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1. Introduction 
Replicated variance estimation techniques have become 

standard procedures for use in analyzing sample survey data, 
particularly since their general usefulness was demonstrated 
by Kish and Frankel (1974). The techniques provide variance 
estimates for non-linear estimators, accounting for the 
complexities of the sample desigzl. 

Two forms of replicated variance estimator are used 
commonly: the jackknife and Balanced Repeated Replication 
(BRR). Both form estimates of the population parameter  of 
interest, each based on a different subsample (replicate) of the 
full sample, and use the variability among these estimates to 
derive a variance estima/e for the full sample estimator. In 
the standard forms of these variance estimators,  described in 
Wolter (1985) for example, the number of replicate estimates 
of the parameter  generated depends upon the sample design, 
and in particular on the number of pr imary sampling units 
(PSUs) selected (the number of sampling units in a single stage 
design). The number of replicate est imates is generally close 
to the number of PSUs. For large scale sample surveys the 
number of such sampling units is typically in the hundreds for 
multistage surveys and the thousands for single stage surveys. 
Thus use of the standard forms of the jackknife and BRR 
variance estimators requires the formation of many replicate 
estimates for each parameter  of interest. Although computers 
can perform the calculations needed for replicated variance 
estimation relatively routinely, in the practice of such large 
scale surveys economies are needed as a result of the scale and 
complexity of survey estimation. There are several features of 
this problem. 

First,  almost always in such surveys, information is 
collected on a large number of variables, and the results 
presented contain estimates for many  population parameters  
(tens or hundreds). Thus in situations where replicated 
variance estimation is typically applied, the derivation of 
variance estimates for even a subset of the survey variables 
will involve the calculation of a very large number of replicate 
estimates. 

Second, often survey estimators involve the use of post- 
stratification and non-response adjustment. These techniques 
require that  a weight, dependent upon the sample data, be 
attached to each unit, and used in estimation. Such weights 
should ideally be recomputed for each replicate estimate, using 
only data from the replicate subsample. AlthOugh it is possible 
to use the single set of whole sample weights for each replicate 
estimate, Lemeshow (1979) has shown that  substantial bias in 
variance estimation may result from such an approach. The 
use of separate weighting for each replicate increases the 
complexity of using replicated methods. 

Third, increasingly survey data are being used to examine 
relationships among the survey variables in the population 
surveyed. These analyses are generally multivariate in 
nature, and often involve the use of complex paramete:  ~ 
estimators. These estimators may  be iterative, such as the 
estimator of the coefficients in a logistic regression ana lys i s .  
The use of replicated variance estimation techniques is 
attractive in such cases, because of the difficulty in obtaining 
an explicit variance estimator for the parameter  estimate. 
Even when such explicit variance estimators are available, 
they require specialized computer programs, specific to each 
estimator. However, as the iterative procedure must  be 
repeated for each subsample replicate, the amount  of 
computation required for replicated variance estimation is very 
great if there are many replicates. 

These features of the circumstances in which replicated 
variance estimation techniques are used indicate that  their 
usefulness and convenience are enhanced if the number of 
replicates required for a single variance estimate can be 
limited, while maintaining adequate precision of variance 
estimation. The aim of this paper is to show that  this is 
possible in many  applications. In Section 2, the .requirements 
for a variance estimator for use in survey inference are 
considered. The necessary survey design and estimation 
notation are given in Section 3. Section 4 discusses strategies 
for using the jackknife with reduced replication. These 
alternatives are compared analytically in Section 5, and 
Section 6 illustrates an efficient procedure using a hypothetical 
population. BRR is considered in Section 7. Aspects of the 
practical application of these replicated methods are noted in 
Section 8. 
2. The Precision of a Variance Estimator 

Sampling variances for survey est imates are required for 
use in making inference about population parameters .  Their 
major use is in constructing confidence intervals. If an 

A A 

estimator 8 with small bias is used to estimate 8, and v( 8 ) 
A 

provides an approximately unbiased estimator of V( 8 ), the 
A 

sampling variance of 8, then two-sided confidence intervals for 
A A 

8 are constructed in the form 8 ± t I /v(  8 ), where t is chosen 
to be as small as possible while giving the required level of 
confidence. The appropriate choice of t thus depends primarily 
on the confidence coefficient ( l - a ) ,  and on the precision of the 

A 

variance estimator v(8) .  The precision of the variance 
estimator can be expressed as degrees of freedom, r, where 

A A 

r = 2V(8)2 _ V ( v ( 8 ) ) .  For large samples the use of the 
(1 - a /2 ) t h  quantile of the Student t distribution with r degrees 
of freedom as the value for t in forming confidence intervals 
will give coverage close to ( l - a ) .  For given a, this value 
decreases with increasing r, and thus with increasing precision 

