail, the SYN estimator
can be seriously biased.

The synthetic-ecount estimator (SYNG/C) is defined by:

A G

t4svNe/C kS Nag Vs (2.5)

9

where y = (z y /m) / (= 1/n) (2.6)
S.g S.g k' "k s.g k

is the sample-weighted mean of y in the set

D
s = Us which is the part of the sample s that
€ =1 d¢’ P P
belongs to the group Ug.

The synthetie-ratio estimator (SYNG/R) is defined by:

. G .
tasynG/R = gil Xag Rg 2.7
with ﬁg = (zg . Y /m) /(g . X /1) (2.8)

The variance of the SYN estimators is ordinarily very
small, Consequently, if in a given domain the bias also
happens to be small, it is almost impossible, for any
other estimation technique, to produce a better result
(smaller MSE). But the possibility of a substantial bias
(and large MSE) is a considerable handicap in the SYN
method, which can therefore not be seriously recom-
mended.
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3. GENERALIZED REGRESSION TECHNIQUES FOR
AN ARBITRARY SAMPLING DESIGN

The construction of the generalized regression
estimator involves the fit of a linear regression model
of y, the variable of interest, on x, a p-vector of
auxiliary variables: The model, denofed &, postulates
that Yqs eeer yN are independent and

EE(yk) = §k§; Vg(yk) = Vk'

If all N points (yk, )fk) were observed, the generalized
least squares fit of this model would lead to estimating
8 by

-1 q

[3=-)
1
o

Xy
_ ~k7k.
and q = EU ——-—Vk

K 3

where

However, in practice, Yy is observed for kes only, and

according to a sampling design with inelusion probabili-
ties T Therefore B is in turn estimated by

k.

X, X,
~k~k) zS v
k'k

S ank

= (z

o>

We assume that B is design consistent for B. For the
k:th unit, let §k = 35'1( 1:3 be the predicted value and
e =Yy - §k the residual. Sarndal (1984) proposed the
following estimator of t &

thE = zud Y t ):sd ek/“k‘ (3.1)
The first term will be called the synthetic term:

~ ~ 1 ~

tasy =y, Y = By, %) B 3.2

whereas Zs ek/nk will be called the correction term.

The latter term corrects, approximately, for the bias
that is generated if the synthetic term alone were used
to estimate td. (In particular, (2.5) and (2.7) are

special cases of (3.2).)

As is evident from (3.1) and (3.2), these estimators
require that the domain sum Ly Ek be known from

auxiliary sources (but individual ’"(k - values need not be
known). Now, thE is a consistent estimator of t da It is

easily seen that the (unconditional) bias vanishes
asymptotically:

Eltgpe) - tg = - EIB (2 x/me - 2y %]

2 gl{E(st ).Sk/“k) - ZU X } = 0.

d "k



The domain estimator deE takes a step in the right

direction: Auxiliary information is judiciously used and
strength is "borrowed" by fitting a model with a limited
number of parameters. Hidiroglou and Sarndal (1985)
proposed that further improvement can be obtained by
modifying thE slightly:

. zsdek/"k
aMRE - Zu Ykt Ng— o
d Nd

~

t (3.3)

where Nd = zsdllnkand ():Sd ek/nk)/Nd is defined as

zero if 84 is empty.

and MRE

advantages.

suggests that the

~

Firstly, thRE

because of

A comparison of thE

latter formula has

ordinarily has a smaller variance than deE
the ratio feature of the correction term. Secondly, as
it will be seen in Section 5, thRE has conditional

properties which are more favourable than those of
thE' Thirdly, for an SRS design, thRE (unlike thE)

is design consistent. That is, "Ed =t d when the event

s, = U, occurs: this property, however, does not hold

d d

for a general design neither for {

4RE DOF for t

dMRE’

In samples in which n 4 is extremely small (say, five or

less), the variance of the correction term (in deE as

well as in thRE) can be large. This volatility can

cause "unacceptable estimates". In order to control the
volatility of the correction term and reduce the risk of
unacceptable estimates, we suggest to apply a
"dampening factor" to the correction term of the
thRE formula, but only the below average values of

N & The result is the "dampened regression estimator":

) Esdek/nk .
ZU yk+Nd——“ 1de_>_Nd
d Nd

YDRE ~

N A A
EU yk+(ﬁ—) Nd—"1de<Nd.
d d Nd

(3.4)

The exponent h in the dampening factor (ﬁ /N )h is
d'd

a suitably chosen non-negative constant; we suggest
h=2 as a general purpose value, (We have examined
alternative values; see Section 7.) The correction term
is defined as zero whenever s q is empty.

