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i. Introduction 

Small area estimation has received considerable 
attention in recent years due to growing demand 
for reliable small area statistics• The usual 
survey estimates, based only on the data from a 
given small area (domain), are likely to be un- 
reliable due to smallness of sample size in the 
domain. Therefore, alternative estimators which 
"borrow strength" from other areas have been pro- 
posed in the literature to improve the efficiency. 
These estimators use models, either explicitly or 
implicitly, that "connect" the small areas through 
supplementary data (e.g., census and administra- 
tive data). Simple synthetic estimators, for 
example, are based on implicit modelling. 

In this paper, three small area models, due to 
Battese and Fuller (1982), Dempster et al. (1981) 
and Fay and Herriot (1979) respectively, are in- 
vestigated. The best linear unbiased predictor 
(BLUP) under each model is obtained, using the 
general theory of Henderson (1975) for a mixed 
linear model. A weighted jackknife estimator of 
BLUP is also derived. Second order approximations 
to the mean square error (MSE) of estimated BLUP 
and the estimate of MSE are obtained, under norm- 
ality. Robust estimates of the MSE approximation 
are also derived, using the weighted jackknife 
method. Finally, the results of a Monte Carlo 

study, on the efficiency of estimated BLUPs and 
the accuracy of the proposed approximations to 
MSE and its estimates, are reported• 

2. Three Models 

2.1. Nested error regression model 

Battese and Fuller (1982) proposed a nested 

error regression model in the context of estima- 
ting (or predicting) mean hectres under corn for 
12 counties (small areas) in north-central Iowa, 
using Landsat Satellite data in conjunction with 
survey data. The scatter plot of y (hectres 
of corn in a segment) against x (number of 
pixels of corn) indicated that the segments in a 
particular county fall roughly around a regression 
line, but they tend to cluster a bit above or 
below the line. One way of representing this 
type of phenomenon is to use a nested error 
regression model 

Yij=xij8 + v.~ + e.13., i=l,...,t;j=l,...,n.l (2.1) 

where y.. is the character of interest for the 
l 

j-th sampled unit an the i-th small area, 

xij = (xi~ 1 ..... Xijk)' is a 1 x k vector of 
corresponaing auxiliary values, 8 = :8 ...... ~ ) ', 

• K 
is a k-vector of unknown parametres an~ n i is the 
number of sampled units observed in the i-th small 
area (Tni=n) . The random~ errors v i's are assumed 
to be independent N(0,O~), independent of e 's 
which are assumed to be independent N(0,O2) ij • The 
normality assumption, however, is not necessary in 
deriving the BLUP. The model (2.1) can also be 
viewed as a random intercept model by taking 

Xijl=l, 81=~. The variables ~i=~+vi are the 

random intercepts• 
The i-th small area population mean may be 

written as ~i =Xi~ +v i +Ei , where X-- i and E-- i 
are the population means of xij and e..13 for the 
i-th small area. We assume unat Xi is known, 
e.g., the mean number of pixels from Satellite 
data. Also, we assume that N i , the number of 
population units in the i-th small area, is large 
so that Ei - 0 noting that E(eij) =0. Thus, the 
problem is to estimate the small area means 

u 

~i = X.8 + v., i = 1 ..... t . (2.2) 
1 1 

Note that the ~i's are random variables, as in the 
prediction approach to survey sampling (Royall, 
1970). 

2.2. Random regression coefficients model 

A more general model with random slopes was 
proposed by Dempster et al. (1981). Their random 
regression coefficients model, in the context of 
small area estimation, may be written as 

Yij = xijSi + eij 
(2.3) 

8 i = 8 + v.1, j=l ..... ni; i=l ..... t 

where Yij, 
.i~ and v i = ~Vil .... Vik) ' are 

xi., 8 and e i- are as defined in 
the model (2 , 

independent of the eij's and independently dis- 
tributed with mean vector 0 and covariance matrix 

, say. The i-th small area population mean is 
given by 

~i = XiSi = Xi8 + X ivi " (2.4) 

In this paper, we confine ourselves to the special 
case k=l, i.e., one concomitant variable and 

regression through origin. Hence, this special 
case does not cover the Fuller-Battese model. 

2.3. Fay-Herriot model 

In the context of estimating per capita income 
for small areas (population less than I000), Fay 

and Herriot (1979) assumed that a k-vector of 

bench mark variables x i = (Xil,... ,Xik), related 
to the small area mean ~i, is available for each 
small area i, and that the ~i are independent 
N(xi~,A), where 8 is a k-vector of parameters. 
They further assume that the sample mean vector 

= (~I ..... ~k )' given ~ = (~i ..... ~k )' = 
col ~i ) , is normally distributed with mean 

l<i<k 

vector ~ and known covariance matrix diag(D I, ..., 

D k) - 
The Fay-Herriot model can be restated as a 

linear model : 

Yi = ~i + ei; ~i = xi8 + v.1 (2.5) 

where the e. 's and the v. 's are independent and 
l 

N(0,D i) andIN(0,A) respectively• The normality 
assumption is not needed in deriving the BLUP. 
Note also that the auxiliary information at the 
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unit level is not needed, unlike in the Battese- 

Fuller model. 