A 

of v(8).  However, beyond about 25 or 30 degrees of freedom 

the quantiles of the t distribution vary little with the number of' 
degrees of fi'eedom, being close to those of the normal 
distribution. Thus it is common practice to use as 95% 

A 

confidence intervals, intervals of the form 8 ± 1.96 ~/v( ~ ) or 
A A 

8 ± 2 ¢ v ( 8 ) ,  provided t h a t r  is at least 25 or 30. Hence for 
the purposes of making inference about a parameter  8, the 
precision of variance estimation is not of great importance 
provided that  at least 25 to 30 degrees of freedom are 
attained. 

For stratified designs with many sampled PSUs, 25 to 30 
degrees of freedom can often be attained with replicated 
variance estimators using few more than 30 replicates. 
However, to attain the required precision with a relatively 
small number of replicates, care is often required in the way 
replicates are formed, and methods for doing this are discussed 
below. 
3. Notation 

Consider a sample design with H strata,  with n h ~ 2 

PSUs selected independently within each stratum, giving a 
H 

total of n = 2: n h PSUs selected. The sample can be single 
h - 1  

stage, or subsampling of second and later stage units can take 
place within selected PSUs, giving a multistage design. 
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H ^ ^ 

Consider an unbiased linear estimator 8 - 2: W h8  h of a 
h = l  

H 
parameter 8 = I: WhSh, so that  the estimator is a sum of 

h = l  
s tratum estimators with known weights. The unbiased 

^ 

estimator of 8 h, 8 h' is given by 

0h = ( X h i ) / n h '  
i=1  

where Xhi is the unbiased estimate of O h derived from the 

units subsampled within PSU i of s t ra tum h, incorporating 
appropriate weighting factors. If the sample is single stage, 
Xhi is a measurement on unit i in stratum h, weighted 

2 = E (  - inversely to its probability of selection. Let o h Xhi 

8h )2 , (h 4) E( _ 8h)4 = Uh(4)'°h'4 tt = Xhi and l~ h / the kurtosis 

of the PSU estimates for s t ratum h. Thus 
H 

2 oh/nh. V(0)  = Z W h 
h = l  

The precision of a number of replicated variance estimators 
will be considered below for such unbiased linear estimators. 
The results generalize approximately for non-linear estimators 

with small bias by considering the s t ratum specific terms 8 h, 

^ 2 
8 h' Oh and i3 h as relating to the appropriate linear substitute 

for the estimator in question, derived from a Taylor series 
expansion. 
4. The Jackknife Variance Estimator 

^ ^ 

For an estimator 8 of 8, let 8 (ih) denote the estimate of 8 

derived from the subsample consisting of the full sample with 
all units from PSU i, s tratum h omitted. For linear unbiased 

^ ^ 

8, in 8 (ih) the term 8 h is estimated by ZiXhj/(n h - 1). The 
J~ 

A 

standard (full) jackknife variance estimator of V( 8 ) is 
^ H ( n h - 1 )  nz_ h ^ ^ 

VFj(8)  = E (8(ih)  - 8 ) 2 .  
h =  1 n h i -  1 

^ 

Thus n replicate estimates 8 (ih) are required to derive 
^ ^ 

VFj( 8 ) from a particular sample. For unbiased linear 8, VFj 

is unbiased, and its variance is 
4 4 

^ H WhOh I ( ~ h - 3 )  2 1 
= + 1) " V ( VFj( 8 ) ) I: 2 nh (n h - 

h-- 1 n h 

A more general jackknife variance estimator requiring 
fewer than n replicates can be obtained by omitting more than 
one PSU from each replicate, and/or omitting only some PSUs 
from any of the replicates. A general formulation is given 
below, and specific cases are studied in more detail. 

Let the H strata be partitioned into G combined strata,  
with combined stratum g consisting of H _> 1 strata. Groups g 
of units to be omitted for the formation of replicates are 
determined in the following way. A single such dropout group 
consists of s h (1 _< s h < n h) PSUs from stratum h, for each of 

the H strata  in combined stratum g. The s h values are such 
g 

that  fh = sh/nh' the fraction of PSUs from stratum h which 

are omitted, is constant within each combined stratum, so that  

fh = f " Let F = f - 1 .  T h e  s h PSUs are selected so as to g g g 
constitute a simple random sample without replacement of the 
n h PSUs in stratum h. A replicate is f o rmedby  taking the 

entire sample and omitting the units in the dropout group. A 
total of 2 dropout groups (and thus ~ replicates) are formed g g 
from each combined stratum by repeating this process g 

G 
times (not necessarily independently). A total of L = Z 

g = l  g 
replicates are formed by omitting each dropout group in turn. 

