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1. INTRODUCTION

Extensive literature and software exists for
statistical methods of analyzing cross-classified
categorical data. For examining the relationships
among the variables determining the cross-
classifications, hierarchical loglinear models (see
Bishop, Fienberg and Holland (1975)) have been a
popular and effective tool. On the other hand,
researchers wishing to distinguish between response
variables and explanatory variables have used models
that describe the effect of a set of explanatory
variables on a response variable. Most prevelant has
been the case of a two-category or dichotomous
response incorporated into a logit model (see, for
example, Cox (1970) and Fienberg (1977)). In the
situation of a polytomous response variable (i.e. 2 or
more response categories), a variety of models have
been proposed, some of which take account of an
ordering present in the response variable (see Agresti
(1984) and McCullough and Nelder (1983)).

Generally, these statistical methods have been
developed under the assumption of multinomial
sampling. In particular, for response models, an
independent multinomial distribution is usually
assumed on the response at each combination of levels
of explanatory variables. These methods are,
therefore, inappropriate for analyzing
multidimensional tables arising from survey data
because of the clustering and stratification in the
survey design, which violate the multinomial
assumption. As a result, such methods need to be
adjusted to take account of the survey design in order
that valid inferences may be made.

Rao and Scott (1984) and Roberts, Rao and Kumar
(1986) have shown that the standard Pearson chi-
squared statistic X2, if applied to survey data for
testing goodness of fit of loglinear or logit models, is
asymptotically distributed as a weighted sum of
random variables, rather than as a central chi-squared
variable as would be the case under multinomial
sampling. This result demonstrates that the survey
design can have a substantial Iimpact on the
significance level of the test. To take account of the
survey design, Rao and Scott (1984) and Roberts, Rao
and Kumar (1986) have developed simple corrections
to X2 based on certain generalized design effects
(deffs). Some of these corrections may be
implemented even when the full estimated covariance
matrix of cell estimates is not available.

The aim of this article is to develop a method of
taking account of the survey design when utilizing a
general class of polytomous response models with
cross-classified categorical data. In Section 2, the
asymptotic distributions of estimated parameters and
of the test statistic XZ are obtained. Simple
corrections to X<4 requiring varying quantities of
survey design information, are obtained in Section 3.
Section 4 contains some specific examples of models
to which the results of Sections 2 and 3 apply - in
particular, some dichotomous response models and a
polytomous response model with ordered response
categories. Finally, Section 5 contains an application
of the results of Sections 2 and 3 to a set of data from
the Canada Health Survey, 1978-1979.
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2. ASYMPTOTIC PROPERTIES OF
ESTIMATES AND TEST STATISTICS

2.1 Assumptions and Notation

Suppose that the finite population of interest of
size N is partitioned into R mutually exclusive
exhaustive domains, the ith of size Ni. (The
partitioning generally consists of combinations of
categories of the explanatory variables, so that i
actually represents a multiple subscript.) In the ith
domain, if Nji of the units fall into the jth response
category (j = f, 2, ... J+1), then the proportion of units
with the jth response is Pj(i) = Njj/Nj (where

NE3
j§l Pj(i) = ). Let Pj denote the J x 1 vector

(2.) Py =(P1(i), P2(i)s +»or PIG)"s

and P denote the JR x | vector

220 P=(F'},P, ... Py

Suppose that a sample s of n ultimate units is
drawn from the population according to a specified
sampling plan p(s). Let N, Nj and Njj be survey
estimates of N, Nj and Njj respectively, such that

(@ w=W+ op(n"l/z) Wh'ere o
w = (W], W2, ey WR)s Wi = Ri/Ny

(b) VTP - P) converges in distribution to a N (g,
z) random vector as n > « where Bj(j) =
Rij/Nj is the usual survey estimate of Pj(i)
and P is obtained from (2.1) by replacing Pi(i)
with Pj(j)-

A general class of polytomous response models for

the proportions Pj(j) is given by

(2.3)  M1: PiG) =gij® j=1,2, .y R;
ECH IR

where § is an r-vector of unknown parameters (r<JR)

and the gjj(@) are functions of known form satisfying

the regularity conditions described in Bishop, Fienberg

and Holland (1975, p. 510). Because of the additive

restrictions on the Pj(j), model M| may be denoted

equivalently by

2.) Mz P=ge),

where g®) = g = (&, g, + R &i = (&ils 8i2) - 8i2)'
and gjj represents gi,-(_e_).

