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I. INTRODUCTION 

Estimation of variances in complex surveys 
is often done by some type of replication. One of 
the most common is the balanced half-sample (BHS) 
or balanced repeated replication method originated 
by McCarthy (1966, 1969a, 1969b). A number of 
United States government surveys have used BHS 
including the Producer Price Index, the Consumer 
Expenditure Survey, and the Employment Cost Index, 
all sponsored by the U.S. Bureau of Labor 
Statistics, the Survey of Income and Program 
Participation and the 1980 Census Post Enumeration 
Survey conducted by the U.S. Bureau of the Census, 
and the National Health Interview Survey and the 
Health and Nutrition Examination Survey sponsored 
by the U.S. National Center for Health 
Statistics. 

Recently, a number of theoretical studies 
of BHS have been conducted from the point of view 
of probability sampling theory including Krewski 
(1978), Krewski and Rao (1981), Dippo (1981), 
Dippo and Wolter (1984), and Rao and Wu (1985). 
Prior to these works, a variety of empirical 
studies were done and are listed in Krewski and 
Rao. These theoretical and empirical studies have 
concentrated on randomization properties such as 
asymptotic design-unbiasedness and 
des ign-cons is t ency. 

Often there is a well-defined reference 
set which may used in making conditional 
inferences once the data have been observed 
(Royall 1976, Smith 1984). The prediction 
theoretic approach to finite population inference 
has proved to be a valuable means of conditioning 
on the achieved sample rather than averaging over 
all possible samples. In some common situations, 
conditional and unconditional properties of 
estimators of totals and associated variance 
estimators can be dramatically different (Royall 
and Cumberland 1978, 1981a, 1981b, 1985; Holt and 
Smith 1979; Cumberland and Royall 1981). Con- 
sequently, an important consideration is whether 
the BHS variance estimator has good conditional 
properties in addition to the desirable 
unconditional properties demonstrated by the 
earlier studies. 

Implementation of the BHS method many 
times involves collapsing of strata or grouping of 
primary sampling units (psu's) in order to form 
pairs. A set of half-samples from the paired 
groups is then selected. The collapsing is 
generally done to (i) save computation time by 
reducing the number of half-samples and (2) adapt 
the BHS°method to surveys which do not use 
two-psus-per-stratum designs. The pairs may be 
formed by combining two strata in a one- 

psu-per-stratum design or by grouping psu's within 
a stratum when more than two psu s are sampled. 
In this paper we consider the latter approach 
which was also studied by Krewski (1978) and Dippo 
(1981). This approach contrasts to that of 
Krewski and Rao (1981) and Rao and Wu (1985) who 
derived asymptotic properties of BHS variance 
estimators when two psu s were selected per 
stratum and the number of strata was large. The 
approach using grouping of psu's allows 
approximate theory to be developed for certain 
estimators, such as the separate ratio and regres- 
sion estimators, which are not in the class 
covered by the last two studies mentioned above 

and is also similar to methods often used in 
practice. 

Section 2 introduces a prediction model 
and a class of estimators which includes several 
ratio, regression, and other estimators which are 
often studied in finite population inference. 
Section 3 gives an approximation to the BHS 
estimator and compares it to the linearization and 
jackknife estimators. Prediction theory for the 
BHS estimator as applied to the separate ratio and 
regression estimators is sketched in section 4. 
Section 5 reports the results of a simulation 
study in which the performance of the BHS 
estimator is compared to that of the linearization 
and jackknife estimators both in terms of mean 
squared error estimation and confidence interval 
construction. We conclude with a brief summary. 

2. THE PREDICTION MODEL AND TWO ESTIMATORS 
OF TOTALS 

This section introduces a prediction model 
and describes a general class of estimators of 
totals and two specific cases which will be 
studied. The situation considered here is one in 
which the units in the population are organized 
into H strata. A sample of n h units is selected 

from the total of N h units in stratum h. The 

total number of units in the population is denoted 

by N=Z~ N h and the total in the sample by n=l~ n h- 

The set of sample units in stratum h is 
denoted by s h. 