3. Best Linear Unbiased Predictors 

3.1. General mixed model 

The models in Section 2 are special cases of a 
general mixed linear model 

y = X8 + Zv + e (3.1) 

where X and Z are known matrices and v and e are 
mutually independent random vectors with zero 
means and covariance matrices G and R respectively, 
depending on some parameters @ called variance 
components. Henderson (1975) has shown that the 
BLUP of ~ = k'8 + m'v is given by 

t(@,y) = k'~ + m'GZ'V-I(M-X~) (3.2) 

where V = R+ZGZ' and ~ = (X'V-Ix)-I(x'v-Iy). He 

has also given a method of evaluating 8 without 
actually inverting V , but V -I can be explicitly 
obtained for all the three models using the 
following matrix lemma: 

Lemma 3.1. (Graybill (1969) ; Theorem 8.3.3). 
Let C = D + ab', where D = diag (d..), and 

l<i<t ll 
-- ---i -i 

is a scalar such that ~ ~ -(7.aibidii ) where 

a i and b i are the i-th elements of a and b 
respectively, iThen C -I = D-l+ya*b *' , where 

d_.l and b* = b.d-i . ~=-~(l+~7.aibidii )-I, a~ = a i ii l I ii 

3.2. Special cases 

Writing the nested error regression model (2.1) 
in terms of the general mixed model (3.1), we have 

y = col co1 (yi4)j , X = col col (xi~) 
l<i<t I<_j<_D l<i<t l<_j<_n i 

Z = diag col (I), v = col (v.) , 
1 l < i < t  l<j<n,  l < i < t  

e = col col (ei~)j , 
l<i<t l<j<n. 
. . . .  1 

• 2 2 2 
and G = 0.vIt , R = 0.2Ie n' @ = (O2"0.v)' = 0. " 

2 
Now applying Lemma 2.1 with C = V. = 0 I + 

1 e n i 

v l n i  D = O2I 0 .2 l n i  O n i ' e ni ' ~ = v' a = b = , we 

-1 I 
obtain Vi I = (U2)-l~ni-~ini Inilni ] and 

V -I = diag (V~ I), where ~i = O2(Ov +O n . 
l<i<t 

. . . .  ~il) 
Taking now k = X. and m = col ( in (3.2) , 

l l<~<t 

where ~il = 1 if i = i and ~il = 0 if £ ~ i, 

we get the BLUP of Ui as 

ti(O2'Y) = Xi ~ + Yi(~i - ~i ~) (3.3) 

where ~. is the sample mean of x.. for the 
1 13 

i-th small area. Battese and Fuller (1982) also 

obtained the predictor (3.3) using heuristic 
arguments, but they have not shown that it is in 
fact a BLUP. 

Similar calculations for the random regression 
coefficients model (2.3) with k=l lead to the 

BLUP of Ui given by 

t (0.2 

where 02 = (02,O2), 

~i = 0.2v{0.2v + O2e (7.j x 2i~ )4 -i}-i 

0.2 = var (vi) and 
v 

i jYij ~ xij) (Z i Yi) " 

For the Fay-Herriot model (2.5), the BLUP of 
~. is obtained as 
i 

t CA,D :x~÷ A ~-xi~ C3s~ 
i i ~ 

1 

where ~ = (X'V-Ix)-Ix'v-I~ and V = diag (A+D.). 
1 

l<i<t 
Under normality, the predictor (3.5) is a Bayes 
estimator, as shown by Fay and Herriot (1979). 
Note that t i (A,y) tends to the usual survey 
estimator ~, as Di/(A+D i) ÷ 0 and to the 
synthetic estimator x. ~ as A/(A+D. ) ÷ u. Thus 

1 
the BLUP is a weighted average of th~ two estima- 
tors, where the weight w = A/(A+D i) reflects 
the uncertainty, A , in the model for the ~. 's 

1 
relative to the total variance A+D i. 

Schaible et al. (.1977) also considered similar 
composite estimators, but the weight is obtained 
by minimizing the mean square error under repeated 
sampling from a fixed finite population. 

3.3. Estimated BLUP 

The BLUP t(@,y) = t(@) depends on the variance 
components @ , but in practice the components of 
@ will be unknown. Actually, the BLUP depends 

only on the ratios @i/@m, where @ = (@l'''''Sm)' 
the BLUP (3.4) depends only on 02/0. 2 It e. g., 

is customary to estimate the BLUP by replacing @ 
by an asymptotically consistent estimator ~. The 
resulting estimator, t(@,~) = t(~), of U will 
remain unbiased provided @ is even and transla~ 
tion invariant, i.e., ~(-y) = ~(y), and the dis- 
tributions of v and e are both symmetric (not 
necessarily normal); see Kackar and Harville 
(1984). However, the MSE of t(~) will be in- 
creased relative to MSE[t(@) ], as shown in 
Section 4. 

Various methods of estimating @ for a general 
mixed model are available (see Harville's (1977) 
review paper), but in this paper we confine our- 
selves to the well-known method of fitting of 
constants, also called Henderson's method 3. We 

2 2 now spell out the expressions for ~v and °e 
in the case of Battese-Fuller model. Let {~-} 
be the estimated residuals obtained from the "J 

ordinary least squares regression_ of y..-13 Yi on 

{xij I - xq. 1 ..... xij k - Xi.k}. Similarly, a 

second set of residuals {~ij} are obtained by 
performing ordinary least squares regression of 
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Yij on {xij 1 ..... Xijk}. Then, unbiased quad- 

ratic estimators of G2 and G2 are obtained as 
v e 

~2 = (n_t_k+~)-lT.7.~2. (3.6) 
e 13 

and 

~2 = n,117.7. ̂ 2u.. - (n-k)~2] (3.7) 
v 13 e ' 

where 

(t-l)n, = n-tr[(X'X) 
-I ~ 2----. 

n.x.x. ] 
i=l ~ z 1 

and I = 0 if the model (2.1) has no intercept 
term and I = 1 otherwise. 

