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I. Introduction 

This paper summarizes research presented in 

my 1984 dissertation. The dissertation (Folsom, 

1984) was devoted to the development of prob- 

ability sample U-statistics theory. Applications 

of the theory were made to solve variance and 

variance component estimation problems for 

complex sample designs. In the domain of classi- 

cal statistics where sampling from probability 

distributions is assumed, U-statistics theory 

has played an important role in the area of 

robust nonparametric inference. Variance compon- 

ents estimation has been one classical area 

where U-statistics theory has been applied to 

good advantage. By extending U-statistics 

theory into the realm of complex probability 

samples, the unbiased Yates-Grundy-Sen variance 

estimator and associated variance component 

estimators are identified as degree 2 probability 

sample U-statistics. Considering the central 

role that variance and variance component esti- 

mates play in probability sample design and 

inference, the associated U-statistics theory 

provides a valuable new research and analysis 

tool for survey statistics. 

2. Unbiased Covariance Estimators for 
U-Statistics 

In the initial development, the need for new 

unbiased covariance estimators for U-statistics 

is recognized. Due to the deeply stratified 

nature of the typical probability sample, stratum 

specific sample si~es will often be too small to 

justify existing large sample variance approx- 

imations. For a stratified sample with n h = 4 

independent normal selections per stratum, the 

variance of the sample variance estimator is 

underestimated by 33 percent using Sen's large 

sample variance approximation. The standard 

jackknife variance estimator for this example 

results in a 51 percent overestimate. The 
unbiased U-statistic covariance estimator devel- 

oped in Chapter 2 of the dissertation is anal- 

ogous to the Yates-Grundy-Sen (YGS) variance 

estimator for degree I Horvitz-Thompson statis- 

tics. As in the degree I case, the YGS variance 

estimator for a degree m U-statistic requires 

computation of degree 2m joint sample inclusion 

probabilities. For the special case of with 

replacement sampling an unbiased U-statistic 

variance estimator is developed that requires no 

computation of higher order variance weights. 

In the minimum sample size case (n = 4) for 

degree m = 2 variance eshimability, the with 

replacement variance estimator has a simple form 

reminiscent of the squared difference estimator 

for paired with replacement selections. With f a 

depicting a degree 2 kernel, the with replacement 

variance estimator for the n = 4 special case is 

computed as the simple average of three terms of 

the form 

( f a  - ~)([ :  - f s - a )  (1)  

where f is the U-statistic estimator and f is 
s-a 

the degree 2 kernel based on the complementary 

half-sample s-a. Note that for n = 4 and m = 2, 

there are (~) = 6 degree 2 (half-sample) kernels 

and 3 half-sample/complement pairs. 

3. Multistage Sample Results 

In Chapter 3 of the dissertation, the single 

stage design results of Chapter 2 were extended 

to multistage probability samples. For primary 

sample designs involving nonreplacement or mini- 

mum replacement selections, an extension of 

Durbin's theorem for unbiased degree m = 1 

multistage variance estimation was required. 

Given the development of parallel notation, the 

associated degree m version of Durbin's theorem 

proves to be directly analogous to the general 

degree m = I result. For the special case of 

with replacement primary samples, the variance 

estimator based on a copy of the single stage 

form in equation (I) is unbiased; that is, with 
^ 

the estimated psu-level kernel f based on a 

subsequent stages of sampling replacing f in a 

(I), then equation (I) provides an unbiased 

vari-ance estimator for the multistage U-statis- 

tic fII" As in the degree m = I case, it is 

shown that for with replacement primary selec- 

tions this copy of the first stage variance form 
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is unbiased without further correction for 

within psu vari-ance contributions. 

4. Nonlinear Functions of U-Statistics 

Chapter 4 of the dissertation explores the 

issue of variance estimation for nonlinear 

func-tions of probability sample U-statistics. 