^ 

Let 8 denote the unbiased estimator of 8 based on the 
(ig) 

replicate formed by omitting the ith dropout group from 
combined stratum g (i = 1, 2 . . . . .  2g). A jackknife variance 

^ 

estimator of V( 8 ) using these L replicates is 
^ G (Fg-1 )  ~ ^ ^ 

v j ( 8 )  = Z (8(ig) - 8 ) 2 .  
g=  1 2 i =  1 

^ g ^ 

If 8 is an unbiased linear estimator of 8, then v j ( 8 )  is an 
^ 

unbiased estimator of V( 8 ). 
If in addition each PSU appears in at most one dropout 

group, and hence is included in either (L - 1) or L replicates, 
^ ^ 

V (vj(  8 )) for unbiased linear 8 is given by 
^ 

V ( v j ( 8 ) )  = 

g = l  

~g  4 4 3 
h eg w h  °h(t3h" 3)/nh ) (Fg(Pg-2) 2 + ~g(2Fg- 3) ) 

+ 2 (ZgWhoh /nh)2 ( (Fg-1 )2+(~g-1 ) )  ~g l (Fg-1 )  - 2 .  
heg 

This is shown in Rust (1984, Appendix A). The standard 
jackknife variance estimator, VFj, is a particular case of v j  

w i thG = H , H  = l f o r a l l g ,  s h = 1for  a l lh ,  F h =  ~ h - -  nh g 
for all h, and L -  n, with each unit appearing in a single 
dropout group. Among the class of jackknife variance 
estimators, for which each PSU is included in at most one 
dropout group, VFj has the smallest variance, but requires the 

most replicates. Only jackknife variance estimators with each 
PSU included in at  most one dropout group (giving disjoint 
dropout groups) will be considered below. 

Given a fixed number of replicates, L (2 <_ L __ n), there 
are a number of ways in which dropout groups can be formed 
for use with v j .  S t ra ta  can be combined, so that  G < H, and 

some dropout groups will contain PSUs from more than one 
stratum. PSUs can be grouped within s t ra ta  and dropped out 
together, so that  S h > l  for some h. Only some of the units 

need be included in any dropout group, so that  ~gS h < n h for 

some or all h eg, g. Three particular cases are considered 
below. 
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A. The Grouped Jackknife Variance Est imator(VGj)  

For this special case, no strata  are combined, so that  
H - G. For each stratum .e h dropout groups are formed, and 

each contains s h = [nh /~  h )  units (where [ ] denotes the 

integer part). For example if n h -  13 and ~h - 4, s h = 3 

and 12 of the 13 PSUs in s t ra tum h appear in exactly one 
dropout group, with the thirteenth never being excluded. Thus 

Fh - n h / [ n h  / ~h ] (=13/3 in the example above). The 

H 
number of replicates formed is L = Z 2h' where 

h = l  
2 <_ 2h <_ nh' and the variance estimator is 

^ H ( F h - 1 )  .th ^ ^ 
VGj(0)  = Z (0( ih)  - 0 ) 2 .  

h=  1 2 h i= 1 
If (n h / ~h) is an integer, F h = 2 h. If this holds for all h 

^ H (~h-1 )  ~Z_ h ^ ^ 
VGj(0)  = Z (0( ih)  - 0 ) 2  

h=  1 ~h i= 1 
and 

^ H Whah [(/~h - 3 )  2 

= + ( ~ h . i )  . (1) V ( vGZ( 0 ) ) Z 2 nh 
h = l  n h 

^ 

In general V(VGj (0 )  ) is not a continuous function of 
! 

= (21 . . . . .  "¢H ) ' and thus minimization with respect to ~ is 

difficult. However, (1) is tractable for minimization with 
A 

respect to ~.  As well as giving the value of V(VGj ( 0 )) when 
^ 

(nh/~ h) is an integer for all h, (1) approximates V(VGj (0) )  

otherwise. Rust (1984, Ch.3) shows that, for the purposes of 
choosing the best value of ~ ,  the choice which minimizes (1) 

will be satisfactory in most applications. Expression (1) is 
minimized by putting 

2 2 
( L - H )  WhO h 

= (2) 
~h 1 +  [ HZ 2 2  / ] 

nh [ Wk° k n k J 
k = l  

with the constraints that  2 <_ 2h <_ nh" Rounding these values 

to an adjacent integer will approximately minimize 
^ 

V ( V G j ( 0 ) ) ,  and thus maximize the number of degrees of 
^ 

freedom r ( v G j (  0 )) for fixed L. 