For the random regression coefficients model 
(2.3) with one auxiliary variable (k = i) we 
obtain 

~,2 = (n_t)-i 7.7.~2. 
e 13 

^2 S 2 = n~i[7.7~ u . .  - ( n - l ) ~ 2 ] ,  
v 13 e 

where • 

^ 2 -i 
eij = Yij-xij (7. xijYij ) (7. x..) 

J J 13 

and 

~ 2 -i 
n, = 7.7. x2j - {7.(7.. x2j) 2} (7.7. x.13.) . 

i 3 

(3.8) 

(3.9) 

An unbiased quadratic estimator of A in the 
Fay-Herriot model can be obtained as 

= (t_k)-l[ ~2 _ D. (l-x. (X'X)-Ix~)] (3.10) 
i= 1 1 i 1 

where 

- Y-i-xi - c 

It is possible for ~2 , defined by (3.7) or 
^ 

(3.9), or A , given by ~3.10), to be negative. 
In practice if A or ~2 v, is negative, we set it 
equal to zero. Fay and Herriot (1979) obtained 
an estimator A as a solution of the nonlinear 
equation 

(7 i _ ~ . ) 2  
7. z = t-k 

A+ D. 
1 

where ~.= x. ~, 8 = (X'V-Ix) -1 (X'~-l~) and 
1 1 

V = diag (A+D i) , noting that the Yi s are 
l<i<t 

margin--al--ly independent N (x i 8 • A+D i) . The re- 
sulting estimator of ~. is an empirical Bayes 

1 
estimator, under normalzty. 

(3.11) 

3.4. Jackknife estimator of BLUP 

For the three small area models, alternative 
estimators of BLUP can be obtained by the jack- 
knife method. For simplicity, we confine our- 
selves to the nested error regression model with 
one auxiliary variable (i.e., k=2, xi-'l=l'3 

xij 2 =xij, 81 = ~, 82 = 8). The estimator is 

obtained by replacing _~i in t.z (~2,y)~ by a 

estimator _ ~i(J) which is jackknife approximately 
unbiased, i.e., E[~i(J)-yi ] = o(t -I) while 

E[~i-Yi]-_ = O(t -I) for large t and bounded n..l 

Fuller and Harter (1986) have also obtained an 
alternative estimator of Yi' but its approximate 
unbiasedness depends on normality of the errors 
{v i} and {eij} unlike yi(J). For the Fay- 

Herriot model, Morris~(1983) used 
l-[(t-k-2)/(t-k)]Di/(A+D i) as an estimator of 

w. = A/(A+D.) in (3.5), noting that in the equal 
1 . 1 

varlance case, D. = D, it is exactly unbiased 
1 

under normality. 
^2 

We modify the estimator Cv slightly in order 
to construct weighted pseudo-values, similar to 
Hinkley's (1977) for the standard regression model. 
The modified estimator ~2 is obtained along the 
lines of Arvsen (1969) foVr the ANOVA model 

Yij = ~ + v'1 + e..:z3 

~2 n,i[7.7. ̂ 2 lli ^2 
= u. -%--7. e i ] 

v zj i 12i j J 
(3.12) 

where n,, ~.. and e.. are as before, and 
z3 z3 

2 
lli = (n -i) - B Z(x i - ~x--~) i 1 . j 

3 
-i 2 

~2i = n.nz (n-l) - B 27.(xij. - x) 
3 

with 

B 1 = [7.7. (x..-x.) 2]-1 and B2 = [7.7. (x..-x) 21-1 
z] z z3 

and x = 7.n.x./n. The estimator - ~2 is seen to 
1 1 V 

be unbiased, noting that 

E(7.~2j) 112 E ^2~) , 2 +~ i eO2 
• i e (7. =n~ 2 = , ui~ , 
3 3 

where 

_2n-i 2 -i 2 2 2 2 -- 2 
= n . n. +n niT.n i+B2 [~ni (x. -x) ]7. (x..-x) n. 

z z I I i 13 

2+2B2 -- -- -i -2B 2 n2 (x.l -x) [7.n 21 (x.1 -x) 2 ]n.l (x.1 -x)n , 

and 

, 2 2 (xi_x) 2 7.~li=n-t-l, 7.ni=n-7.ni/n-B27.ni = n, . 

The estimator ~2 remains unchanged, but for 
e ~2 

notational consistency we denote it as G . 
e 

Our jackknife procedure is essentially based 
on deleting the residuals ..{eij,uij,j=l ....., } 
in turn for i=l,... ,t and unen computing the nl 
estimates of (l 2 and  (I 2 a s  a b o v e :  

e v 
,,2 ,,2 

0 2 ( - i )  = ( n - t - l - ) t l i ) - l ( 7 . 7 .  e i j - 7 . e . . )  ( 3 . 1 3 )  
e j 13 

~2(_i) (n,-ni)-l[ (7.7.~ 2j 7. ~2i ^2 
= * _ __ 7.eij) - 

i ~li j 
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^2 _(~.u2j 12i 7~ eij )]. 