4. CONDITIONING IN THE CONTEXT OF
RANDOMIZATION THEORY

In the context of randomization theory, expected value
and variance are interpreted with reference to repeated
draws of samples s wunder the fixed probability
sampling design p(s). Let ¢ be the set of all possible
different sets s. Conditioning means that attention is
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having some specific property
(for example, samples s that contain exactly 10
observations from the d:th domain). The collection of
samples s that display the specific property form a
subset %o of ¢, where the subseript ¢ (here and in

focused on samples s

other symbols used below) indicates "eonditional".
Thus, conditional expectation (c-expectation), condi-
tional bias (c-bias) and conditional variance
(e-variance) derive their interpretation from repeated
draws of samples s according to the design p(s), but
such that s obeys Seg The conditional probability of
drawing s is

Pc(s) =p(s) /= p(s).
Sscc

The c-expectation of an estimator 'fd = fd(s) is:

Ec(Ed) = E(EdISe;C) = I %d(s) pc(s), (4.1)
Secc

;c::e c-bias is Bc(td) = Ec(td) -t & and the c-variance
Vo(ty) = E(té|secc) - [E_(E ). 4.2)

By "the conditional approach" to the construction of a
confidence interval for t g We mean: an approximately

c-unbiased estimator Ed
t d)' For the c-variance, Vc(fd), we assume that a
c-consistent estimator, Vc(fd), can be found. An
approximately  100(1-a)%  conditional confidence
interval for td is then constructed as:

tg £ 21 02 YVe(ty)

where the constant 2y o/2 is exceeded with probability

is considered (that is, Ec(fd) 2

(4.3)

a/2 by the unit normal variate. (Here we assume that

the distribution of fd

repeated draws of

, given Seg is approximately

normal.) In samples, roughly

100(1-a)% of all samples s obeying sez, will contain the
true total t a4

It follows that since the approach gives a c-coverage
rate of roughly 1-a for any specific set the

unconditional coverage is automatically about 1-a.
That is, unconditionally speaking, nothing has been lost
by conditioning; the confidence statement is wvalid
conditionally as well as unconditionally. By contrast, in
the unconditional approach one would find the
unconditional variance, Vu(td), then find a consistent

Cc9

estimator thereof, Vu(fd), and use it to construct the
unconditional confidence interval:
d * Z1-q72 YVu(tg)

t, « (4.4)

in repeated
desired Il-a

In this procedure,
samples will be

the coverage rate
(roughly) the



unconditionally, that is, over all possible samples sez.
However, ¢-conditionally on s in some e C % the

confidence level will ordinarily differ from the desired

l1-a, even if ‘Ed is e-unbiased.)

5. CONDITIONAL AND UNCONDITIONAL
PROPERTIES UNDER SIMPLE RANDOM SAMPLING

In the domain estimation problem, on what set Zq
should one condition? When the ‘1ik's are arbitrary, it is
reasonable to consider the conditioning set %o composed
of all s in which the estimated domain size N, is
constant (or near-constant, since N, is generally not

integer). To systematically carry out an analysis of the
conditional behaviour of estimators may not be easy in
the ease of arbitrary inclusion probabilities. In one
important case it is, however, rather simple, namely,
when the design p(s) is simple random sampling without
replacement (SRS). Consider SRS with n units drawn
from N, so that L n/N for all k and L = n(n-1)/N(N-

1) for all k. We shall let % be subset of all s for
which ﬁ = Nn /n is a fixed pos1t1ve constant. That is,
the statlstlc condltloned on is the realized sample
count, n & in the domain. For SRS, the "tilde means" of

the type used in (2.4) become straight arithmetic
means, which will be denoted by overbar: ?S =L yk/n;

Ro=Ig xk/n, ete.
Let ¢ be the subset of ¢ containing the samples s for
which n 4 is fixed. Let us study the bias, variance and

mean square error (conditionally as well as
unconditionally) of some of the proposed estimators.