If ~h = 3 (the value for a normal distribution) for all h, 

then substituting the values of ~h given by (2) gives degrees of 
A 

freedom r ( v G J , O P T ( 0 ) )  = L - H, provided that  these 

optimum Zh values are such that  2 < "Oh < nh for every 

stratum, where VGJ,OPT denotes the form of VGj  obtained by 

using (2) to assign dropout groups to strata.  As Kish (1965, 
Section 8.6D) argues, for designs with many second stage 
units selected per PSU, ~h will be close to three in most cases. 

Thus in order to estimate variances with 30 degrees of 
freedom, for example, approximately (30 + H) replicates will 
be required for such designs, and somewhat more if 2 h = 2 or 

~h - nh for some h. Note that  at least 2H replicates must  be 

formed, since ~¢h -> 2 for all h. 

B. The Combined Strata Grouped Jackknife 
....... Variance Estimaimr (Vc j )  

This is an extension of the grouped jackknife, in which 
s t ra ta  are combined for the purpose of forming groups. In this 
case G < H, and replicates are formed by dropping units from 
more than one s t ra tum at a time. The formation of combined 
strata,  and the assignment of dropout groups 
2g (2 <_ ~g <_ ~ i~  nh) must be done in such a way as to give 

2g a value no greater than the largest common factor of the n h 

for heg. Thus if two strata  with 7 and 14 PSUs selected 
respectively are combined, ~ <_ 7. However, two s t ra ta  with g 
7 and 13 PSUs selected respectively cannot be combined, and 
if two strata  with 8 and 14 PSUs respectively are combined, 
the only possible number of dropout groups is ~ - 2. Each 

g 
dropout group consists of [nh/Zg] units from stratum h. Thus 

if s t ra ta  with 7 and 14 PSUs are combined, and ~ = 3 
g 

dropout groups are formed, each will contain 2 PSUs from the 
first s t ra tum and 4 PSUs from the second. In this case, 

G 
F - 3.5. The total number of replicates is L = Z 2 and 

g g=  1 g' 
the variance estimator is 

G ( F g - 1 )  ~g ^ ^ 
Vca(0)  = Z ( e ( i g ) -  0 )  2 . 

g = l  .¢ i=1  
If (nh/~g) is an integer ~or all h~g, g=  1 . . . . .  G, then 

^ G ( ~ g - 1 )  2zg ^ 
V c j ( 0 )  = Z ( 0 ( i g ) -  ~ ) 2  

g = l  ~ i = l  g 
and for unbiased linear 0 

H ^ .74  4 3 
V ( V c j ( 8 ) )  = Z VXhO h [ ~ h -  3) / n  h 

h = l  

G H 
. 2 2 / n h ) 2 /  ( t  - 1 ) .  (3) + 2  r ( ~ g ~ h O h  g 

g = l  heg 
As for the grouped jackknife, (3) will be used to approximate 

A 

V(Vcj (  0 )) in general, with the error of approximation having 

little consequence for practical application in forming dropout 
^ 

groups efficiently. V ( V c j ( 0 ) )  is minimized approximately by 

using 
H H 

1 + (L-G)( Z -g 2 2 2 2 - 1  
2g = heg WhOh / n h ) ( k  =Z 1 w k °  /nk) (4) 

for g = 1,2,...,G, 
rounding , g  to an appropriate integer within the range 

< i n n  h. With ~1 h = 3 for all h, and provided that  2<_ , g  _ ~n~g 

2 < yg < ~ i~  n h for all g , r ( V C j ( 0 ) )  = L - G. 

The best choice o f ,  is thus to assign one dropout group to 
g 

each combined stratum, and then assign the remainder in 
proportion to the sampling variance contributed by each 
combined stratum. If this is possible, approximately (r + G) 
replicates are required to give r degrees of freedom. Thus 
fewest replicates are required for a given level of precision 
when as many s t ra ta  as possible are combined. However, it 
must  be remembered that  there are restrictions as to which 
s t ra ta  can be combined, and excessive combining will give 

gg ~ i~  n h being optimal for one or more combined s t ra ta  g. 

If this occurs, (r + G) replicates will give fewer than (r + G) 
degrees of freedom, and in fact it may not be possible to form 
(r + G) replicates if G is small. In Section 6 it will be seen 
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that  a lesser degree of combining can be more precise, because 
the allocation of dropout groups to combined s trata  can be 
undertaken more efficiently. 

