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A b s t r a c t  

Estimation of the cumulative distribution 
function and related statistics, such as the 
median and interquartile range, is considered. 
Large sample properties of estimators constructed 
from stratified cluster samples are presented. 
The PC CARP computer algorithm is discussed. 

I .  I n t r o d u c t i o n  

There is an extensive literature on quantile 
estimation, most of it for simple random 
sampling. Extension of results derived under an 
assumption of simple random sampling from an 
absolutely continuous distribution to the complex 
sampling designs used in finite population 
sampling has met with limited success. Woodruff 
(1952) proposed using a weighted sample median to 
estimate the population median, where the weight 
assigned to each observation is proportional to 
the inverse of its selection probability. Using 
the approach taken by Marltz and Jarrett (1978), 
Gross (1980) derived a small-sample estimator of 
the variance of the weighted sample median 
estimator for stratified sampling without 
replacement from a finite population. 

A number of authors have investigated model- 
free procedures for constructing exact 
I00(I - e) percent confidence intervals for 
quantiles in finite populations. Inferences from 
the sample to the finite population are based 
upon confidence intervals which take into account 
the sampling scheme. Thompson (1936), Wilks 
(1962), and Konljn (1973) have given design-based 
confidence intervals for the sample median when 
simple random sampling from a finite population 
is assumed. Meyer (1972) and Sedransk and Meyer 
(1978) investigated three exact confidence 
interval procedures for quantiles when sampling 
is from a stratified population. 

For more than two strata, the confidence 
interval procedures proposed by Meyer (1972) and 
Sedransk and Meyer (1978) become very complex. 
Some authors have determined lower bounds for 
confidence coefficients as a means of dealing 
with this problem (McCarty 1965, Smith and 
Sedransk 1983). Other approaches to inference 
from the sample to the finite population are 
based on information about the distribution of 
values of the characteristic under study in the 
finite population (Ericson 1969, Binder 1982, 
Chambers and Dunstan 1986). 

In this paper, a theoretical basis for the 
confidence set procedure proposed by Woodruff 
(1952) will be developed. In Section 2, an 
estimator of the population distribution function 
will be given and used to define a weighted 
quantile estimator. Large sample confidence sets 
for the p-th quantile and the interquartile range 
are given in Sections 3.1 and 3.2 for single- 
stage stratified cluster sampling. Incorporation 
of the proposed procedures into the PC CARP 
survey data analysis computer program is 
described in Section 4. Results of Monte Carlo 
studies also are given. 

2. Estimation Procedures 

2.1 Empirical Distribution Functio n 

Let U(N) ffi {u(hij): h = I, ..., L, 
i = I, ..., N(h), j ffi I, .... M(hl)} be a finite 
population which is divided into L strata. Let 

L L Nh 

N = l N h , and M = 7. 7. Mhl , 
h=l h=l iffil 

where N is the total number of clusters 
(primary sampling units), N(h) is the number of 
clusters in stratum h , M is the number of 
elemental units in U(N) , and M(hl) is the 
number of elemental units in cluster i of 
stratum h . Let Y(hlj) be the value of a 
characteristic Y associated with the j-th 
elemental unit in the i-th cluster of the h-th 
stratum. 

Define the finite population distribution 
function for Y by 

L Nh Mhl 

FN(X ) ffi M -I 7. 7. 7. l{Yhl j 4 x} , (2.1) 
h=l i=I  j = l  

where 

I{Yhij 4 x} = 1 if Yhlj 4 x 

= 0 otherwise . 