3 ~li j 
(3.14) 

~2 ~2 
The estimators O e (-i) and (-i) are both 

V 

unbiased, and ~2 ~2 both can be expressed as 
e' v 

weighted sums of ~2(-i) and ~2(-i) respect- 
e v 

ively, similar to Wu's (1986) representation for 
the standard regression model: 

~2 -l~.ai~2 -17.bi~2 O =(t-l) (-i) and ~2=(t-l) (-i) , 
e v 

where 

a.l = l- (n-t-l)-l~11 ' l-n*In*" __, b = . 
1 1 

For a general function, g(O 2,0 2) , of 02 
2 e 

O , our j a ckkn i f e  e s t i m a t o r  i s  given by v 
- 

(3.15) 

and 

(3.16) 

where 

Qi (g)=g (~2' ~2)-t[ g{~2+ai (~2e (-i)_~2),e 

v i v v 
(3.17) 

are the weighted pseudo-values. In the linear 

case, g(02,O2) = £1o2 + £2 °2 for some known 

constants £1 and £2' the  j ackkn i fe  e s t i m a t o r  

(92,~)~ reduces to the unbiased estimator g~ 
J 2 e v 2 

£1~e + £2~v ,_ while it is approximately unbiased 

in the nonlinear case (see Prasad, 1985) . The 
jackknife estimator YiJ is a special case of 

(3.16) with g(°2'O ) = Yi = O2(Ov +~ n ) . 

The estimated BLUP, t. _(~2,y) is given by (3.3) 
~ ~ 2 ij 

if Y'I~ ~d 8 = 8(0 ") are replaced by Yi (J) 
and 8 ((;) respectively. 

4. Secon d Order_ Approximation to MS_E 

Kackar and Harville (1984) have shown that 

MSE[t(@)] = MSE[t(e)] + E[t(~)-t(@)]2 (4.1) 

under normality, provided ~ is translation in- 
variant, i.e., ~(y+XS) = ~(y) for all y and 
8 • That is, the use of MSE[t(e)] leads to 
understatement of actual MSE by an amount 
E[t(~)-t(e)]2. Henderson (1975) has given an 
exact expression for MSE[t(@)], but the second 
term of (4.1) is in general not tractable, except 
in special cases, e.g. ,peixeto (1982) obtained 
MSE[t(~) ] for the one-way, balanced ANOVA model, 

with n. =r. Kackar and Yij = ~+vi+eij" i 

Harville (1984) obtained a Taylor approximation 

E[t(~)-t(e)]2 _ E[d(e)' (~-@)]2 (4.2) 

where d(e) = ~t(@)/8@ = d(y,@). Using (4.2) , 
they proposed a further approximation 

E[d(@)' (~-@) ]2 _ tr[A(@)E(0-@) (~-@)'] (4.3) 

where A(@) is the covariance matrix of d(@). 
General conditions are given in Prasad (1985) under 
which the precise order of neglected terms in the 
approximation (4.2) and (4.3) to E[t(~)-t(@)] 2 
is o(t -I) for large t. The three small area 
models satisfy these conditions. 

For the Battese-Fuller model, MSE[t. (02 ,y) ] 
under arbitrary distributions of {v.} land {e..} 

i 13 
is obtained as 

MSE[t (O2,y)]=(l-~)02 
i i v 

+(X--i-Yix--i ) (X.V-Ix) -I -- _ (Xi-Yixi) (4.4) 

using Henderson's (1975) general result, where 

(X'V-iX) -I is the covariance matrix of ~ , so 
that the second term on r.h.s, of (4.4) is of 
order O(t -1) for large t. Similarly, for the 
random regression coefficient model and the Fay- 
Herriot model we get 

MSE[t (02 y)]=( )02 + -- -- )2 
i ' l-Yi v (Xi-Yixi 

+~2~ 2 -i]-i x [ 7. 7.x (02 Lx..) (4.5) 
J e v. 13 

3 
and 

MSE[t. (A,y)] = AD. (A+D.)-I+x. (X'V-Ix)-Ix~. (4.6) 
1 1 1 1 1 

Again, the second terms on r.h.s, of (4.5) and 
(4.6) are both of order O(t -I) for large t. 

Under normality, the approximation to 
E[t(~)-t(@) ]2 for the Battese-Fuller model 
reduces to 

E[t (~2 2 i 'Y) -ti (O2 'Y) ] 

- n -2(O2+O2n_l)-3var(~202-~202)+o(t-l). (4.7) 
i v e i e v ve 

Similarly~, for the random regression coefficient 
model 

E[t.1 (~2'y)-ti (O2'Y) ]2 

-X2 (~. X2 j ) (Ov):Xi . +~e, -3var +0 

3 j 3 (4.8) 

In the case of Fay-Herriot model, we get 

E[t i(A,~)-t i(A,y--) ]2 . D 2(A+Di)-3var(~)+o(t-l) 
i 

(4.9) 

Ignoring the uncertainty in ~2 and A and 
using MSE[t. (o2,y) ] and MSE[t i(A,~)] as 

1 
approximations to MSE[ti (~2,y) ] and 
MSE[ti(A,y) ] respectively could lead to serious 
understatement since the neglected terms are of 
the same order, O(t -I) , as the term due to 
estimating 8 in the MSE of BLUP. 