Associated with each unit (hi) in the 
finite population is a random variable Yhi whose 

population total is T = l~lNh Yhi and an auxiliary 

variable Xhi whose value is known for all units in 

the population. The general prediction model we 
will consider is : 

E~ (Yhi) = ah + BhXhi (i) 

var$ (Yhi) = Vhi 

with the y i uncorrelated. The type of estimator 
that will ~e considered has the general form 

= EhEiESh~hiYhi (2) 

where ~hi is a constant with respect to the 

prediction model. A further condition that we 

require of T is that it be a function of 
within-stratum means. In particular, define the 

average per sample unit Zkh = liEshZkhi/n h where 

Zkh i is a quantity (random or fixed with respect 

to the model) associated with sample unit (hi) 
and k = 1,2,...,K. The H-vector of the averages 

for quantity k is z k = (Zkl,Zk2,...,ZkH)'. The 

estimator T is required to be a function of Zl, 

z2,... , ZK, i.e. T = T(Zl,Z2,...,ZK). To clarify 
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the coverage of the class of estimators which 

are given by (2) and are also functions of ~k' we 

give two examples. 
Among the estimators in this class are two 

which are normally studied under a stratified 
simple random sampling (STSRS) plan and are 
ordinarily thought of as nonlinear in probability 
sampling theory. They are the separate ratio and 
linear regression estimators defined as 

TR = Eh (NhYhsXh/Xhs) and 

TLR = Eh Nh[Yhs + bhs(Xh - Xhs)] , where 

Yhs = EiEshYhi/nh ' Xhs = EieshXhi/nh ' Xh = 

N h 
E i Xhi/Nh, and bhs = 

Eiesh(Xhi-Xhs)Yhi/EiEsh(Xhi-Xhs)2. The estimator 

TR' for example, is seen to be in the class of 

estimators described above by defining ~hi = 

NhXh/(nhxhs)' Zlh = Yhs' and Z2h = Xhs. The 

stratified expansion estimator, the combined ratio 
estimator, and the combined linear regression 
estimator are also in the class but will not be 
considered further here. 

Model (i) will often be a reasonable 
approximation to a smooth regression relationship 
between y and a measure of size x when units are 

^ 

stratified based on x. Under (I) TLR is 

S-unbiased while TR is if =h = 0, where 

h=l,2 ..... H. TR will also be S-unbiased if a 

stratified sample balanced on x is selected, i.e. 

if Xhs = x h in all strata. Although the fact that 

TR is generally S-biased under (i) argues against 

its indiscriminate use, it is still of some 
interes~ to study the properties of the BHS method 

for TR because it is widely employed in practice. 

The prediction-variance of the general 

is defined as var$(T-T) where the variance is 

taken with respect to model (I). If as N h and n h 

-, Nh/N and nh/n converge to constants and other 

mild regularity conditions hold on various 
population and sample quantities, the 

prediction-variance is O(N2/n) and is 

asymptotically equivalent to var$(T) • 

var~ (T-T) = var~ (T) 

= EhZiesh ~iVhi . (3) 

3. THE BALANCED HALF-SAMPLE VARIANCE ESTIMATOR 
AND TWO ALTERNATIVES 

One measure of the worth of the BHS 

estimator with grouping of units is its ability to 
estimate the asymptotic prediction-variance given 
by (3). To implement the BHS estimator, suppose 
that the sample units in each stratum are divided 
into two groups each of which contains nh/2 units 

where for simplicity n h is taken to be even. How 

the groups are formed is an important 
consideration and will be addressed in later 
sections. A set of J half-samples may be defined 
by the indicators 

I I if group g in stratum h is in 
6hg ~ = half-sample ~, 

0 if not 

for g = 1,2 and ~ = 1,2,...,J. Based on the 6hg ~ 

define 

6h(~) = 26hi ~ - I 

1 if group 1 in stratum h is in 
half-sample 

-i if group 2 in stratum h is in 
half-sample 

and note that -6h(~) = 26h2 a - I. A set of 

half-samples is orthogonally balanced on the 

groups if l J~ 6~ ~) = "  l J~ 6~)6~,) = 0 " -- , h # h'. A 

minimal set of balanced half-samples has H < J < H 
+ 4. Define tkhg = lieGhgZkhi, the total of Zkh i 

for the set, denoted Ghg , of sample units in group 

g (g = 1,2) within stratum h. Further, we define 

-(~)- 2(6 h + ) which is the Zkh- l~tkhl 6h2~tkh2 /n h 

analog to Zkh based on half-sample ~, and let 

= T(z~ ~) ZK(=) ) where Zk(~) = (Z (~) Zk(~) ) ' ''''' " kl ''''' " 

The BHS variance estimator to be studied here is 

VB(~ ) = lJ= [~(~) _ ~]2/j. (4) 

Alternative BHS variance estimators employing 
the complement to each half-sample have been 
suggested by McCarthy and others, but in practice 

VB(T) is used most often. 