Alternatively, FN(X) can be defined using 

the distribution function of Y in each stratum: 

L 
-I 

FN(X) = M 7. MhFNh(X) , (2.2) 
h=l 

where, for h ffi I, ..., L , 

N h Mhl 

FNh(X ) = Mh I 7 7 l{Yhl j ~ x} , 
i= l  j = l  

N h 
and M h = Zi= 1Mhl • 

Suppose that a sample of n clusters is 
selected from U(N) and that sampling within 
each stratum is carried out independently. Let 

L Nh 

n ffi E n h , and E ~hl = nh ' 
h=l i=l 

where n is the total sample of n primary 
sampling units, n(h) > 2 is the number of 
clusters selected in the h-th stratum, and 
~(hl) > 0 is the probability of including 
cluster i of stratum h in the sample 
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[h = I, ..., L; i = 1 .... , N(h)] . It will be 
assumed that all elemental units within selected 
clusters are included in the sample. Results for 
single-stage cluster sampling are easily extended 
to various forms of subsampling within clusters. 

A general estimator of the cumulative 
distribution function for stratified two-stage 
cluster sampling is 

L nh mhi 
^--I 

F (x) = M [ E r. r. n 3w~ i.l{yhij 
n h=l i=l j=l 

~x}] , 

(2.3) 

where 

L nh mhi 

M= [ E E l Whi j ] , 
h=l i = l  j = l  

w(hij) is the sampling weight, m(hi) is the 
number of elemental units subsampled in cluster 
hi , and y(hij) is the value of the character- 
istic Y associated with the j-th elemental unit 
in the i-th sampled cluster of stratum h . For 
slngle-stage cluster sampling, m(hi) = M(hi) , 
and w(hij) = w(hi) for j = I, ..., M(hi) . 
Expression (2.3) reduces to 

L nh Mhi 
^--I 

F (x) = M [ r l l WhiI{Yhij 4 x}] 
n 

h=l i=1 j=l 
(2.4) 

where 

L nh 

= [ Z Y. WhiMhi] • 
h=l i=l 

2.2 quantiles and the Interquartile Range 

The p-th quantile of Y in the finite popula- 
tion U(N) is defined as 

qN(p) = inf{x: FN(X) ) p} (2.5) 

for 0 < p < 1 . A measure of dispersion is the 
interquartile range 

R N - qN(0.75) - qN(0.25) • (2.6) 

The usual estimator of qN(p) is the p-th 
sample quantile 

^ 

qn (p) = inf{x: Fn(X) ) p} . (2.7) 

An estimator of R(N) is given by 

^ ^ 

R = qn(0"75) - qn(0"25) . n 
(2.8) 

3. large Sample Properties of 
Estimators and Confidence Intervals 

3.1 quantiles 

A framework for developing the asymptotic 
theory to support the large-sample procedures 
proposed by Woodruff (1952) is first estab- 
lished. Assumptions similar to those made by 
Fuller (1975, 1984) or by Krewski and Rao (1981) 
provide a basis for such a development. In both 
cases sequences of finite populations and samples 
which meet certain regularity conditions are 
defined. Also see Bickel and Freedman (1984). 

Let {~(r): r=l, .... ~} be a sequence of 
stratified finite populations, each having 
L(r) ) L(r-l) strata. Suppose the finite 
population in stratum h of ~(r) is a random 
sample of size N(rh) ) N(r-l,h) clusters 
selected from an infinite superpopulation. 
Associated with the j-th element in the i-th 
cluster of stratum h is a column vector of 
characteristics: 

Yrhij = (Yrhijl' .... Yrhijk )' 

for h-- I .... , L(r), i = 1, ..., N(rh), and 
j = I, ..., M(rhi). It is assumed tha~ the 
cluster totals have absolute 2 + 6 moments 
(~ > 0) which are uniformly bounded by 
B(8) < ~ • The cluster totals in the (rh)-th 
superpopulation have mean vector £(rh) = 
[~(rhl), .... ~(rhk) ] ' and covariance matrix 
~(rh) , where the diagonal elements of Z(rh) 
are uniformly bounded below• 

Let a simple random sample of n(rh) clusters 
[n(rh) ) 2, n(rh) ) n(r-l,h)] be selected with- 
out replacement from the (rh)-th finite popula- 
tion. The vector of characteristics associated 
with the j-th element in the i-th selected 
cluster of stratum h is given by 