2.2 Motivation of Methodology

Under independent multinomial sampling in each
domain, the likelihood equations for model M) are

R n, J+l n,. 3g; . (o
TR il U L L
I T T
k=1,2,...,r



where nj and njj are, respectively, the size of sample
and the number of sampled units with the jth response

Jel
in the ith domain, where 'El njj=nj and I nj=

= 1=
n. As well, the Pearson chi-squared statistic for
testing H: P=g(6) is
R J+1 ~ -
2 2
(2.6) XC = 1'51 JEI (nij - nig‘ij(g)) / nﬁgij(g) ’

where § is the solution of (2.5). It is a well-known fact
that, given H, X¢ is asymptotically distributed as a
central chi-squared variable.

For a general sampling plan, since appropriate
likelihood equations are difficult to obtain, pseudo
likelihood equations are produced from (2.5) by
replacing nj/n with wj and njj/nj with Pj(j), yielding

(2.7) 2 W le EUR ag;;(g) =0
-/, 1. N ~
1=1 \]-1 gij(g) k 9__—_9 k=l,2,...,r.

The solution of (2.7) for §, and the resulting g;;®) are
called the pseudo maximum likelihood estimators
(pseudo mle's) for © and Pj(j) respectively. The
consistency of E and w ensures the consistency of ?
and § = gB). TThe statistic parallel to X2 obtained
from (2.5) by the same substitutions of wj and ﬁj(i) for
nj/n and njj/nj, and having 8 the solution of (2.7),'is
@O n 5 w i (P 0))? 0

B)X* = n 121 ws jil (Pj(i) - 9”(9)] /9”(2).
As will be shown in section 2.5, X2 is generally not
asymptotically distributed as a central chi-squared
variable. However, simple modifications to X2
suggested by its asymptotic distribution do produce
plausible test statistics.

Both the pseudo likelihood equations (2.7) and the
test statistic X2 may be expressed in matrix form in
the following way. If Qi = diag (gj) - Siﬂl and Q
denotes the JRxJR block-diagonal matrix with the Qj's
on the diagonal, then (2.8) is equivalent to
(29) X2=n(P - grQ-UDweIP - 7),
where D(w) = diag (w), I7 is the JxJ identjty matrix, f
denotes the direct product operator and Q is obtained

from Q by replacing gj with & As well, the pseudo
likelihood equations are

210 & o Wi - (22

. (0(x)e1,)1
ﬁ( (x)81 )15,

where D(x) = diag (x), xj = will - _ﬁgj)"l s 1JR and 13
are unit vectors of lengths JR and J respectively, and
G = —gé- is the JRxr matrix of the derivatives of the

functions gij®) with respect to the elements of g. The
regularity conditions require that G be of full rank.

2.3 Nested Models

Suppose that the vector 8 = '], 8'2), where 61 is
sxl and g2 is uxl (s + u = fJ. If we were to test the

hypothesis H(2/1)§2 = 0, given M|, we would have the
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reduced model

(211) M2 P=gb))

where "gf ;)" denotes "g@ 1, O". Using a similar
extrapolation from independent multinomial sampling
to a general sampling plan, as done in section 2.2 for
model My, the pseudo mle's8; and '§ = g@l) of 6 | and
P respectively under M2 are the solution of the pseudo
likelihood equations

1 :_1,\ _ ] .
(2.12)(§g-1) " )(o(g)ard)o E-({:g-l-) e‘;,g)“"*l’“ﬁld

= leg _'[_1

N
where Q = Q(si, 0) and D(x,) = diag(x) with Xpj =
w{l 'ngi@ l))' . As well, the Pearson chi-squared
statistic for testing H(2/1) is given by
RJ

+1 N 2 2
(2.13) XZ(Z/I) n‘i:lwi,jil(gi‘j(g) - 91j(9.1)]z / 91‘3(91]

"

n(a® - 2(6,))'T (0w - aley) -

Since G =%§ =
G) =%—§Tan?1

respectively.

[%égf , %—g—E] is JRxr of full rank r,

G2 = must be of full ranks s and u

28
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It may be shown easily that testing of goodness of
fit of model M] is a special case of testing of a nested
model, where nesting is within a saturated model, i.e.
a model where s + u = JR.