When n h is large in all strata and units 

are allocated to the two groups in such a way that 

T(~) may be reasonably approximated by a first- 

order Taylor series expanded about (Zl, . . . ,ZK) , 

then v B can be approximated as 

• 2/n2 
v B (T) E h(E k dkhkkh) (s) 

where dkh:tkhl-tkh 2 and Xkh=0T(=)/~Zk(~ ) evaluated 

at ~h)=Zkh for all k and h. Further details are 

given in Valliant (1987a). The approximate 

S-expectation of VB(T ) will be evaluated for 

specific estimators in section 4. 
Two competitors to the BHS method are the 

linearization estimator, denoted here by VL, and 

the jackknife estimator, denoted by vj. The 

linearization estimator, in the notation of this 
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paper, is 

v L = Eh(l - fh)Ek,k,X~hXk,hShkk,/nh (6) 

where Shk k, = 

ZiEsh (Zkhi-Zkh) (Zk, hi-Zk, h) / (nh- 1). Usually, v L 
is considered as an estimator of the probability 

sampling variance, Varp(T-T) where the subscript P 

denotes the distribution induced by the sampling 
plan. The stratified jackknife estimator as 
defined by Jones (1974) is 

vj = Eh(l-fh)(nh-l)nhlE [T -T 2 s h (hi) (h) ] (7) 

where T(hi) has the same form as T but omits sam- 

ple unit (hi) and T(h) = Es ~ h (hi)/nh" 

In a different asymptotic framework in 
which n h = 2 and H + -, Rao and Wu (1985) have 

shown that VB, VL, and vj are equivalent to a 

first-order approximation. A similar situation 
occurs here when units are randomly allocated to 
the two groups within each stratum for v B. The 

results are sketched below. 
Assignment of units to groups by simple 

random sampling (SRS) is the conventional method 

when the goal is to estimate the Varp(T-T) (Kish 

and Frankel 1970, Krewski 1978, Rust 1985). Let r 
denote the distribution induced by forming 
half-samples by SRS. It follows that Er(dkh) = 0 

and COVr(dkh,dk,h) = nhShk k, . Consequently, 

Er(VB) = VL, assuming fh = 0 in (6), and, 

= v L + Or(N2/nl'5). For the generally, v B 

jackknife use the approximation T(hi) " ~ + 

EkXkh(ZUh(i~-Zkh ) =  < J where Zkh(i ) is the stratum mean 

omitting unit (hi). Since Zkh(i)-Zkh = 

(Zkh-Zkhi)/(nh-I) we have 

- [nh(n h I)] vj EhESh[EkXkh(Zkh i Zkh)]2/ 

= v L , 

assuming fh = 0 in (6) and (7). Thus, 

unconditional on the r-distribution VB, VL, and vj 

should perform similarly in large samples. 
However, in small or moderate size samples there 
may be important differences among the three as 
noted in sections 4 and 5. 

4. THEORY FOR PARTICULAR ESTIMATORS OF TOTALS 

This section addresses approximate 
prediction properties of the estimators used in 
single-stage sampling described in section 2. 
Prediction properties are ones computed based on 
the model (S-distribution) and are conditional on 
the particular sample selected and the particular 
assignment of units to groups within strata, i.e. 
conditional on both the p and r-distributions. 
These conditional properties often contrast to 
those obtained by averaging over the p, S, and r 

distributions. For cases in which an estimator 
is S-biased under (I), none of the variance 
estimators considered here does a reasonable job 
of estimating the prediction mean squared error 

E$(T-T) 2. However, estimation of the (MSE), 

(p,$)-MSE, EpE$(T'T) 2 is often average , possible 

In fact, in each of the cases considered here the 

p-distribution is STSRS and Ep(VL) " Ep('i'-T) 2 

implying that EpE~(VL) " EpE~(T-T)2, and a similar 

approximation holds for vj. Because Er(VB) v L 

when SRS group assignment is used for VB, we also 

obtain EpESE r(v B) " EpE$ (T-T)2. Thus, 

unconditionally VB, VL, and vj are approximately 

unbiased estimators of the (p,$)-MSE. 
The prediction properties under model (I) 

of the linearization and jackknife estimators are 
given in Royall and Cumberland (1978, 1981a,b) and 
Valliant (1987b) and are briefly summarized here. 