C. The Sample Jackknife Variance E s t i m a t o r ( v s j  ) 

For this method, no s t ra ta  are combined, so G = H. As 
for the full jackknife, each dropout group contains only one unit 
(s h = 1 for all h) ,  and thus F h = n h. The number of 

H 
replicates used is L = Z 2 h, with 1 _< ~h -<- nh" Thus L 

h = l  
PSUs are omitted from exactly one replicate, and (n - L) are 
included in every replicate. The variance estimator is 

^ H (n h - 1) ~Z1 a ^ 
V s j ( 0 )  = Z (0(ih)  - 0 ) 2 .  

h =  1 ~h i=  1 
^ 

For unbiased linear 9 
4 4 

^ H WhO h { [ 
V(Vs j (O) )  = Z 2 (~h "3) (nh '2 )2  

h = l n  h ( n  h - 1 ) 2 2 h  

n h 

This is minimized using 2h.Values given by 

2h - 1 if n h - 2 

:I: 

( L -  H )a h 
2h = if n h > 2 

H 

2: a k 
k = l  

where H is the number of s t rata  with n h = 2, and 

2 2 
WhO h 

a h = ~/(n h - 2 ) ( (~  h - 3)(n h - 2) + 2 n h ) 1 / 2 ,  
nh(n h - 1) 

with the additional condition that  1 ~ 2h -< nh" 

Note that  for the sample jackknife variance estimator the 
optimal allocation of dropout units is a function of the s t ra tum 
kurtoses. This makes the practical application of this method 
more difficult than is the case for the grouped jackknife 
methods described above, since in practice ~h values will often 

be imprecisely known. 
If ~h = 3 for all h, and if (n / H) is large, r replicates will 

give almost r degrees of freedom in most cases, for r _> H. 
5. Comparisons Among Jackknif  e Procedures 

In the preceding section, three alternative jackknife 
procedures are described which permit the user to determine to 
a great  extent the number of replicates to be used. In 
comparing these the precisions for linear estimators for a given 
number of replicates L will be considered. The approximate 
bias of the variance estimators for non-linear estimators will 
also be considered. 

The grouped jackknife is a special case of the combined 
s trata  grouped jackknife. Thus in comparing these two, the 
issue is to what  extent the combining of s t rata  is desirable. As 
seen in Section 4, if optimization of the choice of 2 values is 

g 
A 

possible, V ( V c j  (0) )  = A + B / ( L -  G) where A and B are 

functions of the design and population, but not the variance 
estimator, L is the number of replicates used and G is the 
number of combined s trata  used. As B > 0, the most precise 
variance estimation will result from the use of the fewest 
combined s t ra ta  (smallest G) consistent with the assignment of 

values in accordance with (4), rather  than having 2 = 2 or 
g g 

= ~ni~ n h. Essentially, one degree of freedom is "lost" for 2g 

every combined s t ra tum used, so the use of a smaller number 
of combined s t ra ta  is desirable. 

Furthermore,  the efficiency of combining s t ra ta  will be 
more extensive for domains (subclasses whose members are 
contained within a subset of the survey strata). For a fixed 
number of replicates L, 2 values will be larger for smaller G. 

g 
This means that  each domain will be assigned to a greater 
number of dropout groups when m u c h  combining occurs, 
leading to greater precision of variance estimation for domain 
estimates. 

Rust (1984, Appendix A) shows that, ignoring terms of 
- 3  ^ 

order n and higher, for 8 an appropriately differentiable 
function of linear estimators, 

G 
S i a s ( v j ( 0 ) ) - -  Z ( F g -  1) - 1  2: d h 

g = l  heg 
where d h is a function of the estimator and sample design in 

s t ra tum h. To this order of approximation the absolute bias 
will be less for large values of F if d h is of constant sign for g 
all h, which is likely to occur in practice. Large values of F 

g 
arise if few units from any one s t ra tum are included in a single 
dropout group, ([nhl2g] small) and thus in general for fixed 

number of replicates L less absolute bias in variance 
estimation is likely if s t rata  are combined to a greater degree 
(large 2 and small G). g 

The relative precision of the sample jackknife in 
comparison to the grouped jackknife depends upon the s t ra tum 
kurtoses ~h" As discussed in Rust (1984, Ch. 4), for t] h values 

close to three the precisions of the two approaches are similar. 
However, the grouped jackknife provides some protection 
against  the presence of larger /3 h values, in that  its precision 

declines much less rapidly with increasing ~h than does the 

precision of the sample jackknife. For example consider the 

.2 2 
case where ~'hOh , n h and ~h are constant across strata.  

Table 1 shows the number of degrees of freedom for the 
grouped jackknife and sample jackknife, both for the case 
where the common ~h = 3, and for ~h = 10. 