5. Estimators of MSE 

We now obtain estimators of MSE[ti (8 ,y) ] for 
the three models. The bias of these estimators 
is of order lower than O(t -I) , under normality, 
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i.e., E mse[t. (@,y)]-MSE[t. (~,y)] = o(t -I), 
1 1 

where mse[t. (~,y)] denotes an estimator of 
1 

MSE[t. (~,y)]. Details of the derivation are 
1 given only  fo r  t he  n e s t e d  e r r o r  r e g r e s s i o n  model.  

5.1 Normality-based estimators 

The MSE approximation may be written as 

MSE[t.I (~2,y) ] -gl (~2)+g2 (O2)+g3 (02) ' 

where 

gl(2) = (l_Yi)O2 
V 

(5.1) 

(5.2) 

is of order 0(i), and 

g2(O 2) = (Xi-~ix i)' (X'V-ix)-l(xi-Yixi) (5.3) 

g3 (~2) = n-2(°2+O2n?l l)-3104var(~2) + i  e 

4 (~2 
O vVar e ) -202~2c°v ( ~ 2 e  v v' ~2e) ] (5.4) 

-I 
are both of order O(t ). The formulae for 
var(~ 2) , var(~ 2) and cov(~ 2v,~2)e under normality 

are qiven in Appendix I . The estimators of 
g2 (O~) ~ and g3--~(O~) are simply given by g2(~2) and 

g3(~ 2) respectively, correct to O(t-l). However, 

gl(~ 2) is not correct to the desired order of 
approximation since its bias is or order O(t -I) . 
The bias of g.,(~2) to order O(t-l)^is obtained 
by making a Taglor expansion of gl(O 2) about the 
point 02 and then taking its expectation: 

(~2 1 
Egl ) - gl (02) = -g3 (O2) + o(t- ). 

^2 
Therefore, gl(O ) ~ (~2) is correct to O(t -I) 

2g3 ' in estimating g_,( ). It now follows from (5.1) 
that an estimato9 of MSE correct to O(t -I) is 
given by 

mseN[t i (~2,y)] =g I (~2) +g 2 (~2) +2g 3 (~2) . (5.5) 

Similarly, for the random regression coeficient 
model, mseN [t i(~2,y) ] is given by (5.5) with 

gl (02) = (l-~i)°2v (5.6) 

g2 (~2) = (x-i_~i-i)2 
2 2 -i -i x[7. 7.x?.(O2+O 2 7. x..) ] (5.7) 

i j 13 e v j 13 

and 

--2 2 2 -3 
g3 (O2) = Xi(7'.xij)(O2+O2e v .7'x'13 ") x 

3 3 

[~4var (~2v)e +O4var (~2) v 

_20202cov (~2 ^2 a v) ] (5 8) 
e v ' " 

^2 The formulae for var(O ), va r (~  2) and cov(O 2 ~2) 
e v e' v 

under normality are given in Appendix I . 

Turning to the Fay-Herriot model an estimator 
of MSE t. (A,y) , correct to O(t -1) , is given by 

l 

mseN[ti (A, ~) ] = ADi (A+Di)-l+xi (X'v-lx) -lx.' 
l 

+2D? (A+D.) -3estvar (A) , (5.9) 
l l 

where estvar(A) is the value of var(A) evaluated 
at A = A, and the formula for var(A) under norm- 
ality is given in Appendix I. 

5.2 weighte d. .jackknife estimator s 

A robust estimator of the MSE approximation, 
correct to O(t -I) , can be obtained by the weighted 
jackknife method of Section 3.4. The robust 
estimators of gl(O 2) and g2(o 2) are given by 
glj(~ 2) (see (3.16)) and g2(~2) • respectively, 

for the nested error regression model. Letting 
Qi(e) = ~2+ta. (~2_~2(_i)) and Qi(v) = ~2 + 

v v (-- _e_i)l e e v tb i (9 ), robust jackknife estimators of 

var(~2)' var(°2)v and cov(~2,~ 2) are given by 

vj(~ 2) = [t(t-1)]-lT.[Qi(e)-Q(e)]2 

= t(t-1)-lT.a2[~ 2. (-i)-~ 2 ] (5 .10) 
1 e e 

.,,2 
vj(~ v) = [t(t-l)]-lT.[Qi(v)-Q(v) ]2 

= t (t-l) -17.b2[~ 2. (-i)-~ 2 ] (5 . ll) 
l v v 

and 

covj(~2,~ 2) = [t(t-1)]-lT~[Qi(e)-Q(e)]x 

[Qi (v)-Q(v) ] 

= t(t_l)-lT~a.b. [~2(_i)_~2]x 
i i e e 

[92 (-i) -~2]. (5.12) 
v v 

-- ~2 -- ~2 
Note that Q(e) = 0 e and Q(v) = o . The jack- 
knife estimators (5.10)-(5.12) canVbe shown to be 
consistent at t + ~ (Prasad, 1985). It now 
follows that a robust estimator of the approxima- 
tion to MSE[t. (~2,y) ] is given by 

i 

msej[t i (~2,y) ] 

= glJ(~2)+g2 (~2)+n~ l(~2v +~2n~ I)-3 

' v o 

It should be noted that mse_[t. (~2,y)] is not a 
o 

robust estimator of the true ~E since the MSE 
approximation itself depends on normality of {v i} 
and {e..}. 