In the special case of (i) in which a particular 
is S-unbiased the jackknife is robust in the sense 
of being asymptotically S-unbiased for the 
prediction-variance regardless of the 
specification of Vhi in the model. If ~h = 0 in 

(i), then TR is S-unbiased but the approximate 

S-bias of v L is dependent on 1 - (Xh/Xhs)2. Under 

(i) TLR is ~-unbiased and v L has a large-sample 

S-bias dependent on Xhs - x h although the S-bias 

is a lower order of magnitude than the pre- 
^ 

diction-variance of TLR if an STSRS plan is used. 

4.1 Separate Ratio Estimator 

The approximate ~-variance of TR is 

lh(N~/n h) (Xh/Xhs)2Vhs where Vhs = IshVhi/n h. 

m 

Next, define dlh = nh[Yhsl-Yhs2]/2 , d2h = 

nh[xhsl-Xhs2]/2' Zlh = Yhs' and Z2h = Xhs where 

- = 2 EieGhgYhi/nh - = Yhsg and Xhsg 2lieGhgXhi/n h . 

The approximation to v B given by (7) is then 

- - )2 - - 2 

VB(~R) " lh(Nh/nh)2(Xh/Xhs (dlh - d2hYhs/Xhs) • 
This approximate form contains a 

multiplicative factor based on Xh/Xhs and in that 

sense is similar to estimators" proposed by Royall 
and Cumberland (1981a) and Wu (1985). Under model 
(I) we have 
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E~VB(~R)" lhN2X~{nhvhs + a2hah/Xhs'2 2,-2 + 

2 - nhx~ s d2hVhs/( ) - 

- - - 2-2 
d2h[Vhs I - Vhs2]/Xhs}/(nhxhs ) (8) 

- = 21GhgVhi/ where Vhsg n h. If a stratified sample 

balanced on x is selected, TR is G-unbiased under 

(I) and in that special type of sample, it is 
reasonable to estimate the prediction-variance. 
The last three terms in the braces create a 

large-sample S-bias, when estimating varS(TR-T ) 

that can be eliminated by forcing Xhs I = Xhs2, a 

condition we will refer to as a-balance. If SRS 
assignment to groups is used, a-balance will be 

2 
achieved asymptotically. However, d2h = 0r(nh) 

and under mild regularity conditions the four 
terms in (I0) when summed over the strata have 

orders N2/n, N2/n, N2/n 2, and N2/n 2. In 

particular the term involving a h is 0 (N2/n) so 
' r 

that, as an estimator of var~(TR-T), v B may have a 

positive G-bias in stratified balanced samples if 
SRS assignment is used. 

Of particular interest is the model having 

a h = 0 and Vhi = O2Xhi for which TR is the best 

linear G-unbiased predictor of T. In that case v B 

has a modest G-bias of order N2/n 2 if SRS 
assignment is used. When a h = 0, v B is also a 

robust estimator of the ~-variance under the 
general variance specification Vhi. 

4.2 Separate Linear Regression Estimator 

The algebra is quite involved for this 
estimator and we will only sketch the results. 

^ 

The separate regression estimator TLR is 

G-unbiased under (I) and taking the expectation of 

approximation (5) shows that VB(TLR ) is S-unbiased 

to terms of order N2/n. Under model (i) a-balance 
is unnecessary to obtain approximate 
$-unbiasedness for v B. 

5. AN EMPIRICAL STUDY 

The theory of the preceding sections was 
tested in an empirical study using stratified 
simple random sampling and the estimators of 
totals described in section 2. Both conditional 
and unconditional p=operties were examined and are 
compared in this section. 

The finite population in the study 
consisted of 1184 iron and steel foundries in the 
United States. The variable y was the number of 
employees each establishment had in March 1980 and 
the auxiliary x was the number of employees one 
year earlier. Figure 1 is a plot of y versus x 
for a stratified sample of 200 establishments from 
the population. Based on the plot both the ratio 

and the regression estimator appear to be 
reasonable choices. The coefficients of the 
simple linear model a + ~x with var(y) = x, fitted 
from the entire finite population, were a = 2.95 
and ~ = .92. Several specifications of the form 

var(y) = x ~, 0<~<i_ _ , were tried. All fit the 
population well with nonzero values of ~ producing 
a somewhat better fit for large y values. 