Yrhij = (Yrhijl' Yrhij2 ..... Yrhijk )' 

for h- I, ..., L(r) , i- i, .... n(rh) , 
and j -- I, .... , M(rhi) . For the r-th 
population, let 

L n r rh Mrhi 

-h I Yrn = Z Wrhn r l l Yrhij ' 
h=l i=l j=l 

(3.1) 

N Lr rh Mrhi 

-I h = 7 WrhN r E l Yrhij ' 
YrN h=1 i=1 j=l 

(3.2) 

L 
r -I 

~r = E Wrh£r h , and Wrh = NrhNr 
h=l 

• (3.3) 

Here y(rn) is the sample mean per cluster, 
Y(rN) is the finite population parameter, and 
~(r) is the weighted superpopulation mean per 
cluster• 
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The asymptotic properties of y(rn) will be 
examined under the following regularity 
conditions. 

-1 
CI. f r h  ~ Bf < 1 , where f r h - - N r h n r h  " 

C2. sup nrW2hn r~ + 0 as r+~ 
I ~h4L 

r 

C3. For all r , 

L 
r 

0 < B SL < In E Wr2hnrlZrhl < B SU < ~ r 
h=l 

where BSL and BSU are fixed numbers• 

The following central limit theorem can be 
established. 

Theorem i. Let the sequence of finite 
populations and samples be as described. Under 
regularity conditions CI - C3, as r÷= , 

[&{Trn - YrN }]- I/2 (Yrn - YrN ) L > N(O, I) , 

[V{Yrn - £r }]- I/2 (Yrn - £r ) L > N(O, I) , 

where 

L 
r 

{Yrn - YrN } = 7. W2 (1 - frh)nrl~rh rh 
h=1 

L 
r 

{Trn- £r } = 7. W2rhnrhlirh ' 
h=1 

n 
rh ^ 

Z r h = (nrh - 1)-1 r arhi.a' rhi. ' 
i=i 

nrh 
-- --1 

Yrh.. = nrh i__Z1 Yrhi. ' 

Mrhi 

= 7 Yrhij ' Yrhi. j=1 

arhi. = (Yrhi. - Yrh.. ) " 

For stratified single-stage cluster sampling, 
the estimator of the distribution function which 
is given in (2.4) is a ratio of quantities of the 
form shown in (3.1). The estimator of the 
cumulative distribution function for ~(r) is 

L r nrh Mrh i 
^-I -I 

Frn(X) - M [ 7 Wrhn r Z 7 l{Yrhij ~ x}] , 
h=l i= l  j = l  

where 

L n 
r rh 

M = [ 7. Wrhnrh 1 E Mrhi] . 
h=l i=l 

Additional regularity conditions are needed for 
some of the asymptotic results for the estimated 
cumulative distribution function. We begin by 
assuming that a common overall superpopulation 
distribution function exists for all $(r) and 
is given by F(x) . That is, we assume for all 
r 

F(x) = E~r{FrN(X)} (3.4) 

L r Nrh Mrhi 
-I 

=M E E l 
r 

h=l i=I j=l 
E [I ~ x} ] 
~rh {Yrhij 

L 
r 

-I 
= M Y MrhFrh(X) r 

h=l 

where the subscript ~(rh) on the expectation 
operator denotes expectation under the super- 
population model for the h-th stratum of the r-th 
finite population in the sequence, and the 
subscript rh identifies the superpopulatlon 
distribution function for stratum h of 
population ~(r) . 

Theorem 2. Let the sequence of populations 
and samples be as described. Let regularity 
conditions CI - C3 hold, and let F(x) satisfy 
(3.4). Then, for fixed x in the support of 
F(x) , as r+~ , 

[V{Frn(X)}]-li2" [F (x) - F(x)] L > N(0 I) 
rn ' ' 

where 

L n 
r rh 

{Frn(X) } = Y (nrh - l)-Inrh Z a 2 rhl. ' 
h=l i=l 

Zrhij = I if Yrhij ~ x 

= 0 otherwise , 

d r h i .  = MrlNrhnr l[zrhi. - MrhiFrn(X)] , 

nrh 

- -I E drh i , drh'" = nrh j=l 

L r nrh 

M r = E r NrhnrlMrhi , 
h=l i=l 

Zrhi. 