2.4 Asymptotic Distribution of§ and gff)

Lemma 2.4 Under H and the assumed regularity
conditions for the gij,

(218) %9 = (GVG)»IGV(B - g6)) + op(@l/2)
where v is the JRxJR matrix defined by

(215 v =(DW)RIz)Q-!.
Proof: See Roberts (1985)

Since it was assumed that VA(P - g(8)) * N(g,z),

where "= denotes "asymptotically distributed as", the
asymptotic covariance matrix of P is

(2.16) C® =1z/n.

This fact, together with (2.14), implies that the
asymptotic covariance matrix of g is

(217)  c@ = n-KG'vG)-UG'VZVGHG'VG)-1 .

In the case of product multinomial sampling, £ = V-1
and C@) reduces to Cy@) = n -1(G'vG)-1 .

Because of the assumed regularity conditions and
the lemma above,

2.19) g(0) - g(e) = 6(¢ - o) + o (n})

= 6(6'v6) 16" v(P - g(0)) + o (n%) ,



so that the asymptotic covariance matrix of g@) is

(219 C(gh)=GcOa'"

As well, the vector of residuals P - g(8),
in detecting model deviations, has
covariance matrix

C( - g®) =n-lAzA',
A=(-G(Gvar-lGg'y).

Consistent estimators of the above covariance
matrices are obtained by replacing 6 by B andz by the
survey estimate 'y (when available).”

often useful
asymptotic

(2.20)

where

2.5 Asymptotic  Distribution of the Test

Statistics XZ and X2(2/1)
From (2.18),

(2:21) g(8) - ale) = 6y(8; - &) + G(8, - ;) + op(n°H)
under H. Similarly, under H(2/1),
(2.22) alg;) - (e} = Gle; - &) + o (n7H) .
Thus, under H(2/1),
(2.23)9(8) - 9(ey) = 6(8; - 87) + G, - G(gy - &) + o ()
However, it may be shown (see Roberts (1985)) that
@20 (3 - 0 = (3 - 0 + (6576, ejr5g)e, + oyl )
which, when substituted into (2.23) yields
(2.25) 4() - 3@1) = (1 - 6,(61(6196))161v)6,9, + op(n'%) .
Theorem 2.5

Under H(2/1): 82 = 0 (given M}),

2 N - -
(2.26) x2(2/1) = ng,(HavH, o, + op(n Y,
where E = (@1, Ez) is the pseudo mle of 8 under M|, and

! ~1.0
(227) Hy = (I - Gl[leGl) le)G2 .
Furthermore,

u
@28 X'(2/1) = : 6;25

i=1
where the 7-12 are independent’)& variables and the §j
are the eigenvalues of

(2.29) nc[éz)(Hész) = (Hész)'l(Hévszz] .

Proof: See Roberts (1985).

As a special case, under product multinomial
sampling, £ = v-1 and (HVH)-U(HVEVHY) = I so
that 6} = 1, i = 1,2,...,u and we get the standard result
that X4(2/1) "»¢ under H(2/1).

It should 'be noted that the asymptotic covariance
matrix of H2VP is n-l(H'295vH)) under the survey
design and n-lTH%yy-lvHy) = n~l(H,VHy)  under
product multinomial sampling, so that the §i are the
"generalized design effects" of the vector H'z VB, as
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defined by Rao and Scott (1981).

The asymptotic distribution of X2, the Pearson chi-
squared statistic defined in (2.9) for testing the
goodness of fit of model Mj, may be obtained as a
special case of Theorem 2.5. Specifically,

JR-r
2 ; I 8 ilf
i=1

with the Z¢being independent®f variables and the §
being the eiﬁenvalues of (H'WH)-1(H'V £ v H) where H =
(1 -G(G'VG)-1G'V)G22 and G22 is any JRxIR-r matrix
of rank JR-r such that (G G2?2) is JRxJR of rank JR.
Furthermore, the eigenvalues of (H'VvH)-l(H'vgvH)
are equivalent to the eigenvalues of the more easily
computable matrix (E'V-1E)-1E's E), where E is any
(JRxJR-r) matrix of rank JR-r with E'G = 0 (see
Appendix).

3. ADJUSTMENTS TO X2 AND X2(2/1)

The asymptotic distribution of X2(2/1) (and of X2,
as a special case) is a weighted sum of chi-squared
variables for which there are generally no published
tables of critical values. It is important, therefore, to
have adjustments to X2(2/1) that can be practically
implemented with survey data. Two such corrections
that require knowledge of the full estimated
covariance matrix of P (say} ) are the following.