In the absence of auxiliary information, the straight
expansion estimator (EXP) given by (3.2) would have
been used. Although unconditionally unbiased, this
estimator has, for n a2 1, a conditional bias given by

-~ _ H -
B.(tgexp) = (G ng - Ng) Yy,

This bias is near zero only if the realized domain
sample count ny is near its expected value n N d/N.

Attaching a conditional confidence interval to EEXP is

thus in general not meaningful; nevertheless, it is
instructive to observe that a c-unbiased estimator of
the c-variance for is given (if ng2 2) by:

dEXP
Nn
o2 dy?2 (1 1 2
v (t Yy=(=) (-%)S (5.1)
¢ "dexP n ny Nd Sq
2 - 2
where SS = 0.1 Z%s (.Vk - Y )
d d
and Yo =%, y./n,,
S4 sd kd

and that an unbiased estimator of the unconditional

variance for tdEXP is given by:

1, gl | 2
Valtgexp) =N (5 - ®) mo1 {Ssd
n n
d g, -2
* gl 1-) ysd} (5.2)

As is easily shown, the e¢-variance of which (5.1) is an
unbiased estimate is an increasing funection of n. for
0<n d/N g <05 (which is ordinarily the most impoFtant

range of n q values). Thus, a weakness of the EXP

estimator (in addition to the conditional bias) is that its
conditional variance ordinarily increases (rather than
decreases, as seems reasonable) when the data base in
the domain expands. As for the unconditional variance
estimator (5.2), one can show that it is ¢-biased.

Thus for two reasons (e—bias of the estlmator, and
mcreasmg tendency of the conditional variance) t HEXP
is unsuitable for the conditional approach.

Let us turn to the post-stratified estimators POSG/C or
POSG/R given, respectively, by expressions (2.3) and
(2.4). They are (nearly) unbiased, both conditionally and
unconditionally. Here, one can easily take the
conditioning argument one step further and eondition
not simply on the domain count n " but on the individual

cell counts n g=1, ..., G. Then the conditional

dg’
estimator of variance for t 1POSG/C (derived from the

c-variance) is, if all n, > 2,

dg

oo 1 1 2
v _(t Y= 2 N .(=—-7g-)S , (53
c'dPose/C’ T ) Tdging e T Nyl Psy

while an estimator of variance suggested by the
unconditional variance (via an analogy involving the
standard ratio estimator) is

G n, -1
v (t VRN S | _dg -
VyCaposesc) =N G- ) I i Sg > 60
g=1 dg
where S; is defined analogously to S; . Formula (5.3)

dg d

will give approximately valid conditional confidence
intervals, whereas (5.4) will not. This faect is illustrated
empirically by Table 1, Section 7.

6. CONDITIONAL ANALYSIS FOR ESTIMATORS
BASED ON REGRESSION

To faecilitate a conditional analysis, under SRS, of

thRE’ thRE and tdSY’ let us express each of them in
a suitable form. Given seg ) we shall assume that there

is a constant vector value, Bc’ for which B is
c-consistent, namely,

{E[(E )lSec l}-1 {E[(z 2 k)ISEC 1}

(6.1)



say. (e-consistency should in a more formal analysis be
placed in a context where n_ increases, with

d
proportional increases in n and N.) Define a

"eonditional residual” for the k:th unit as

E (6.2)

ck = Yk~ XB¢

The conditional behaviour of £ sy °an be analysed

through the following identity for the deviation of the
estimator from the true value t T

~

tasy = Tg = - Py, Bt ta(B - B  (6.3)

where Exd = EUd X+

Correspondingly, for the estimator t AMRE W€ have

~ sd ck
famre " % T 7 fuy ok N 7 4 64
zsd Xk DA
with g = (g - te) - B0,
while the identity for thRE is:
- Ad h st Eck
tapre = ta = 7 Fuy Fek (ﬁ;] KR

=z)>

dvhy L' ga Ny,
+(1- (E] ) t,4(B - B) - (N‘;) by (6.5

if Nd < Nd’ whereas for Nd 2 Nd’ deRE -

by the right hand side of (6.4). In these expressions,

Ly Eck is a constant. Looking at (6.4), the random

variable 4 d is of lower order of importance than N als

t d is given

Eek/nd’ since (Nd b }—(k/nd - Exd)’ a vector with

s
d
c-expected value zero, has a c-variance of the same
order as that of Nd I Eck/nd’ and since B - 1~3c

converges conditionally to the vector 0.