For a general class of probability sample esigns 

including with replacement and minimum replace- 

ment selections as defined by Chromy (1979), the 

Taylor series or delta method variance approxima- 

tion is shown to be asymptotically unbiased. As 

in the degree m = I case, it is shown that the 

delta method approximation can be formed by 

replacing the sample kernels f in the linear 
a 

function variance formula by a linearized kernel, 

say £ , where 
a 

^ 

£ ~ Q f (2) 
a ~a 

^ 

and Q is the row vector of estimated first order 

partial derivatives of the non-linear function 

with respect to the vector of U-statistics. The 

elements of the column vector f in equation (2) 
Na 

are the kernels f associated with the t-th 
at 

constituent U-statistic, say U t. The jackknife 

and balanced repeated replication (BRR) sample 

reuse methods for nonlinear variance approxima- 

tion were also explored. The existing versions 

of these sample reuse methods do not allow one 

to properly account for the effects of non- 

replacement or minimum replacement sampling when 

the sampling fractions vary from stratum to 

stratum. Furthermore, for unequal probability 

sample designs only the with replacement variance 

approximation can be reproduced when these 

sample reuse methods are applied to linear 

statistics. The BRR method has also been 

restricted in the past to designs with an equal 

number of sampling units per stratum. To remove 

these design restrictions and simultaneously 

extend sample reuse methods to general probabil- 

ity sample U-statistics, a new class of pairwise 

jackknife and BRR variance estimators was devel- 

oped. If (ab) labels distinct pairs of degree m 

kernels, the YGS variance estimator for a single 

stage U-statistic f has the form 

var(f)YGS = Z [ Wab (Fa - F~b )2 (3) 
ages b>a 

(:)-I f is the sample size scaled where 
a a 

degree m kernel. If the number of kernel pairs 
n : 

w i t h  a > b i s  d e n o t e d  by  R - ( m ) [ ( )  - 1 ] / 2 ,  

then the pairwise BRR estimator is based on an 

orthogonal design matrix with +I and -I elements 

of dimension greater than R. Letting A depict a 

selection of R contrast columns from the smallest 

such orthogonal design matrix with dimension A 

greater than R, the new BRR replicates can be 

depicted by 

1 

= f JA + A W ~ e (4) 
brr - 

where e is an R x 1 column vector with elements 

e ( a b )  ~ (Fa - Fb ) -  

Fo r  t h e  s p e c i a l  c a s e  c o n s i d e r e d  h e r e ,  we assume 

t h a t  t h e  Wab v a r i a n c e  w e i g h t s  a r e  a l l  p o s i t i v e .  

Th i s  a s s u m p t i o n  i s  s a t i s f i e d  f o r  t h e  d e g r e e  

m = 1 c a s e  by any  number  o f  n o n r e p l a c e m e n t  

u n e q u a l  p r o b a b i l i t y  s e l e c t i o n  s chemes .  Wi th  
1 

t h i s  a s s u m p t i o n ,  W ~ can be i d e n t i f i e d  as  an 

x R d i a g o n a l  m a t r i x  w i t h  (Wab)½ on t h e  d i a g o -  R 

n a l .  The v e c t o r  JA i n  e q u a t i o n  (4)  d e n o t e s  an 

A x 1 column v e c t o r  o f  l ' s ,  and A i s  an A x R 

m a t r i x  whose co lumns  a r e  o r t h o g o n a l  c o n t r a s t s .  

S i n c e  t h e  columns o f  A a r e  c o n t r a s t  v e c t o r s ,  

( + l ' s  and - l ' s  t h a t  sum to  z e r o ) ,  i t  i s  c l e a r  

t h a t  t h e  A r e p l i c a t e  s t a t i s t i c s  i n  ~ b r r  (A x 1) 

a v e r a g e  t o  t h e  f u l l  s ample  U - s t a t i s t i c  f .  T h i s  

f o l l o w s  from t h e  f a c t  t h a t  

: a T ~brr + A) fb - (J rr 

1 

TAW~e+A = f+JA ~ 

= ~ + 0 .  

The simple mean square among these new BRR 
kernels is 

var(f)brr rr (fbrr f JA ) + A = (fb - ~ JA )T - 

T I AT I 
= e W ~ A W ~ e - A (5) 

The fact that the columns of A are orthogonal 

contrast vectors of +l's and -l's leads to the 

result 
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T 
var(1)br r = e W e 

= ~ Wab e(ab) 2 
(ab) 

= var(f)yG S (6) 

The results in equations (5) and (6) confirm 

that the new BRR replicate equations in (4) lead 

to a sample reuse variance form that reproduces 

the unbiased YGS variance estimator for linear 

func-tions of U-statistics. Note that this 

result is true for any n. One can also produce 

the complementary set of BRR replicate estimators 
1 

by subtracting the residual vector A W~ e f~rr ~ 

from f JA" These complementary BRR replicates 

can be used to form var(f)br r which is averaged 

with equation (6). Alternately, one can form the 

BRR difference variance estimator 

var(f)Drr = (fb- rr - -f~rr )T (fbrr- ~f~rr ) + 4A 
(7) 

It is easy to see that equation (7) is also 

equivalent to the YGS estimator. The BRR esti- 

mators in (5) and (7) are easily shown to dupli- 

cate the delta YGS variance estimator for linear 

functions of U-statistics. The equivalence of 

the new BRR approximation and the delta-YGS 

estimator extends to quadratic functions of 

U-statistics when the BRR-D estimator in equation 

(7) is employed. 