13 
Turning to the random regression model, we 

again modify 02 to 
v 

~2 ~-i ^2 = n [7. 7.u..-7.,~. (n.-l) -1 7.52. .] (5.14) 
• 13 . i i ~3 v * i 3 l j 

where 

~ 2 2 -i 
I i = n i - 7.. xij(7"7, xij) • 

3 
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^2 
The estimator Oe ' given by (3.8), remains un- 
changed but we denote it as ~2 for notational 
consistency. The robust estimator of 
MSE[t. (~2,y)] is again given by (5.13), provided 
a i ~d b i are changed to 

-i 
a. = l-(n.-l) (n-t) 

1 1 

and 

bi = 1-nln*l 

respectively, where 

n 2 : 
J 3 ij 13 ' *" 

Finally, for the Fay-Herriot model with a 
single concomitant variable, a jackknife estimator 
of g(A) is given by 

1 
gj(~) = Q(g) = ~7.Qi ( g)' 

where 

Qi (g) = g(A)+tci[g(A)-g(A(-i) ) ]• 

A(-i) = (t-l)-ic [(t-l)A-z.] 
i i 

c. = l-(t-l)-l[l-x2(7~x2) -I] 
1 • 

= (t-l) -17.c. ~ (i) 
1 

and 

^2 2 2 2 2 2 -i 
= u.-D -x, ) (Zx)-I+2D x. (7~ . zi l i 1(7"xiDi i i xi ) 

It can be shown that the bias of gj(~) is of 
lower order than O(t-l). A jackknlfe estimator 
of var(~) is given by 

-i 2 2 
vj(A) = t(t-1) 7~ci[~(-i)-A] 

which is consistent as t + ~. Putting these 
results together• we get the following •robust 
estimator of MSE approximation: 

msej[t i (A,y) ] = glJ (~) +xi (X'V-Ix)-ix~ 

+ 2D 2 (A+D i) (~1 1 -3vj • 

where 

gi(A) = AD./(A+D.). 
1 1 

6. Monte Carlo Study 

6. I. Objectives. 

A Monte Carlo study under the nested error 
regression model was conducted to study the finite 
sample properties of estimated BLUP's. In 
particular, we have studied the efficiency of 
estimated BLUP, ti (~2,y) , under normality of 
errors {v i} and {eij} relative to the regression 

synthetic estimator yq(syn) = ~x. and an 
1 

approximately unbiased regression estimator 

Y--i(reg) = yi+~(Xi-xi), where ~ and ~ are the 

ordinary l~ast squares estimators of ~ and 8 resp- 
ectively. The efficiency of jackknife estimator of 
BLUP, to tij(~2,y), relative ti(O2,y) is also eval- 
uated under normality and deviatidns from normality. 
The accuracy of second order approximation to 
MSE[ti(O2,y) ], say MSE*, is also investigated,under 
normality and deviations from normality. Finally, 
the relative biases of normality based estimator 
of MSE, (5.5), and jackknife estimator of MSE, 
(5.13), are studied. 

6.2. Description of the experiment 

Battese and Fuller (1982) used the nested error 
regression model, y.13. = ~+~x i- +v i ÷e ij, to pre- 
dict mean corn hectares, Y. , ~or 12 counties 

1 
(small areas) in Iowa, where x. • is the number of 13 
pixels of corn •for the j-th sample segment of 
county i and the population means X. are known. 

~2 They obtained ~ee2 = 292 and ~v = 64 • land generalized 
least squares estimates of ~ and 8 given by 5.5 

. 

and 0.388 respectively. In their•~data set n i =i 
for three of the counties. We pooled these three 
small area to satisfy the requirement n i >2 for 
our jackknife method. We increased the number of 
small areas, t, to 20 from i0 by duplicating the 
xij, n i and X i reported by Battese and Fuller. We 
then generated i0,000 independent sets of normal 
deviates {e ii, j=l,_ ~.. n i ; i=l ..... 20 } and {v i, 
i=l ..... 20} ~rom N(0,~e z = 292) and N(0,O 2 = 64), 
and then using the x..-values obtained i0 000 sets 

13 
of {Yij' j=l .... ,ni; i=1 ..... 20} from the model 

Yij = 5.5 + 0.388x ij + v.l + e.13., 

using ~ = 5.5 and 8 = 0.388. Similarly, independ- 
ent data sets were generated from the following 
nonnormal distributions for both v i and eij : 
double exponential (symmetric• long-tailed) , 
uniform (short-tailed) and exponential (positively 
skewed), all with means zero and variances 292 
and 64 for v i and eij respectively. Data sets 
{yi~} were also generated from normal distribution 
for J{v i} and uniform, exponential and double 
exponential distributions for {eij}. Monte Carlo 
values of MSE[ti(U2,N)], MSE[tij(~2,N)] etcetra 
were computed from the i0,000 data sets so gener- 
ated. 

6.3. Efficiency of estimated BLUPs 

The relative efficiency of estimated BLUP, 
ti(~2,y), under normality of both {v i} and {eij}, 
ranged from 123% to 184% with respect to 
Yi(syn), and from 142% to 274% with respect to 

y--i(reg). The relative efficiency with respect to 

Yi(syn) increases as n i increases from 2 to 6, 
while the relative efficiency with respect to 
y. (reg) exhibited an opposite trend, i.e. it 
1 

decreased as n i increases. 
Table 1 reports the percent gain in efficiency 

2 2 of the jackknife estimator tij(~ •y) over ti(~ ,y), 
given bY2100X{MSE[t i(~2,y)] _ MSE[tij(~2,y) ]/ 
MSE[ti(~ ,y)]}. The values reported in Tables 1-5 
are averages over small areas having the same 
ni-value. It is evident from Table 1 that the 
gain in efficiency of tij(~2,y)- is small (< 5%) 
and that it decreases as n i increases, under both 
normality and deviations from normality. 
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6.4. Accuracy of second order approximation to MSE 