Thus, for se Lo

~

tamre - ta® 7 Py, Bokt Na s, Fon/Mgr 68
where 2 expresses "of the same order in probability".

Similarly, in (6.5), 4 a is of lower order than the terms
that precede, so that:

- t E

N s, ck
- . d\h d
tapre ~ ta = - Ty, Eek + (Nd) Ng ny

~

N -
+(1- [w‘j)h) t .y (B -8 (6.7)
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t. is given

when Nd < Nd’ and for NdZNd, thRE_d

by (6.6).

For the difference (B - B,) appearing in (6.3), (6.5) and
(6.7), we have, for SeT

1
B - (2 5k§k)_1 ; Aok o o1 ) ek
~ =C S Yy SV s v
(6.8)
X1k
Here we have used that & s ~" _is e-consistent for Qc
k
X%
(rather than for Q= Ly ~v~ ). Now, it is easily
derived that: k
-1

Ec(g) - ?c 2 gc (gc - Qc gc) = Q' (6.9)

The e-bias for the three estimators follows from (6.3),
(6.6), (6.7) and (6.9):

Bo(tysy) = - sz Ey (6.10)
Bc(thRE) 20 (6.11)
A 0 if Nd > Nd
B (tgpre) * .
dyh e 0
-(1—[N—)) Zy Eck if Nd<Nd
d d
(6.12)
Here, (6.11) shows that ’t\dMRE is approximately

c-unbiased whatever the value of n " The expressions
(6.10) and (6.12) contain the residual sum Lyq4 Eck'
Although in principle dependent on n & this sum is in

many practical settings roughly constant as n 4 varies.
In fact, as shown below,

T (6.13)

Ug

where Ek =Yy - ’5'k}~3 is the unconditional residual. In

view of (6.13), we conclude from (6.10) that the c-bias

of tdSY’ seen as a function of ng is essentially

constant, This is confirmed by our empirical evidence
(see Graph 1). Moreover, from (6.12) we see that
thRE is fpproxxmately c-unbiased when Nd >N a
Otherwise, thRE has a c-bias which becomes in-

~

creasingly large as N 4 decreases away from N a and as

Nd the c-bias of thRE

wards the constant e-bias level of deY' This behavior,

approaches zero, obligues to-

too, is confirmed by our empirical work (see Graph 1).

Turning now to c-variances and their estimation, we get
from (6.6), for ng2 1,



c 2
my ek ~ Eey)

£ PR S d d
Veltamre) = Mol - 1) Ty w—CR
d d d
with EcUd= EUd Eck/Nd. The expresssion has this

form since, given Ny the sample 84 realized in the

domain behaves as a SRS selection of 4 from Nd’

Consequently, a e-consistent variance estimator is, for

n a2 2,2
2
\7({ )-NZ(L_L)M(GH)
c‘\"dMRE’ = "d'n N n 1 :
d d d
where e is the mean of the residuals e, for kes.,. In
S4 k d
deriving this expression we have replaced the

0 . _ ) .
theoretical residual Eck = yk'x~k'-3-c ln (6.15) by the

sample-based residual & =Yy - X~Ik§’ which for any k
is e-consistent for Eck’

Remark. An unconditional variance estimator is given
by:

Uy Ggpe) =N G- D
u' "dMRE n N

- 2 -2
):Sd(ek - esd) +ny (1-nd/n) e

{ — dy

Given our conditional outlook, we favour the use of the
c-variance estimator (6.15) for the construction of

(6.16)

confidence intervals with thRE‘ Formula (6.16) gives
incorrect conditional (but correect unconditional)

confidence levels.