5. U-Statistics Applications 

Three areas of application were illustrated 

in Chapter 5 of the dissertation. The first 

application demonstrates the utility of prob- 

ability sample U-statistics theory as a research 

tool for exploring the small sample properties, 

bias and mean squared error, of a new class of 

YGS ratio estimators. To improve the stability 

of YGS variance estimators, the following ratio 

adpatation was proposed for the degree m = 1 

case 

N 2 2 
var(Y+)YOS_ R = [I - n k=l~ ~k] SQy / n (8) 

where #k = Kk/n is the single draw selection 

probability for population unit k, and 

n 

2 = ~ ~ Qij (Yi - Yj )2 / 2 
SQy i=l j>i 

is the weighted average of the degree 2 variance 

kernels (Yi - Yj )2/2 with Yi = (Yi/#i) depicting 

the single draw variate for sampling unit i. 

The weights Q.. for averaging these kernels are 
13 

proportional to the YGS variance weights w°. = 
13 

[(Ki Kj + Kij ) - I]; that is, 

n 

flij m wij ÷ [ ~ ~ wij] " 
i=l j>i 

The term in square brackets in equation (8) is 

proportional to the expected value of the YGS 
2 

variance weight sum in the denominator of SOy. 

The U-statistics theory developed in the disser- 

tation provides a mechanism for approximating 

the bias and mean squared error of equation (8) 

and the variance of the competing YGS variance 

estimator. Such an analytical evaluation of the 

small sample properties of these variance esti- 

mators would be an efficient alternative to 

Monte-Carlo methods. 

The second area of application explored 

treats the problem of robust confidence interval 

estimation for probability sample statistics. 

An approximation for the degrees of freedom 

associated with the sample t statistic 

t = (;- 0)÷ [var(;)] ½ 

is developed. The approach proposed is to use 

U-statistics theory to estimate the variance of 

the observed noncentral t statistic 

t ,  = 0 ÷ [var (O)]  ½ (9) 
^ 

Having obtained the estimator var(t,), this 

statistic is equated to the variance function of 

the noncentral t. The square of t, is similarly 

equated to [E(t,)] 2 + Var(t,). The resulting 

two equations are then solved for the noncentral- 

ity parameter 6 m e ÷ [Var(e)] ~ and the desired 

degrees of freedom parameter. 

The final U-statistics application yields a 

variance and covariance component model for a 
^ 

vector of subpopulation proportions P from a 

complex two stage sample design. The design has 

a constant second stage sample size (m) selected 

from each primary unit. The observed sample 

size for domain-d across all psus is denoted by 
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m d. The following design effect estimator is 

developed  fo r  the  cova r i ance  ma t r i x  of  P 
N 

^ ^ 

cov(P) = V M [I + cvw2l Q [I + m ~ + (m- 11 ~l 
" ( l o )  

^ 

where V M estimates the simple random sampling 

diagonal covariance matrix with diagonal elements 

^ ^ ^ 

VM(d) = Pd (I - Pd ) / md. 

The second quantity in square brackets is the 

unequal weighting design effect with cvw 2 denot- 

ing a diagonal matrix with diagonal elements 

representing the squared coefficent of variation 

for the sample weights associated with domain d 

members. The third multiplicative design factor 
^ 

in (I0) is the diagonal matrix Q with elements 

^ ^ ^ e^d )W ^ Qd m { [PWd + ed ] + [(I - + (I - Pd )] - I} 

^ 

where PW d is a version of the domain d p-value 

computed as a weighted average of the one-zero Y 

variate using squared sample weights W 2. This 

quantity measures the effect of optimum specifi- 

cation of the unequal selection probabilities. 
^ 

These Qd quantities are less than one and there- 

fore effect variance reduction when domain d 

members belonging to the rarest Y variate 

response level are oversampled. That is, when 

Pd < .5 then the parameter Qd < I when domain d 

members with Y = I are overrepresented., 
^ 

The matrix ~ measures the design effects of 

primary unit stratification and nonreplacement 

psu selection. Since both of these factors 
^ 

reduce variance, quadratic forms in ~ are 
^ 

expected to be negative. The Q matrix combines 

the effect of within psu clustering, second 

stage stratification and nonreplacement sampling. 
^ 

Quadratic forms in ~ will be positive when vari- 

ance inflating effects of clustering dominate 

the variance reducing effects of second stage 

stratification and nonreplacement selection. 