TABLE 1 
Degrees of Freedom for Jackknife Variance Estimators 

2 2 Constant n = 2 0 0  H = 1 0  L = 4 0  n h = 2 0  Who h 

Grouped Jackknife Sample Jackknife 
Common/3 h (VGj) ( Vsj  ) 

3 30 40 
10 20 9.5 
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In the case where ~3 h = 3, both variance estimators 

provide adequate precision for use in making inference about 8, 
and give rise to similar width confidence intervals. When 

~h = 10, the sample jackknife gives relatively poor precision 

and will give 95% confidence intervals 8% wider than those 
given by the grouped jackknife. Using 95% confidence 

^ ^ 

intervals of the form 8 +_ 2 ~/Vsj( O ), based on the sample 

jackknife, will give an overstated level of confidence if 

~h = 10. For more extreme values of ~, the performance of 

the sample jackknife deteriorates rapidly. Thus the range of 

~h values for which the sample jackknife gives adequate 

precision for given L is much smaller than for the grouped 
jackknife. In stratified single stage samples for measuring 
quantitative variables, kurtoses (~h values) substantially in 

excess of 3 are quite likely to arise. Thus in practice the 
grouped jackknife appears to be a more robust method than 
the sample jackknife, less sensitive to outliers, which are 
reflected by the presence of large s t ra tum kurtosis values/~h" 

In summary,  the desirable properties for a jackknife 
variance estimator with fixed number of replicates are: 

1) A high proportion of the PSUs should be included in 
some dropout group 

2) Within a single dropout group there should be few 
units from any single s t ra tum 

3) Dropout groups should be assigned more heavily to 
s t ra ta  (or combined s t ra ta)  which contribute large 
proportions of the total sampling variance. 

Among the alternatives considered in this section the 
combined s trata  grouped jackknife, with optimal allocation of 
dropout groups, most successfully combines these attributes 
across the range of types of sample design for which 
replication methods are likely to be used. 
6. Example of the Application of the Combined Strata  
Grouped Jackkn i fe (vc j  ) ' 

Consider the stratified population and sample shown in 
Table 2. For all s trata ~h = 3. If the full jackknife variance 

estimator VFj were used for variance estimation, 200 replicate 

estimates would be required, and about 103 degrees of freedom 
would be attained. 

TABLE 2 
Hypothetical Stratified Population and Sample 

St ra tum (h) 

2 2  2 2  
WhO h n h WhOh/nh 

1,2 1 20 .05 
3,4 2 20 .1 
5,6 5 20 .25 
7,8 10 20 .5 

9,10 20 20 1 
Total - 200 3.80 

By using the combined s t ra tum grouped jackknife, 
adequate precision of variance estimation can be attained using 
much fewer than 200 replicates. One possible approach is t o  
combine all strata,  and form 20 dropout groups consisting of 
one PSU from each stratum. This will give 20 replicates and 
19 degrees of freedom. The use of this variance estimator will 
give 95% confidence intervals which are 5.2% wider than those 
obtained using the full jackknife with 200 replicates. 

Greater  precision can be obtained if less combining of 
s t ra ta  is used (because only 20 replicates can be formed in the 
case of a single combined stratum). For example, suppose that  
we wish to attain about 25 degrees of freedom, and that  s t ra ta  
1 to 4 comprise a domain of special interest (this domain has 
been heavily sampled). We thus would like s t rata  1 to 4 to be 
represented in as many combined s trata  as possible. Table 3 
shows one possible way of forming combined strata,  and the 
appropriate rounded allocation of dropout groups to combined 
strata.  In order to attain 25 degrees of freedom with 4 
combined strata,  29 dropout groups have been assigned. 

For dropout groups in Combined Stra tum 1, ten units are 
omitted each time, five from each of s t ra ta  1 and 7. In 
Combined Stra tum 4, six units are omitted each time, two 
from each of s t ra ta  4, 6 and 10. Such an arrangement  gives 
24.8 degrees of freedom for the whole sample estimate, and 

TABLE 3 
Formation of Combined Stra ta  and Dropout 

Groups for Hypothetical Population 

Optimum Rounded 
2 2 

Combined Contrib. 2: W hoh/n h 2 2 s h 
Stra tum Stra ta  h eg g g 

1 1,7 0.55 4.62 4 5 
2 2,8 0.55 4.62 5 4 
3 3,5,9 1.35 9.88 10 2 
4 4,6,10 1.35 9.88 10 2 

Total - 3.80 29 29 - 

24.5 degrees of freedom for the domain consisting of s t ra ta  1 
to 4. Note that  almost 25 degrees of freedom are attained in 
each case, despite substantial rounding in the assignment of ~g 

values. 
7. Balanced Repeated Replication (BRR! 