Mrhi 

= Z 

j=l 
Zrhij , 
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arhi. = drhi. - drhi.. • 

The estimated variance of Theorem 2 is a 
variance estimator for a combined ratio estimator 
of the mean per element. It is a Taylor series 
estimator of the variance of the approximate 
distribution. A confidence set procedure for 
quantiles is defined in Corollary I. 

Corollary I. Let the assumptions of Theorem 2 
hold for x(T) • In addition, assume that for 
fixed x in the support of F(x) : 

C4. the cumulative distribution function, 
F(x) , is continuous and has a continuous, 
positive derivative in a neighborhood of 
X • 

Let F(T) be the set of x for which 

Frn(X) + ze/2[V{Frn(X)}] I/2 > T 

and 

Frn(X) - ze/2[V{Frn(X)}] I/2 < T , 

where z (e/2) is def ined by 
#[z(~/2)] = 1 - e/2 and ~(.) is the 
distribution function of a standard normal random 
variable. Let x(y) be such that 
F[x(T)] = T • Then, as r+~ , 

P{xT e: F T} + e. 

3.2 Interquartile Range 

While Theorem 2 and its corollary provide a 
method for constructing a confidence set for a 
given quantile, additional results are needed in 
order to justify the confidence set procedure 
proposed by Woodruff (1952) and to construct 
confidence sets for functions of quantiles such 
as the interquartile range• 

Let the sequence of populations, {~(r): 
r=l, ..., ~} , and samples be as described in 
Section 3.1. Let 

q(T) = F-I (T) 

be the quantile function. A set 
of k fixed, distinct quantiles (i.e., 

0 < T(i) < 1 , 0 < T(J) < 1 , T(i) # T(J) , for 
i # j , i = I ..... k , j = I ..... k) is given 
by 

[q(Tl), q(T 2) ..... q(Tk)] = (Xl, x 2 .... , x k) 

~--- X • 

The corresponding set of sample quantiles for the 
r-th sample in the sequence is denoted by 

^ ^ ^ ^ 

[qrn(Tl )' qrn(T2)' .... qrn(Yk ) ] -- (Xrl, .... Xrk ) 

^ 

r 

Let ~(r) be the estimated covariance matrix 
of 

[Frn(Xrl )' Frn (xr2)' "''' Frn (xrk) ] ' 

where the notation means that the estimated 
variance is evaluated at the estimated quantile. 

Four additional regularity conditions are used 
to establish the asymptotic normality of the 
estimated quantiles. 

C5. For fixed x in the support of F(x) , 

n V{Frn(X)} _ is continuous in x 
r 

-I 
C6. V{Frn(X + ~rn ) - Frn(X)} = O(nr ~rn) ' 

for all x and x + 6(rn) in the support 
of F(x) , where ~(rn) > 0 and ~(rn) ÷ 0 
as r+~ • 

C7. Let 6(r) be the k x k estimated 
c o v a r i a n c e  m a t r i x  of 

[Frn(X I), Frn(X 2), ..., Frn(Xk )] ' 

where [x(1) ..... x(k)] are any k fixed 
distinct points in the support of F(x) . 
Let fl be the corresponding true covariance 
matrix, where fl is positive definite• 
Assume 

^ 

n (~r  f~) = 0 - 1 / 2 )  r - ~ p (nr " 

C8. The distribution function, F , has a 
continuous second derivative at the points 
of interest, x(1) .... , x(k) . 

The p-th sample quantile, 0 < p < I , can be 
expressed asymptotically as a linear transforma- 
tion of the empirical distribution function 
evaluated at q(p) . This expression is called 
the Bahadur representation in the literature on 
order statistics (Bahadur 1966). 