When the psus are large and heterogeneous an 

effectively stratified second stage sample can 

dominate the effect of psu clustering so that 
^ 

quadratic forms in ~ are negative. Simple 

matrix analogs of analysis of variance type mean 

squares were developed for estimating ~ and Q. 

For the two stage unequal probability design 
^ ^ 

considered, the ~ and Q estimators are such that 

the design effect form in (I0) is equivalent to 

the asymptotically unbiased delta method variance 

estimator based on the YGS estimation formula. 

To improve the stability of subpopulation vari- 

ance and covariance estimates, it was proposed 

that the composite design effect component 
^ ^ 

matrices ~ and fl be pooled across multiple 

binary response variables Y. The U-statistics 

theory provides a formal mechanism for testing 
^ 

the equivalence of matrices Qt associated with 

different outcomes Yt" 

6. Recommendations for Related Research 

Turning to recommendations for related 

research, the applications illustrated in section 

5 suggest a number of empirical investigations 

to test the performance of proposed methodolo- 

gies. The new pairwise BRR sample reuse metho- 

dology as applied to degree 2 statistics also 

suggests a robust confidence interval strategy 

that should be explored. The degree 2 version 

of this methodology can be applied to the delta 

variance based sample t statistic to produce 

replicate t values of the form 

^ ^ 

tr = (~r -O) ÷ [varA(O)r ]½. 

While it might seem more natural to employ a BRR 

variance estimator in the replicate t statistics 

t , the methodology proposed requires that the 
r 

full sample t statistic have the form of a non- 
^ 

linear function of U-statistics. Unlike varA(e) , 

the full sample delta variance estimator, the 
^ 

full sample BRR variance approximations varBRR(8) 

are not in the form of nonlinear U-statistic 

functions. 

Letting t / 2 and t ( l _ ~ / 2  ) denote  the  lower 

and upper ~/2 percentage points of the empirical 

cdf derived from the t values, the robust 
r 

nonsymmetric (I - ~) level confidence interval 

is 
^ ^ ^ 

e U = e - t / 2 [varA(e)]½ 

and 
^ ^ 

OL=O- t (I-~/2) [varA(0) ]½ 
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By using the degree 2 version of the pairwise 

BRR algorithm, this BRR-bootstrap method produces 

an empirical cdf for t with a variance that 

properly accounts for the degree 2 nature of 
^ 

varA(O). Rao and Wu (1984) have proposed a 

degree 1 bootstrap algorithm for unequal prob- 

ability samples that bases replicate statistics 
^ 

0 on with replacement samples from the n(n-l) 
r 

ordered sampling unit pairs (ij). Specifically, 

each of Rao and Wu's bootstrap replicate statis- 

tics requires a with replacement sample ~2(r) 

of m = n(n-l) pairs. With W.. denoting the YGS 
1j 

variance weights for a linear Horvitz-Thompson 
^ 

total estimator Y , the associated replicate 
~HT 

replicate totals have the form 

^ ^ 

Y = YHT + ~ W~ (~-I y _ ~-I yj) . 
~r (ij)g~2(r) lj 1 ~i 3 

The empirical cdf of the replicate statistics 

8 = F( ) is then used to define bootstrap r ~r 

intervals. 

A sample simulation study is needed to con- 

trast the actual confidence level and expected 

half-width of these alternative bootstrap inter- 

vals with standard symmetric t intervals. A 

symetric t interval based on the robust df 

estimate proposed in Section 5 would be an 

interesting competitor. 

In addition to the empirical studies suggested 

here, a U-statistics central limit theorem for 

nonreplacement and minimum replacement designs 

should be developed. The asymptotic framework 

utilized by Madow (1945), H~jek (1964), and 

Fuller (1975) can be employed to develop the 

desired result. This framework assumes a 

sequence of populations of size N t and associated 

sample sizes n t with the property that as n t + 

the corresponding sampling fractions 

ft m (nt + Nt) converge to f < I. Rick Williams, 

an RTI colleague, is currently working with 

Professor P. K. Sen to develop the required 

central limit theory. 
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