The method of BRR was introduced by McCarthy (1966, 
1969) and has been described recently in detail by Wolter 
(1985). The full method with H s t ra ta  requires the formation 
of T half-sample replicate estimates,  where T is a multiple of 4 
satisfying H _< T _< H + 3. Depending upon the precise form 
of variance estimator used, T complementary half-sample 

A 
! 

replicate estimates may be required also. If 8 t is the estimate 

of O derived from the t th half-sample, one popular form of 
A 

BRR variance estimator for estimating V( 0 ) is 

- S  ( ~ ' _ _ . VBR R O) = ~ t _ l  ( O t  0 ) 2  + (O, t e )  

The discussion below relates to BRR variance estimators of 
this form. This variance estimator requires 2T replicate 

^ 

estimates. For unbiased linear O, VBRR_ S is unbiased, and 

using the same notation as in the previous sections but with 

n h = 2 f o r a l l h ,  

4 4 
^ n W hoh(~ h + 1) 

V(VBRR_ S (O)) = 2: 8 " 
h = l  

Two methods have been proposed for adapting the BRR 
method for use with fewer than the 2T replicate est imates 
required for full balance. The method of Partially Balanced 
Repeated Replication (PBRR), introduced by McCarthy (1966) 
and developed by Lee (1972, 1973) requires the formation of 
groups of s t rata  and uses a set of half-sample replicates which 
are fully balanced within each group, but not across groups. 
Fewer replicates are required to achieve this partial balancing. 
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In Lee's development, all groups contain the same number of 
strata.  If H strata  are divided into P groups of H/P s t ra ta  
each, instead of requiring about H half-samples and their 
complements, as for full balance, only about H/P half-samples 
and their complements are required. Lee discusses strategies 
for forming such groups so as to maintain good precision of 
variance estimation for a given number of groups P. 

An alternative method of reducing the number of half- 
samples required for BRR is to form combined s t ra ta  and 
balance across combined s t ra ta  but not within. If  G combined 
s t ra ta  are formed, this approach results in the formation of 
about G half-sample replicates a~nd their complements. The 
number of s trata  within each combined s t ra tum g, H need g '  

not be constant across g. 
It  can be easily seen (see Rust, 1984, Ch.2) that  the 

methods of PBRR and combined s t ra ta  BRR are equivalent. 
However, the combined s t ra ta  method provides a more 
convenient approach to handling the case where the number of 
s t ra ta  per combined s t ra tum varies (or equivalently for PBRR, 
the number of s t rata  per balance group varies). 

When G combined s t ra ta  are formed, the gth of which 
contains H strata,  the combined s t ra ta  BRR variance g 

estimator uses T' half-sample estimators and their 

complements, where G _< T' _< G + 3. Denoting the variance 
estimator as vCB, it can be shown that  

Z Whah(~h-3) /4  + 2: ( 2: V(VcB(0) )  2 h = l  g = l  heg Oh) " 

2 2 
If the values of WhO h are known approximately, then 

^ 

V(vCB (8))  can be minimized for fixed G by equalizing the 

2 2 Thus ideally the G combined s t ra ta  values of I: W ha h. 
heg 

A 

should each contribute equally to the sampling variance of 8. 
The strategies proposed by Lee (1972, 1973) for obtaining 
precise variance estimation using PBRR are effectively aimed 

2 2 
at achieving this equalization. If Z Who h is constant, then 

heg- 

4 4 (h H ^ 1 n WhOh(L3 h -  3) 1 2 2 2 
= W h a h ) Z 4 +G ~1 V(vCB (8))  2 h = l  

^ 

and if ~h = 3 for all H, vCB ( 8 ) has G degrees of freedom for 

variance estimation. 

Thus, with knowledge of the approximate values of j3 h, and 

72 2 
the relative values of ~ :h°h '  the number of replicates required 

to achieve a prescribed number of degrees of freedom can be 
calculated. When ~h -- 3 for all h, a total of approximately r 

half-sample replicates and their complements, obtained from r 
combined strata,  will suffice to give about r degrees of freedom. 
The combined s trata  jackknife also requires 2r replicates in 
this case. The most efficient formation of combined s t ra ta  is 
the same for these two replicated approaches. For linear 
estimators the jackknife and BRR variance estimators are 
equivalent for 2 PSU per s t ra tum designs if the same set of 
combined strata is used for each. 
8. Practical Applicatiqn of  the Methods 