The following Lemma is an extension of a weak 
version of Bahadur's result to single-stage 
cluster sampling. The method of proof parallels 
that used by Ghosh (1971) to establish the result 
for simple random sampling. 

Lemma 3. Let 0 < p < 1 . Under assumptions CI, 
C2, C3, C4, and C6, the sample quantile can be 
represented as 
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^ 

qrn (p) = q(P) - [f (q(p) )]-l [F (q(p)) - F(q(p))] 
r n  

+ R* 
rn ' 

where R* = - 1/2 ) 
rn °p(nr " 

The asymptotic representation of the estimated 
quantile given in Lemma 3 is used in the follow- 
ing theorem to prove the asymptotic multivariate 
normality of the estimator. 

Theorem 3. Let assumptions C1 through C8 
hold. Let 

=diag(d d ) 
r rl' "''' rk ' 

where, for 1 4 i 4 k , 

^ 

drl = 

^ ^ 

qrn (Yui) - qrn (YLi) 
^ , 

2t [V{Frn }] I/2 (Xri) 

^ ^ ^ 

qrn (YUi) = qrn[Yi + t [V{Frn(X r )}]) e i ' 

^ ^ ^ 

qrn (YLi) = qrn ( Yi - te [ ~ {Frn(xri) } ] ) ' 

and t(=) is the tabular value such that 
P{IZI > t(e)} = e for Z a N(0, I) random 
variable and 0 < ~ < I . It is understood that 
the estimated quantile is the smallest observed 
x if y(Li) is negative and that the estimated 
quantile is the largest observed x if y(Ui) 
is greater than one. Then 

^ ^ ^ _ ^ -- 

[nrarDr ] I/2 (x r x)' L > N(O I) 

as r+~ . 

The proof of Theorem 3 provides a 
justification for the confidence interval 
procedure of Woodruff (1952), because 

^ 

[qrn (~Li)' qrn (Yui) ] ' 

is the interval proposed by Woodruff. 
The asymptotic distribution theory of Theorem 

3 also provides procedures for estimating the 
standard error of the estimated interquartile 
range, in large-scale surveys. 

4. Implementation of the Procedures 

4.1 PC CARP Computer Algorithm 

Iowa State University, in a joint undertaking 
with the International Statistical Programs 
Center of the U.S. Census Bureau, is currently 

developing a computer program which will analyze 
data from one-stage or two-stage stratified 
cluster samples. The program is designed for use 
with the IBM Personal Computer XT or AT. The 
program can be used to compute estimators and 
estimated variances for the overall population, 
for individual strata, and for subpopulatlons 
defined by classification variables. Taylor 
approximations for the variances of the approx- 
imate distributions of statistics are used. 
Schnell, et al (1986) gives a detailed descrip- 
tion of program capabilities, available analyses, 
program structure, and the user interface. 

The "Quantiles" option of PC CARP provides the 
following statistics for a user-speclfled vari- 
able and subpopulatlon: 

(I) number of sampled elements in subpopulation; 

(2) estimated subpopulatlon mean, its standard 
error, coefficient of variation, and the 
design effect for the estimated mean; 

(3) estimated subpopulatlon variance and coef- 
ficient of variation for the subpopulatlon; 

(4) three smallest and three largest values of 
observations, number of observations at 
these values, and a selected element identi- 
fier and sample weight for each value; 

(5) estimated cumulative distribution function 
and standard error at 25 selected points; 

(6) estimates of selected quantiles and standard 
errors; 

(7) estimated interquartile range and its 
standard error. 

4.2 Monte Carlo Simulations 

A series of three Monte Carlo simulation 
studies were performed to evaluate the perfor- 
mance of the "Quantiles" option within PC CARP. 
Samples were selected from three different 
populations for which quantile estimation is of 
interest. All populations were skewed to the 
right. 