The population was divided into five strata 
using a method similar to the cumulative square 
root rule (Cochran 1977, p.129). Establishments 
were sorted in ascending order on x and 
approximately equal-sized strata were created 

based on the cumulative value of x 2. Simple 
random samples of equal size were selected without 
replacement from each stratum. This sample se- 
lection procedure was repeated 2000 times for two 
sample sizes I0 units per stratum for a total 
of 50 and 40 units per stratum for a total sample 
of 200. For each sample the separate ratio and 
regression estimators of the total were computed. 

Two versions of the balanced half-sample 
variance estimator were computed for each 
estimated total. Within each stratum sample units 
were assigned to two groups using each of two 
methods" (a) random assignment and (b) a type of 
purposive assignment called the basket method 
(Wallenius 1980). A set of eight orthogonally 
balanced half-samples was selected from the pairs 
of groups formed in each stratum. The versions of 
the BHS estimator will be denoted vB(ran ) and 

VB(bas ) corresponding to the two methods of 

assigning sample units to groups. 
According to earlier theory, random 

assignment should produce approximately unbiased 
estimates of the (p,$)-MSE generally and should 
give satisfactory estimates of the $-MSE as long 

as T is G-unbiased. The basket method is designed 

to more nearly meet the a-balance condition Xhs 1 

Xhs2' defined for TR' in individual samples. The 

method begins by sorting the sample units from a 
stratum from high to low based on x. The unit 
with the largest x is assigned to the first group 
and the unit with the second largest x to the 
second group. The unit with the third largest x 
is assigned to the group with the smaller x-total 
and so on. When (i) holds, this method may reduce 

the overestimation by v B of the S-variance of TR 

in stratified balanced samples, but in samples 

where TR is S-biased the basket method may result 

in underestimates of the $-MSE. 
A finite population correction (fpc) 

factor was also included in the calculation of v B. 

For each of the estimators of totals, N h was re- 

, i 
placed by N h = Nh(l-fh)a in the calculation of 

~(a) and T in (4) an approach suggested by 
McCarthy (1966) for estimators which are linear 

r 

with respect to the p-distribution. The use of N h 

has the effect of inserting the fpc l-f h into the 

formula (5) for TR and TLR" In this approximate 

study the inclusion of the fpc was critical 
because fh ranges from .02 to . 14 when n = 50 and 

from .07 to .57 when n = 200. 
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The linearization variance estimator 
defined in expression (6) and the jackknife 
estimator defined in (7) were also included in the 

for comparison. For TR and TLR the specific study 

forms of the linearization estimator are 
respectively : 

2 9 
= I h Nh(l-fh)EShr~hi/[nh(nh-l)] and v L 

p 2 
= E h N~(l-fh)lShr2hi/[nh(nh-2 )] where V L 

rlhi = Yhi - xhiYhs/Xhs and r2h i = (Yhi-Yhs) - 

bhs (Xhi-Xhs) • 
Table I gives summary statistics for the 

variance estimates over all 2000 samples for each 

of the two sample sizes. For TR all four choices 

of variance estimator are nearly unbiased for the 
empirical p-MSE at either sample size with the 
exception of VB(bas ) which is on average too small 

^ 

when n=200. For TLR vB(ran ) is a severe 

overestimate when n=50 while VB(bas ) is not, but 

this disparity disappears at the larger sample 
size. The estimator v L is an underestimate at 

both sample sizes. At the larger sample size the 
version of the BHS estimator with random 
assignment is, on average, nearer the p-MSE than 
the version with purposive assignment. 

Table 2 gives 95% confidence coverage 
results over the 2000 samples based on each 

estimator T and its associated variance 
estimators. The standardized error (SZE) defined 

as (T-T)/v ½ was computed in each sample for each 
and accompanying variance estimator v. The 
percentages of samples with SZE<-I.96, SZE>I.96, 
and I SZEI<I.96 were then computed. When I SZEI < 
1.96 the normal approximation 95% confidence 
interval covers the population total T. Both BHS 
estimators give relatively poor coverage rates at 
either sample size with coverage percentages 
ranging from 85.6 to 91.8 with vB(ran ) giving 

somewhat better results than v B(bas) . Note that 

despite the severe overestimation of the p-MSE of 
^ 

TLR by vB(ran ) when n=50, the coverage rate for 

that case is less than the nominal 95%. The 
estimators v L and vj generally produce somewhat 

better unconditional coverage percentages than the 
BHS choices, particularly when n=200. 