Table 2 gives the percent relative error (R.E.) 
of the second order approximation, MSE*, i.e., 
{ (MSE*-MSE)/MSE} x i00. The percent relative 
error under normality of both {v i} and {eij} is 
small (R.E. < 2%). The approximation is quite 
satisfactory under deviations from normality for 
{eij} but assuming that {v i} are normal (R.E. < 
5%) ; R.E. is negligible (< 1%) under uniform 
distribution of {eij}. When both errors are 
exponential, the approximation leads to consider- 
able overstatement of MSE, R.E. ranging from 9.5% 
to 22%. The approximation is also not quite 
satisfactory when both errors are double exponen- 
tial, R.E. ranging from 7% to 12%. Under uniform 
distributions for both {v i} and {ei~}, the 
approximation in fact leads to a slxght under- 
statement, R.E. ranging from-0.5% for ni=2 to 
-4% for ni=6. 

The accuracy of MSE* depends on the neglig- 
ibility of the cross-product term 
2E[t i(~2,y)_ti(~2,y)][t. (~2,y)-~i]/MSE, which is 

l 
exactly zero under normality, and the accuracy 
the approximation (4.7) to E[ti(~2,y)-t i(~2,y)]~f 

The value of cross-product term ranged from -5% 
to -15% under exponential distributions and-4% 
to -8% under double exponential distributions, 
as n i increased from 2 to 6, compared to -1.4% to 
-3.7% under exponential for {eij } only and-1% 
to-2.4% under double exponential for {e~} only. 
These results imply that the formula (4_i/ for 
MSE under normality leads to considerable over- 
statement when both {v i} and {eij} are exponential 
or double exponential. In practice, however, it 
may be more realistic to assume that the random 
effects {v i} are approximately normal. 

Turning to the accuracy of the approximation 
(4.7) to E[ti(~2,y)-ti(O2,y) ]2, the difference 
relative to MSE ranged from 4% to 9% under 
exponential distributions and 3% to 6% under 
double exponential distributions, compared to 
0.5% to 2.1% under exponential for {eij} only and 
0.2% to 2.0% under double exponential for {eij} 
only. The overstatement of the approximation, 
therefore, is substantial when both {v i} and 
{eij} are exponential or double exponential. 

6.5. Relative bias of estimators of MSE 

Tables 3 and 4 report the percent relative 
biases of normality-based and weighted jackknife 
estimators of MSE, denoted by Bias N = 
{E mseN[t i (~2,y)]_MSE[t. (~2,y)] }/MSm[ti (~2,y)]xl00 

l 
and Bias_Q = {E msej[t i(~2mt)]-MsE[t i(~2,y)] / 

~E[t (~,y)] ×i00. 
l 

It is seen from Table 3 that Bias N is small 
(< 5%) when both {v i} and {eij} are normal or 
u~iform. It is also small when {v i} is normal 
and {eij} uniform. It ranges from 2% to 17% 
under double exponential distributions and from 
-1.5% to 17% under exponential distributions, as 
n i increases from 2 to 6, compared to 0.5% to 
10.0% under double exponential for {eij} only 
and 1% to 13% under exponential for {eij} only. 
The normality-based estimator of MSE, therefore, 
leads to considerable overestimation as n i in- 
creases, when both {v i} and {eij} are exponential 

or double exponential. This is also true to a 
lesser extent under exponential or double exponen- 
tial for {e ij} only. 

Turning to the jackknife estimator, Table 4 
shows that Biasj is somewhat larger than Bias N 
when both {vij } and {eij } are normal, ranging from 
2% to 8%. It is, however, small (< 2%) under 
uniform for both errors or for {eii } only. On the 
other hand, Biasj is considerable under exponen- 
tial and double exponential distributions, ranging 
from 8% to 18% and 5% to 11% respectively, as n i 
increases from 2 to 6. It is smaller than Bias N 
under double exponential and exponential for {eij } 
only, ranging from 0.5% to 9% and 1% to 9% resp- 
ectively; for n i =5 and 6, the values of Biasj are 
somewhat larger than the corresponding values of 
R.E., i.e., the jackknife estimator did not track 
the approximation to MSE very well. Overall, 
however, the jackknife estimator tracked the 
approximation to MSE better than the normality- 
based estimator, but the approximation itself is 
not very accurate under exponential or double 
exponential distributions for both {vi} and {eij}, 
as noted before. 

We have also evaluated the percent underestima- 
of MSE when the robust estimator, glj(U 2) + tion 

g2(~ 2)- , of MSE[ti(~2,y)]-- is used as an estimator 
MSE[ti(~2,y)].-- The robust estimator leads to of 

about 8% to 15% underestimation under normality 
of {v i} and 11% to 16% underestimation when both 
{v i} and {eij} are uniform. The underestimation 
is slightly less when both errors are double 
exponential or exponential, and it decreases as 
n i increases. 

Our investigation has shown that the jackknife 
estimator of MSE may be satisfactory, in the sense 
of providing not overly conservative standard 
errors, except when both errors are exponential 
or double exponential. As noted earlier, it may 
be realistic in practice to assume that {v i} are 
approximately normal. It would be desirable, how- 
ever, to develop more accurate approximations to 
MSE, bY2evaluating the cross-product term 
2E[t. (9 ,y)-t i(o2,y)][t i(o2,y)_~i ], and construct 
robust estimators of the improved approximations 
to MSE. 