The population selected for the first study 
consisted of 3,069 counties in the United States 
(excluding Alaska). The survey variable of 
interest was urban land area expressed as a 
percent of total land area within the county. 
Information on this variable was available from 
the 1982 National Resources Inventory, a survey 
conducted jointly by the Soll Conservation 
Service and the Statistical Laboratory at Iowa 
State University. A description Of the inventory 
can be found in Goebel and Baker (1983) and 
Goebel and Schmude (1981). Table 1 gives summary 
statistics for this urban population. The 
percent of urban land within a county ranged from 
0 to 88 percent, with 75 percent of the counties 
having less than 3.4 percent urban land. 

Two sets of 500 simple random samples were 
drawn from the urban land population. The sample 
sizes were 50 and I00. Sample sizes were selec- 
ted so that the performance of the estimators 
could be examined when n is moderate. 
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Table I. Characteristics of the urban and soil loss populations. 

Finite Population Characteristic 

Urban Soil Loss 
Population Population 

SIZE 

Number Strata 1 

Number Clusters 3,069 

Number Elements Per Cluster I 

Total Number Elements 3,069 

35 

3,090 

i-3 

8,516 

SUMMARY STATISTICS 

Minimum 0.0 

Maximum 88 .I 

Mean 3.9 

Standard Deviation 8.5 

0.00 

i ,001.52 

2.42 

14.40 

QUANTILES 

qN(0.25) 0.6 0.02 

qN(0.50) 1.3 0.28 

qN(0.75) 3.4 1.68 

Interquartile Range 2.8 1.66 

The following statistics were computed for 
each sample: 25-th, 50-th, and 75-th quantiles, 
respectively, the interquartile range and 
variance estimates for each estimator. The 
confidence interval procedure, based on Theorem 
3, was used to determine 95 percent confidence 
intervals for the interquartile range. Three 
different procedures for calculating 95 percent 
confidence intervals for quantiles were used. 
The first method for computing confidence 
intervals was the large-sample test inversion 
procedure of Corollary I. PC CARP uses a 
smoothed version of the procedure given by 
Corollary i in which the bounds are restricted to 
be monotone nondecreasing. The second procedure 
was a large-sample symmetric interval calculated 
as the estimated quantile plus or minus two times 
its estimated standard deviation. Finally, a 
confidence interval was formed by using order 
statistics as endpoints of the interval. The 
order statistics were selected such that the 
confidence interval was of minimum length and the 
confidence coefficient was approximately 95 
percent. Since sample sizes precluded the 
calculation of confidence coefficients based on 
the hypergeometric distribution, binomial 
approximations were used. 

To summarize the results of the 500 
repetitions, the averages and the variances of 
the 500 observed values of the estimated 
quantiles for p-values of 0.25, 0.50, and 0.75 
were computed. The average of the 500 estimates 
of the variance of the estimated quantiles also 
was computed. For p-values of 0.25, 0.50 and 
0.75, the estimated quantiles have nearly no bias 
for n ~ 50 . The effect of increasing the 
sample size from 50 to I00 is to decrease the 

estimated variance by a factor of about two. The 
quantile estimator for p - 0.75 has larger 
variance than that for p - 0.25 , due to the 
positive skew present in this population. 

Estimates of the probabilities that the 
confidence intervals contain the true value and 
the estimated expected length of the intervals 
were computed. With 500 replicates, the 
estimated coverage probabilities have standard 
errors of approximately 0.01. In almost all 
cases the estimated coverage probabilities are 
within 1.5 standard errors of the nominal level 
of 95 percent. The lengths of the intervals for 
the three procedures are quite comparable. 

Soil erosion data from a quality evaluation 
study of the 1982 National Resources Inventory 
were used as the basis for the second experi- 
mental population. The 1982 National Resources 
Inventory employed a stratified area sampling 
scheme to collect soil erosion data. The design 
of the quality evaluation study has been des- 
cribed in detail by Francisco (1986). 