For both the BRR variance estimator, and those jackknife 
variance estimators (including the grouped jackknife and the 
combined s t ra tum grouped jackknife) for which [nh/Zg] = S h 

for all h,g, so that  no "sampling" occurs in the allocation of 
PSUs to dropout groups, an alternative form of variance 
estimator is available. In the analyses above, the full 
complement of replicates formed have been used for variance 
estimation. For each variance estimator,  an alternative form 
of variance estimator is available, equivalent for linear 
estimators to the full form, described in Sections 4 and 7. For 
this alternative form, G of the replicates are ignored, 
corresponding to one dropout group from each (combined) 
s tratum. The variance estimation formula is adjusted 
appropriately, so as to give unbiased variance estimation for 
unbiased linear estimators. In the case of BRR, this variance 
estimator,  based only on the half-sample estimates and 
ignoring the complementary ball-sample replicates, is denoted 
by Kish and Frankel(1974) and others as VBRR_ H. By using 

such "adjusted" replicated variance estimators, G fewer 
replicate estimates are required, but there is little loss in 
precision of variance estimation. Thus these forms of 
replicated variance estimator are attractive in practice when 
limitation of the number of replicate estimates derived is 
desirable. The results given above hold for these adjusted 
variance estimators, equally as for those for which estimates 
from all replicates formed are used. For the jackknife variance 
estimators each combined s t ra tum provides ( 2 g -  1) dropout 

groups, and approximately r such replicate estimates are 
required to give r degrees of freedom. Similarly for BRR, 
approximately r degrees of freedom can be obtained by using r 
combined strata,  efficiently formed, and deriving a single half- 
sample estimate for each replicate, requiring about r replicate 
estimates in total. 

The development in this paper has assumed independent 
selection of PSUs within strata,  with at least two PSUs 
selected per s tratum. In most designs the former assumption 
is violated, and in many multistage designs only one PSU is 

selected per s t ra tum,  so that  s t ra ta  must  be collapsed for 
replicated variance estimation. Thus the use of replicated 
procedures leads frequently to biased variance estimation in 
practice. For linear estimators the magnitude of this bias is 
not affected by the form of replicated procedure used, and for 
all types of est imators is generally both small and positive. It  
is thus not of major concern for the methods considered in this 
paper. 

For both jackknife and BRR procedures, exact optimization 
2 2 

requires knowledge of the relative values of WhO h / n  h, the 

contribution of sampling variance from each stratum. This 
will not generally be available, but exact optimization is not 
generally required. Provided that  there is some indication 

2 2 
available as to the relative values of WhO h and /~h' adequate 

precision of variance estimation can be obtained using a 
moderate number of replicates. The optimum will differ for 
different survey variables, but approximate optimization for 
one major survey variable, or a compromise for a few main 
variables, is likely to be good for most. For non-linear 
estimators, if the component linear est imators have optima 
which are similar, their non-linear composite is likely to have 
an optimum close to these in many cases. 

2 2 will be dominated by Frequently, variation in WhO h 

W 2, and thus the size of the s t ra ta  can be used variation in a s  

a proxy for WhO h. This approach should be used with care for 

designs where some s t ra ta  have more stages of selection than 
2 

others, as o h values are likely to be greater  for the s t ra ta  with 

more stages. Note that  for designs with constant o h and 

n h - 2 ,  the recommended approach to combining s t ra ta  for 

use with BRR does not involve the formation of combined 
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strata of equal size ( 2: W h) as might be expected intuitively. 
heg 

Many small strata can be combined safely, but large strata 
should be kept distinct. 
9. Summary 

The aim of this paper is to demonstrate an approach to 
replicated variance estimation in which the formation of a 
modest number of replicates will give adequate precision of 
variance estimation in a wide range of applications. There are 
a number of features of this approach important for its 
application in practice. 1) It can be applied to a wide range of 
sample designs, regardless of the allocation of sample to 
strata, or other features of the complex design. 2) As long as 
the researcher has a general idea of the relative contribution of 
the different survey strata to the total sampling variance, and 
an awareness of the likelihood of occurrence and severity of 

long-tailed sampling distributions within strata, it is possible to 
control adequately the precision of variance estimation, and 
simultaneously to limit the amount of replication. 3) The 
procedure is robust, in that it is only necessary to form 
replicates in a manner somewhat near optimum in order to 
achieve close to optimum precision. 4) Although different sets 
of replicates can be formed for different estimators if 
necessary, in many cases a single set of replicates will be 
adequate for a wide range of estimators from a single survey. 
If particular domains (subsets of the survey strata) of interest 
are identified in advance, a single set of replicates can be 
formed in a manner which ensures adequate precision of 

variance estimation for such domains, as well as the whole 
population. 
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