Table i. Percent Gain in Efficiency of tij(~2,y) 

Over t. (~2,y) for (N,N),(N,DE),(N,E),(N,U),(DE,DE), 
l 

(E,E),(U,U) Distributions of {v.} and {e..} 
1 -- l] 

respectively. 

n. (N,N) (N,DE) (N,E) (N,U) (DE,DE) (E,E) (U,U) 
l 

2 3.5 
3 5.6 
4 3.2 
5 2.2 
6 0 

2.9 3.2 3.9 3.1 3.5 4.2 
2.2 2.1 3.0 4.1 1.0 4.0 
1.5 1.6 2.1 4.5 0 3.1 
1.2 1.4 1.2 0.i 0 3.0 
0.8 0.8 0.4 -0.2 -0.5 1.4 

N = normal, DE = double exponential, E = exponential 
U = uniform 
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Table 2. Percent Relative Error of Second Order 

Approximation to MSE of Estimated ~ BLup for CN,N), 

(N,DE) ,(N,E),(DE,DE),(E,E), (U,U) Distributions of 

{v. } and {e.. } RespectivelY. 

n. (N,N) (N,DE) (N,E) (N,U) (DE,DE) (E,E) (U,U) 
1 

2 2.0 1.0 2.3 0.7 7.0 9.5 -0.5 
3 1.5 3.5 4.8 0.4 I0.0 18.0 -1.8 
4 2.0 3.5 5.2 0 12.0 21.0 -2.5 
5 1.5 3.5 4.0 -0.3 12.0 22.0 -3.0 
6 0.5 3.0 4.2 -0.3 12.0 19.0 -4.0 

N = normal, DE = double exponential, 

E = exponential, U = uniform 

Table 3. Percent Relative Bias of Normality-Based 

Estimator of MSE for (N,N),(N,DE), (N,E), (N,U), 

(DE,DE) , (E,E) , (U,U) Distributions of {v i} an__~d 

{e.. } Respectively. 

n. (N,N) (N,DE) (N,E) (N,U) (DE,DE) (E,E) (U,U) 
1 

2 -i.0 0.5 1.0 0 2.0 -1.5 2.5 
3 0 3.5 2.0 0.9 6.0 7.0 3.0 
4 2.0 7.0 6.0 1.5 7.0 ii.0 1.5 
5 3.0 9.0 9.0 2.8 12.0 16.0 -I.0 
6 5.0 i0.0 13.0 5.0 17.0 17.0 -1.5 

N = normal, DE = double exponential, 
E = exponential, U = uniform 

Table 4. Percent Relative Bias of Weighted Jack- 

knife Estimator of MSE for (N,N) , (N,DE) , (N,E) , 

(N,U), (DE,DE),(E,E),(U,U) Distributions of {v. } 
- ' . . . . . . . . . . . . . . . . . . . . .  i 

and {e..} Respectively. 
13 

n. (N,N) (N,DE) (N,E) (N,U) (DE,DE) (E,E) (U,U) 
l 

2 2.0 0.5 1.0 0.3 5.0 8.0 -i.0 
3 2.0 3.0 4.0 0.0 8.0 12.0 -i.0 
4 4.0 4.5 5.0 0.3 ii.0 14.0 0 
5 5.0 6.0 7.0 i.i i0.0 16.0 1.0 
6 8.0 9.0 9.0 1.3 Ii.0 18.0 1.5 

N = normal, DE = double exponential, 
E = exponential, U = uniform 

APPENDIX I 

VARIANCE OF ESTIMATED VARIANCE COMPONENTS 

i. Nested error regression model 

Under normality, Battese and Fuller (1982) have 
shown that 

var(~ 2) = 2U 4(n_t-k+~) -I 
e e 

var(~ 2) = 2n,2[(n-t-k+l) -l(t-l)2 4 
v e 

+2n~O2°2~ e v + n**~43 

and 

cov(82 82 ) =-(t-l)n, var(O ) 
e' v 

where 

-i 3 --, -- 
n** = 7.n 2 -tr[(X'X) 7.n.x.x.] . 

1 l l l 

2. Random regression coefficient model 

Under normality, it is easily shown that 

var(O 2) = 204 (n-t)-i 
e e 

(t-l)2 04 + 2~o2o 2 + ~** 4] 
var(82) = 2n'2 [ -n-t ~- e ~ e v 

and 

cov (~2 82v) 2 (t_l) ~,i 2 = - var(8 ) 
e' 

where 

~ 2 2 2 2 -i 
n, = 7 7 xij - [7.(7. xij ) ](7 7. x..) 

i j i j i j 13 

and 

~ 2 2 2 37 2 
n** = 7.(7. x..) - [7.(7. x..) j (7. 7. x..) 

i 9 13 i j 13 i j 13 

-i 

3. Fay-Herriot model 

Under normality, it is easily shown that 

var(A) = 2(t-k) -2{(t-k)A2+2AT.D. (l-x. (X'X)-ix~) 
1 1 1 

2 2 -i , 
+ 7.D.-27~D.X. (X'X) x. 

1 1 1 1 

+ tr[ (X'X)-Ix'DX(X'X)-Ix'DX~ 

where D = diag (D 1 .... ,D t) . 
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