Important differences not apparent in 
Tables i and 2 emerge among the variance 
estimators when conditional analyses are 
performed. The theory sketched earlier showed 

that under model (i) the G-biases of TR and the 

linearization estimators for TR and TLR depend on 

the degree of within-stratum balance on x, of 

which x s = EhNhXhs/N is an approximate measure. 

To test this theory the samples were sorted in 

ascending order by x s and divided into I0 groups 

of 200 samples each. In each group the averages 

of x , the error T-T for each estimator of the 
S 

total, the empirical root MSE, and the square 
roots of the averages of the variance estimators 
were computed. Figures 2 and 3 are trajectory 
plots of the results. 

The figures make it clear that the 
estimators of totals can be substantially biased 

in samples which are not near the balance point x 
S 

= x and that the performance of the variance 

estimators also depends on x s. The bias squared 

of TR is a substantial part of the MSE in samples 

where x s is extreme for both n=50 and n=200. TLR 

is more nearly conditionally unbiased but also has 

problems when x s is extreme. For TR' vB(ran), 

VB(bas), and vj follow the MSE reasonably well at 

either sample size except when x s is small where 

all are underestimates. For TLR those three 

variance estimators perform about equally well 
when n=200, but for n=50 vB(ran ) is a substantial 

overestimate of MSE(TLR ) throughout the range of 

x s. The linearization estimator is the poorest 

for both TR and TLR' being a systematic underesti- 

mate at either sample size when x < x. 
s 

Recall from section 4 that VB, with either 

method of assignment, is approximately G-unbiased 

under the cases of (i) for which TR and TLR are 

S-unbiased. The fact that the BHS estimators 
track the conditional, empirical MSE's relatively 

well through much of the range of Xs, even though 

the T's are conditionally biased is quite similar 
to the findings of Royall and Cumberland (1981a,b) 
in unstratified samples. Specifically, variance 
estimators that are ~-unbiased under a reasonable 
prediction model may be fairly robust estimators 
of the $-MSE when the model fails. This contrasts 
to the case of v L which is not approximately 

S-unbiased under the models for which TR and TLR 

are. This theoretical deficiency manifests itself 
! 

in v L s having poorer conditional performance than 

the other variance estimators. 
To examine conditional confidence interval 

coverage, the samples were sorted into the same 
ten groups as above and the percentage of SZE's 
less than -1.96 and greater than 1.96 were 
computed in each group. Figures 4 and 5 are 
similar to those found in Royall and Cumberland 
(1985) and show the percentages plotted versus 

the average x s in each group. The top of each bar 

gives the percentage of SZE's greater than 1.96; 
the bottom gives the percentage less than -1.96. 
Horizontal reference lines are drawn at 2.5% above 
and below zero where the top and bottom of each 
bar would fall if the distribution of the SZE 
was standard normal. 
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Figures 4 and 5 include percentages of 
extreme SZE's based on VL, vj, and vB(ran ). The 

percentages based on VB(bas ) are similar to, 

though slightly larger than, those for vB(ran ) for 

both TR and TLR and are not shown. When x s is 

small each of the variance estimators produces an 
excessive number of SZE's greater than 1.96 

reflecting the positive biases of TR and TLR when 

Xs < x. When Xs is large and TR has a negative 

bias, the opposite occurs the variance 
estimators produce an excess of SZE's less than 

-1.96. The one exception for TR is v L at n=50 

whose positive bias when x s is large helps prevent 

large negative SZE's. For TLR the BHS estimator 

with random assignment to groups is an improvement 
over v L when n=50, but v L performs better than 

vB(ran ) when n=200, particularly in samples near 

D 

the balance point x s = x. Generally, vj yields 

the best conditional coverage percentages, but 

m 

even its performance suffers when x is extreme. 
S 

The relatively poor performance of v B for 

confidence interval construction may be due in 
part to its instability compared to the other 
choices studied here. Table 3 gives the square 
roots of the empirical MSE's of the variance esti- 
mators over all 2000 samples. When n=200, for 
example, the root of the MSE of vB(ran ) is 50% 

larger than that of vj for TR and 33% larger than 

^ 

that of vj for TLR. 

Finally, because vB(ran ) is the standard 

version of the grouped BHS estimator in the 
literature, we examined its performance in more 
depth. ~rom the groups used in Figures 2-5, based 

on ordering samples by Xs, the 800 samples in the 

fourth through the seventh group were selected. 