Remark. We shall also use (6.16) when forming
confidence intervals with the estimator thRE‘ This

will tend to overstate the c-variance for Nd< Nd'

However, it turns out that the overstatement helps to
maintain a correct conditional coverage rate for small
ng - values. (The normality assumption is not adequate

for small nd; a constant greater than 1.96 = Zg 975 (for

a = 5%) would be needed to give roughly 95%
eonditional coverage rate.)

Remark. The correction term in deE given by (3.1)

involves a direct expansion estimator in the residuals.

Therefore thE will suffer from drawbacks similar to

those observed earlier for tdEXP: The estimator thE

is c-biased, thus unsuitable for conditional confidence
statements.

7. RESULTS FROM THE EMPIRICAL STUDY

In order to confirm and illustrate the conditional and
other results discussed in the preceding sections, we
carried out a simulation study involving repeated draws
of simple random samples. This study can be sum-
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marized as follows. The province of Nova Scotia was
chosen as our population with N = 1678 sampling units
(unincorporated tax filers). The variable of interest, y,
is Wages and Salaries, and the auxiliary variable, x, is
Gross Business Income (Income, for short). It is
assumed that Xy ey Xy 8TE known. Domains of the

popuiation were formed by a cross-classification of four
industry types (i=1, ..., 4) with eighteen areas (a=1, ...,
18). The industry types were Retail (515 units),
Construction (496 units), Accommodation (114 units)
and Others (553 units). The areas were the 18 census
divisions of the province. This produced 70 non-empty
domains (out of the 72 possible domains, two had no
units). Thus, 70 domain totals tai’ are to be estimated

every time a sample is drawn. The domain index d used
in earlier sections is expressed in our empirical study,
by the double index ai. Consequently, earlier notation

such as Ud’ Sg Mg Sdg’ ndg ... now becomes Uai’ Sap?

n_. e s N o e rall correlation coefficien
ai’ salg" aig The overall correlat efficient

between x and y was 0.42 for Retail, 0.64 for
Construction, 0.78 for Accommodation and 0.61 for
Others. The average domain size was 28.6 for Retail,
27.5 for Construction, 7.1 for Aeccommodation and 30.7
for Other. The overall average domain size was 24.0.
The smallest domain has 1 unit; the largest 130 units.

For the Monte Carlo simulation, 500 simple random
samples, s, each of size n=419, were selected from the
population of N=1678 units, and for each sample, a
number of estimators were calculated. (The sampling

fraction is thus 419/1678 = 25%.) The selected sample

units, within each sample, were classified by domain
(that is, by industrial type and census division), as well
as by Income Group, indexed by g=1, ..., G. Two income
groupings were used: (i) G=3 groups with income
classes given by $25K-$50K, $50-$150K, and $150K-
$500K; (2) G=1, which means that no income grouping
was attempted. The average behaviour of the
estimators is summarized below through (i) conditional

performance measures; (ii) overall unconditional
performance measures. These are defined in detail
below.
The simulation included the "eount version" DRE
estimator:

~ G [

t.. = & {N_ . ¥

aiDREG/C g=1 aig S.ig

+F N, (¥ -y, )} (7.1)

at “aig s, g S g

_ 5 e e h-1
whc’a\re F ai = (Nai/Na'l) if Nai > Nai andf"ai-(Nai/Nai)
1_f Nai < Nai' Here Naig= Nnaig/n’ Nai = Nnai/n, and

Vg and y are straight means. The "ratio version"
.ig aig

DRE estimator is

G -

taiDREG/R = gil {X35 Rig

ai Na1'g (ys - Rig X )i

ig *s, q (7.2)

aig

. The estimator (7.2) is generated



by the general formula (3.3) if the underlying model is
taken as:

E(yy) = 839 %3 V%) = ofg X5 (7.3)

for units k in the i:sth industrial type and g:th income
group; i=1, ..., 4; g=1, ..., G. In the case of G=3 groups
(defined as mentioned above), this implies that each
simple random sample of size 419 is used to caleculate
12 slope estimates, B, =y _ /x_ , where y and
= : g .ig S.ig S.ig

X are straight means.