Data from 3,090 primary sampling units 
included in the quality evaluation study were 
used to form a stratified population. Table I 
gives summary statistics for the soil loss 
population. The population had 35 geographical 
strata, which ranged in size from 59 to 235 
primary sampling units. For purposes of the 
study, primary sampling units were assumed to be 
clusters of one acre plots on which soil erosion 
data were collected. Based on the data collected 
at each plot, an estimate of the erosion rate 
(tons/acre/year) was made for each plot. Cluster 
sizes ranged from one to three plots, with an 
average of 2.8 plots per primary sampling unit. 
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Five hundred stratified random samples of size 
100 clusters were selected from the population. 
The size of the simple random sample within each 
stratum was approximately proportional to the 
size of the stratum and ranged from 2 to 7. 

Results of the simulation study for this 
population are comparable to the results for the 
urban population. 

The population used for the third study had 
ten strata with strata sizes IN(h) , h=1, ..., 
I0] as shown in Table 2. The observations in 
the strata were generated as simple random 
samples from 10 lognormal superpopulation 
distributions. Table 2 lists the parameters for 
each stratum. The cumulative distribution 
function is a mixed lognormal distribution with 
weights given by the stratum weights. 

A series of 1,000 finite populations of size 
500 were selected from the superpopulation. One 
stratified random sample of size 100 was selected 
from each population. The sample was allocated 
equally among the 10 strata. This means that the 
sampling rate varied from one-in-three to one-in- 
seven. 

This design permits inferences either for the 
infinite superpopulation or for the finite popu- 
lation. If inference is from the sample to the 
finite population, then finite population correc- 
tion factors are used in variance calculations. 
If inference is from the sample to the superpopu- 
lation, then finite population correction factors 
are not used in variance calculations. 

Quantile averages for p-values of 0.25 , 0.50, 
and 0.75 are within one standard error of the 
respective superpopulation values. As with the 
other two populations, the quantile estimator for 
p-values of 0.25, 0.50, and 0.75 displays near 
zero bias for this population. The Monte Carlo 
estimate of the variance of the estimated 
quantile is an acceptable estimator of the 
variance for this population, also displaying 
little bias. Both the observed and the estimated 
variance of the 0.75-quantile are larger than 
that of the 0.25-quantile due to the positive 
skew in the population. Coverage probabilities 
for the test inversion and the symmetric 
confidence interval procedures were comparable, 
and the obtained confidence coefficients are near 
the nominal level of 95 percent. See Table 3. 

In summary, for the three populations 
investigated in this study, use of either the 
symmetric or the test inversion confidence 
interval procedures leads to confidence intervals 
with actual confidence coefficients acceptably 
close to the 95 percent nominal level. 
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Table 2. Superpopulation parameters, stratum sizes, and sample sizes 
for the lognormal population. 

Superpopulation 
Finite 

Stratum Standard Populat ion Sample 
Number Me an Devi at ion Si z e Siz e 

1 4.69 1.44 40 I0 

2 8.00 3.33 40 10 

3 8.85 3.68 50 I0 

4 24.05 15.83 50 I0 

5 13.80 7.36 60 I0 

6 6.55 2.73 60 I0 

7 5.18 1.59 70 10 

8 6.55 2.73 50 i0 

9 24.05 15.83 50 I0 

I0 61.56 58.29 30 I0 

Population Values 14.23 21.36 500 
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Table 3. Monte Carlo coverage probabilities of 95 percent confidence 
intervals in 1,000 stratified random samples of size I00 from 
the lognormal population. 

Parameter Coverage Probability 

Test Inversion Symmetric 
Procedure Procedure 

Average 
Length 

Finite Population 

qN(0.25) 0.955 0.941 1.14 

qN(0.50) 0.964 0.947 1.95 

qN(0.75) 0.958 0.942 5.56 

Interquartile Range 0.943 5.77 

Superpopulatlon 

q(0.25) 0.963 0.950 1.26 

q(0.50 0.966 0.946 2.17 

q(0.75) 0.953 0.944 6.22 

Interquart ile Range 0.950 6.46 
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