In these groups of samples TR and TLR were less 

biased and vB(ran ) should be more nearly 

S-unbiased in large samples. For each sample the 

quantity B = EhNhlXhsl-Xhs21 was computed after 

units were randomly assigned to the two groups in 
each stratum. The 800 samples were then sorted 
from low to high by B, which is a measure of the 
degree of =-balance produced by random assignment, 
and divided into 8 groups of I00 samples each. In 

i 
each group the ratio R = [vB(ran)/MSE]2 and the 

percentage of samples with ISZEINI.96 were 
computed with the results shown in Table 4. Group 
i contains the samples with the smallest values of 
B and group 8 the largest. In samples where 
random assignment produced the largest values of 

B, R is about 1.3 for TR at both sample sizes and 

^ ^ 

for TLR when n=200. When n=50, R for TLR ranges 

from 1.08 in the first group to 2.47 in the eighth 
group. This implies that if estimation of the 
S-MSE is the goal, then random assignments should 
be avoided which produce an extreme imbalance on x 
between the groups. However, this is not the case 

for confidence interval coverage where the 
percentage of samples having ISEEIEI.96 is 
generally nearer the nominal 95% in groups where B 
is large and vB(ran ) overestimates the MSE. 

We conclude this section with two brief 
asides. A version of v B using systematic 

assignment of sample units to the two groups 
within a stratum after sorting by x was also 
included in the simulation study. This version of 
v B was generally intermediate in performance 

between vB(ran ) and VB(bas ). Second, we note that 

the conditional deficiencies of v L can be largely 

remedied by adjustments derived from model-based 
arguments given by Royall and Cumberland 
(1981a,b). Similar, adjusted versions of v L have 

also been studied by Wu (1985). 

6. CONCLUSION 

The conventional method of applying the 
grouped version of the balanced half-sample 
variance estimator v B is to randomly assign sample 

units to two groups within each stratum and to 
select balanced replications from the groups. 
Other studies have given this method theoretical 
and empirical support when the goal is estimation 
of the probability sampling MSE of a variety of 
linear and nonlinear statistics. This 
conventional application of v B also produces 

estimators of the conditional MSE's of the 
separate ratio and regression estimators that are 
theoretically robust in large samples under models 
with quite general variance specifications as long 
as the estimators of totals themselves are 
conditionally unbiased. This theoretical 
finding was borne out in the empirical study 
reported here but only so long as samples were not 
seriously imbalanced on the auxiliary x used in 
constructing the ratio and regression estimators. 

In the empirical examination here the 
jackknife estimator vj was generally superior for 

conditional and unconditional inference to any 
version of the grouped BHS estimator we 
considered. This was particularly true for 
confidence interval construction. Part of the 
reason for this may be instability of VB, as noted 

here and in the earlier theoretical study by 
Krewski (1978). 

The empirical findings here are in some 
disagreement with others in the literature. 
Wolter (1985, section 8), for example, summarizes 

results from two empirical studies involving 
cluster sampling in which VB, without grouping 

of clusters, was better than v L and vj for 

confidence interval construction but was 
inferior to v L in terms of bias. Extensions to 

multistage sampling of the work here will be 
needed to determine the properties of v B when 

pairs within strata are formed by grouping 
clusters. 
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Table I. Summary statistics for estimates of totals and variances from 2000 

stratified simple random samples selected from a population of iron and 

s tee l  f o u n d r i e s .  

Summary quantity 

Sample s i z e  

50 200 

Separate ratio estimator 

Relative error of TR .004 .001 

MSE ½ 8.6 3.8 

[Avg. var. est./MSE] ½ 

vB(ran) 1.02 .97 

VB(bas) 1.02 .93 

v L .97 .96 

vj 1.03 .98 

Separate regression estimator 

Relative error of TLR .009 .002 

HSE ½ 9.0 3.7 

[Avg. var. est./MSE] ½ 

vB(ran) 1.54 .99 

vB(bas) i. I0 .95 

v L .86 .92 

vj 1.18 1.00 

Notes: Relative error of each T is computed as Z(T-T)/T. The MSE is computed 

as Z(T-T)2/2000. Summations are over the 2000 samples. Root HSE's are in 

thousands. 

Table 3, Square roots of empirical mean squared errors of variance estimates 

over 2000 stratified simple random samples. (Figures are in millions.) 