.ig

s

We also used the model (7.3) with G=1, meaning that a
single slope was estimated for each industry type.

The count version (7.1) of the DRE estimator is

generated by the model (7.3) with X = 1. With G=3, we

then have 12 parameter estimates, gig = §s . With
.ig

G=1, the count version of the DRE is less interesting,

since industry type by itself will pick up only a modest

amount of the total variation in y.

The simulation study also ineluded the EXP, POSG/C,
POSG/R, SYNG/C and SYNG/R estimators given by
formulas (2.2)-(2.7), with LI n/N = 0.25 for all k (since

simple random sampling was used). For these
estimators, too, we considered the cases of G=3 and
G=1 income groups.

A. CONDITIONAL PERFORMANCE MEASURES

For each domain, the 500 repeated samples were
distributed over the different realized domain sample
count values n i For a fixed value of Moo and for

domain ai, the eonditional performance measures were
computed over that subset of the 500 samples for which

the domain sample count was exactly N

The following conditional performance measures were
calculated: (a) Relative Conditional Bias (RCB);
(b) Root Conditional MSE (RCMSE); (e) Conditional
Standard Error (CSE); (d) Conditional Coverage Rate
(CCR).

Because of space constraint, we limit ourselves here to
a graphical illustration of these results, involving one
selected domain; namely, Retail, Region 8, with
Nai =23; E(nai) = 5.75. Since the synthetic estimator is

considerably c-biased, for this domain it is of interest
to observe how alternative estimators behave. The
graphical comparison involves the EXP estimator and
several estimators based on G=1 group: POS1/C,
POS1/R, SYN1/R, and DRE1/R (with h=2). The main
conclusions from Graphs 1 to 4 are as follows:

(a) Relative Conditional Bias (RCB).

If fai is one of the estimators studied, the RCB was

calculated as

RCB(t (tas,r

) 13 )/
) =35 I -t )/t
ai Rr=1 ai ai
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(®)

(e)

(@

where £, is the value of the estimator t . in the
ai,r ai

r:th of the R, say, samples (out of the 500) for
which the sample count in the ai:th domain equals
the fixed number n ;e As seen in Graph 1, the RCB

curve of the SYN1/R estimator is situated at an
essentially constant, clearly non-zero level over
the entire n j"range. Confirming the theory in
Section 6, the DRE1/R estimator is seen to be
essentially e—unbiased when L is greater than

expected; below the expected value point, the RCB
of DRE1/R increases as n. approaches zero, at
which point it tends to join the RCB curve of
SYN1/R. The POSI1/R estimator displays a RCB
curve near the zero level, while EXP is heavily
c-biased, except in the immediate vicinity of the
expected value point.

Root Conditional Mean Squared Error (RCMSE).

This measure was calculated for a given domain
and N -value as

1

2
-t 1R

~ _ l ~
RCMSE(t,) = {3 ] (tas,r

0~ o
—

For the two domains in question, we see from
Graph 2 that the DRE1/R estimator behave best in
terms of RCMSE, It is followed by the SYN1/R
and POS1/R estimators, while the EXP estimator
falls way behind the others, due in large part to a
considerable e-bias.

Conditional Standard Error (CSE).

This measure was calculated as the average of

{Vc(tai)}’} over those R samples that yielded a

given n i -value in a given domain ai. That is, the

CSE is proportional to the average length of the
conditional confidence interval calculated by (4.3).
(As it makes little sense in this comparison to
include estimators for which there is no valid
design-based confidence interval procedure, we
could not consider the SYN1/R estimator in
Graph 3. Graph 3 shows decreasing CSE eurves for
taiDREl/R and taiPOSl/C (whi(ih is intuitively

sound) while the CSE curve for taiEXP

increases
with n (which underscores the less satisfactory

performance of this estimator). Formula (6.15)
was used for the DRE1/R estimator; (5.3) with G=1
was used for POS1/C.

Conditional Coverage Rate (CCR).

This performance measure was computed for a
given ai and n;as

R
- _ L ~
CCR(tai) R ril Ic,r(tai)’

where Icr(fai) = 1 if the r-th conditional
) ~

confidence interval based on tai contains the true

total tai’ and zero otherwise. The nominal rate

95% was used in the simulation. The intervals
were computed using formula (4.3), inserting the



appropriate conditional variances. Graph 4 shows
that the CCR curve for taiDREl /R 8 roughly

constant at (but sometimes a bit short of) the
nominal 95% rate. This satisfactory performance
is also observed when n; is less than expected,

despite a certain conditional bias in the estimator

for this range of nai—values. For taiPOSl /C the

CCR is also reasonably well maintained near the
nominal 95% rate, except for n values near zero.

(The normal approximation is then inadequate.) The

CCR curve for tdEXP
near its expected value, since it is only in this

neighbourhood that the c-bias of tdEXP is small.

is close to 95% only if n. is

Table 1 illustrates (for the domain Retail, Region
8) the differences that may arise between the
conditional and unconditional approaches, for the
POS1/C and DRE1/R estimators. CSE and CCR
denote conditional standard error and conditional
coverage rate. Viewed as funetions of N both

concepts are well-behaved for the two estimators:
CSE decreases as n; increases, and the CCR is

roughly constant throughout the range of ni-

values. (DRE1/R performs better in the latter
respect). On the whole, both CCR's are, however,
on the short side of the nominal 95% rate,
suggesting that the CSE formula underestimates.

As illustrated by the last four columns of Table 1,
the unconditional approach is unsuitable when valid
inferences are required for a fixed domain sample
count. In the case of both estimators, the
unconditional standard error (USE; given by (5.4)
with G=1, and (6.16)) is increasing with o

contrary to what is reasonable. Consequently, the
unconditional coverage rate, UCR (while near 95%
on the average over all nai—values) is 100% for

large nai-values, but drops toward zero for small

n_.-values.
ai alu

B. OVERALL UNCONDITIONAL PERFORMANCE
MEASURES

These serve to measure the bias and the MSE of the
various estimators over all 500 repeated samples and
over all A domains of a given industry type (A =18
except for Accommodation, where A =16). Sinece
collapsed over all nai—values, these measures are

unconditional in nature. As before, %ai r denotes the
’A

estimate obtained by a certain estimator tai in the r-th

repeated sample.

The Overall Absolute Relative Bias (OARB) was
calculated as

___(.‘ 1 A 500 (A

RB(t .) =zfizz £ | I (t,. ./t .-1) |

ai 500A .21 pop o af,rfrad

The Overall Relative Efficiency (OREFF) was

calculated as
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~ —_— —— ™ 1
EFF(t,;) = {MSE (ty) / MSE (taiEXP)}z
where
N , A 500 .
MSE(ta3) = 500R ail ril (tai,r ~ tai)

For this level of comparison, we examined the
expansion  estimator, EXP, the post-stratified
estimators POS1/C and POS1/R, the synthetic
estimators SYN1/C, SYN3/C, SYN1/R, SYN3/R, the
dampened regression estimators DRE1/C, DRE3/C,
DRE1/R and DRE3/R, each with h = 0.5, 1.0, 2.0, 8.0.
It is not possible here to show detailed results from the
simulation for each of these estimators. We limit
ourselves to a brief summary.

The results on OARB were as follows for the EXP
estimator and for the regression-based estimators of
ratio type with G=1:

Industrial Estimator

ndustri

Type EXP POSI/R SYNI/R D&Eg“
Retail 0.02 0.11 0.32 0.09
Construction 0.02 0.05 0.16 0.05
Accommodation 0.04 0.27 0.41 0.24
Other 0.02 0.05 0.26 0.08

In terms of OARB, the estimators thus rank as follows
from most favourable (low OARB) to least favourable
(high OARB) : 1. EXP; 2. POS1/R and DRE1/R
(essentially tied); 3. SYN1/R. Given what is known
from theory, there are no surprises in this ranking. One
notes that all estimators except EXP are more heavily
biased in Accommodation, where domain sizes are very
small and zero domain sample counts frequently occur.
One consequence is that the DRE1/R estimator will
often equal the SYN1/R estimator, with increased bias
as a result.