Variance estimator 

Sample size 

50 200 

vB(ran) 

VB(bas) 

v L 

vj 

vB(ran) 

VB(bas) 

v L 
vj 

Separate [atio..estimator 

84.5 11.3 

84.7 i0.1 

65.0 7.1 

72.8 7.6 

Separat4 regression estimator 

477.1 12.5 

154.2 10.8 

61.4 7.0 

165.5 9.4 

Table 2. Summary statistics for standardized errors from 2000 stratified 

simple random samples from a population of iron and steel foundries. 

Estimators of 

the total and Sample 

variance size 

Percentage of SZE's 

SZE<-I.96 ISZEI~I.96 SZE>I.96 

TR vB(ran) 50 6.3 86.3 7.4 

200 6.6 87.5 5.9 

VB(bas) 50 5.5 86.3 8.2 

200 8.2 85.6 6.2 

v L 50 2.2 91.5 6.3 

200 2.8 93.6 3.6 

vj 50 2.0 93.7 4.3 

200 2.6 94.4 3.0 

TLR vB(ran) 50 2.4 91.8 5.8 

200 5.3 89.2 5.5 

VB(bas) 50 3.6 88.3 8.1 

200 6.2 87.9 5.9 

v L 50 3.6 88.6 7.8 

200 3.5 93.3 3.2 

vj 50 I.i 94.6 4.3 

200 2.5 94.8 2.7 

Table 4. Summary statistics for the BHS estimator with random assignment 

of units to groups for 800 samples with Xs near x. 

Separate ratio estimator Separate regression estimator 

Group R=[vB(ran)/MSE]½ ISZEISI.96 R=[vB(ran)/MSE]½ 

n=50 n=200 n=50 n=200 n=50 n=200 

{SZEI~Z.96 

n=50 n=200 

1 .89 .95 80 85 

2 1.00 1,00 93 90 

3 1.02 1,04 83 94 

4 1.00 ,94 91 86 

5 1.01 .93 87 87 

6 1.07 1.01 91 87 

7 1.09 1.19 86 94 

8 1.31 1.28 92 93 

1 08 

1 29 

1 25 

1 31 

1 56 

1 57 

171 

2 47 

97 

1 O0 

1 04 

10l 

97 

99 

1 15 

1 27 

85 87 

96 90 

87 93 

94 86 

92 85 

95 90 

94 92 

96 95 

Notes: Groups were formed based on size of B=ZhNh]Xhsl-Xhs21 computed for 

each sample• vB(ran)=ZvB(ran)/lO0 with the summation over samples in a 

group. Column for SZE gives percentage of samples in a group with 

ISZEI~I.96. 
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Figure 1. March 1980 employment plotted versus March 1979 employment for 

iron and steel foundries in the United States. Curves are weighted least 

squares regression lines under a model with var(y)-x. Solid line is E(y)= 

Bx; short-dash line is E(y)=B0+BlX; long-dash line is E(y)=B0+BlX+B2 x2. 
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Figure 2. Conditional bias, root mean squared error, and standard error esti- 

mates for the separate ratio estimator TR in two sets of 2000 stratified 

simple random samples. Error curve is average value of TR-T; ran, bas, 

L, and J curves are square roots of averages of vB(ran), VB(bas), v L, and 

vj; MSE curve is square root of average (TR-T) 2. 
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Figure 4. Conditional error percentages of 95% confidence intervals based 

on TR with VL, vj, and ~B(ran) in two sets of 2000 stratified simple 

random samples. Top of each bar gives percentage of samples with SZE>I.96; 

bottom gives percentage with SZE<-I.96. Horizontal reference lines are 

drawn at 2.5 percent above and below zero. 
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Figure 3. Conditional bias, root mean squared error, and standard error esti- 

mates for the separate regression estimator TLR in two sets of 2000 strat- 

ified simple random samples. Error curve is average value of TLR-T; ran, 

bas, L, and J curves are square roots of averages of vB(ran), VB(bas), v L, 

and vj; MSE curve is square root of average (TLR-T) 2. 
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Figure 5. Conditional error percentages of 95% confidence intervals based 

on TLR with VL, vj, and vB(ran) in two sets of 2000 stratified simple 

random samples. Top of each bar gives percentage of samples with SEE>I.96; 

bottom gives percentage with SZE<-I.96. Horizontal reference lines are 

drawn at 2.5 percent above and below zero. 
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