As for the other estimators included in the study, the
following observations were made:

1. SYN estimators (SYN1/C, SYN3/C, SYNI/R,
SYN3/R): The ratio versions had smaller OARB
than the count versions, except for Retail, where
the correlation between x and y is weakest.

2. DRE estimators (DRE1/C, DRE3/C, DREI1/R,
DRE3/R, each with h=0.5, 1, 2 and 8): The OARB
increases rather modestly with the value of the
exponent h. For a fixed value of h, there was no
clear indication that one of the four DRE versions
would have a decidedly smaller OARB. There was
no clear evidence that grouping (G=3), as opposed
to no grouping (G=1), would necessarily reduce the
OARB.

Turning to the OREFF, we have the following results
for ratio version estimators with G=1:

Industeial Estimator

Iy ri

Type POSI/R SYN1/R Dg’EgR
Retail 1.24 2.27 1.80
Construction 1.86 1.93 2.10
Accommodation 1.86 3.27 2.38
Other 1.64 2.04 1.78




Overall, the SYN estimator will outperform all its
competitors if its bias is small enough in all domains.
Under this condition, alternative estimators cannot
overcome the variance advantage of the SYN
estimator. Here we see that SYN is better than the
alternatives in the Retail and Accommodation types.

The ranking (from best to worst) in terms of OREFF of
the other two estimators is: 1. DRE1/R and
2. POS1/R. The highest efficiency gains (relative to
EXP) are realized in Accommodation and Construction,
the industry types with the highest correlation between
x and y.

For the other estimators included in the simulation we
observed the following:

1. DRE estimators. The OREFF increases with the
value of h (despite some increase in bias), but not
markedly beyond h=2,

2. POS, SYN and DRE estimators: not surprisingly,
for the count wversion, G=3 groups gives
considerably higher OREFF than G=1 group.
However, for the ratio versions, such an increase
was not always observed. (DRE3/R was, however,
more efficient than DRE1/R for all four industry
types and all h-values.) The comparison between
G=3/C and G=1/R (which should achieve roughly
the same purpose), was not conclusive. Sometimes
the former is more efficient, sometimes the latter.

8. CONCLUSIONS

The use of conditional inference has permitted the
development of new estimators which have desirable
conditional properties. It has also shown that although
some of the estimators are unconditionally unbiased,
they can be conditionally biased (EXP, RE). The
construetion of confidence intervals based on
conditional variances is more likely to achieve the
target nominal rates as opposed to those based on
unconditional variances.

The dampened regression estimator (DRE) has several
advantages over the other estimators (EXP, SYN, and
POS). It is more efficient than either the EXP or the
POS estimators. Although the SYN estimator may
under some circumstances (when it is conditionally
unbiased) be more efficient than DRE, it is biased
(conditionally and unconditionally). The DRE estimator
formula is straightforward to apply, and the associated
conditional confidence interval procedure is not
complicated.
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Table 1. Standard error and coverage rate in conditional and unconditional approaches.
Retail, Region 8.
CONDITIONAL APPROACH UNCONDITIONAL APPROACH
DOMAIN FREQUENCY
SAMPLE OF POS1/C DRE1/R POS1/C DRE1/R
COUNT SAMPLES CSE CCR CSE CCR USE UCR USE UCR
1 7 - - - - 0.0 0.00 23.3  0.00
2 25 116.6 0.56 97.8 0.84 26.2 0.28 37.6 0.12
3 45 95.2 0.67 72.4 0.95 37.9 0.58 40.7 0.40
4 59 89.8 0.80 69.4 0.98 51.8 0.64 54.5 0.86
5 106 89.6 0.85 68.8 0.95 68.5 0.82 64.8 0.98
6 94 78.3 0.87 59.8 0.84 75.4 0.86 68.0 0.98
7 77 72.4 0.88 56.6 0.83 85.1 0.90 75.4 0.97
8 42 64.8 0.93 52.0 0.83 90.8 0.98 80.9 1.00
9 31 62.9 0.87 51.3 0.87 103.4 1.00 91.9 1.00
10 10 62.7 0.90 57.8 1.00 119.5 1.00 114.1 1.00
@ — confidence interval not defined.
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