Compare X2(2/1) /3. to the critical values of a Xg
variable, where

X

' 1,0
G.D) us. = £ &, =tr (HyvHy) (Hyvzvh,)

LI o IR ond

i=1
and 3,is the survey estimate of §.. The rationale for
this approach is the fact that the asymptotic mean of
X2(2/1)/ §. is equal to the mean of a X4 variable.

A more accurate approach, particularly when the
cv. of the §i's is large, is a Satterthwaite
approximation, which consists of comparing

G2 xZ=x¥@n) / G (1+ )]

to a-%¢ variable where o = u/(l + 42) and 42 is the
squared c.v. of the §i's. The first two moments of the
asymptotic distribution of X3 equal those of the
variable. As demonstrated in Rao and Scott (198%),
thge individual § j's need not be evaluated to compute
Xeé.

In practice, such as in secondary analyses from
published reports, §. cannot be calculated since the
full estimated covariance matrix ¥ of P is unavailable.
However, a possible alternative approach is to
compare to the critical values of the value of a
statistic of the form X2(2/1) / &, where c is an upper
bound on §.. To be workable, calculation of ¢ must
require less information than §. One method to obtain
such a bound is described below.

Since Hby H2 is symmetric, there exists a
nonsingular matrix B and diagonal matrix D such that
BHZy HoB' = D (see C.R. Rao (1965), p. 20). If Y =
BH? = (Xlg Y25 wees Yu)'s ,
then Yy Y' = D and thus yjy yj = 0 for i # j. Therefore,



O P -1.-1 ' |
(3.3 Y8+ = tr (B') (HZVH2] B B(HZVZVHZ)B

tr (YvY']"l(szvY')

]

U, .
'zllxi(vzv)xi] /Y94 »
1=

Since Qj is a positive definite covariance matrix for
each i, y is also positive definite, so that, extending a
matrix result in C.R. Rao (1965), p. 63, it follows that
(3-4) u 1 1

us, = 151[11(\7“)‘1‘] AL TR VI R P EPRIL 3 W
where 31 5 22 «. > AJR > O are eigenvalues of y 3.
Since the wigenvalues of yy-are independent of any
hypothesis, if they were reported along with the
published tables, the required number for bounding §.
for any particular hypothesis could be chosen.

If the estimated eigenvalues of g3y are not
available, an upper bound may still be estimated by
noting that

u R
(3.5) ws. < ¢ A< Zay = R

i=1 i=1
and
(3.6)

R J
JRr. = tr L = 151 jilv“(”/lp-j(”(l - PJ(1)]/W1’
R J

= i:l jﬁlnj(i) = JRD.

where vj j{i) and Dj(j) are the variance and deff
respectively of Pj(j). " However, this upper bound on .
may not be satisfactory if u is small compared to JR.

When model Mj is saturated, that is s + u = JR,
(3.5) and (3.6) lead to.

3.7) (JR-s} §, < IRD.,

so that D. is a satisfactory upper bound on ¢, if s <<
JR.

4. EXAMPLES

Since an extensive variety of response models
satisfy the assumptions of section 2.1, the results of
sections 2 and 3 have wide applicability. The first
example in this section consists of a group of binary
response models, including the logit. As well, a model
suggested by McCullagh and Nelder (1983) to be
particularly applicable to data for which there is a
natural ordering of the categories of the response
variable, is examined.

4.1 Binary Response Models

For a binary response, say "success or failure" or
"alive or dead", J=1. Thus, P is an Rxl vector of the
scalar quantities Pj = P)(j) from each domain, g(g =
®1(9) «ov Rggg Q = D(E)D(L -g), and =
v = DW)D(g)TD(1 - g)-1. Suppose that the models are
restricted even further to those for which a monotone
differentiable function f of P; exists such that fj =
£(P;) = xjg. Model M] then has the form
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(1) Mp:fi=x = X101 + X292

and M2 is f; = x11. Then G = DX, where D is a
diagonal matrix with ith diagonal element equal to
3 fi/a PY-1 and X is the Rxr matrix defined by

2y X =(x1, X2 e XR)' -

It then follows, by substitution, that Hp = DXz where

X, (1- X1(X1bv DX )-LX)DV D)X2, where X] = (x11,
X12, «os XIR) and X2 = (X215 X225 «+o x2R)- As well,
the asymptotic distribution of X2(2/1) is ;§, §iZZ

where the Zf are independent&} random variables and
the § j are the eigenvalues of

®3)  (Xpy DX}~ {(%DV £ v DX) «

The logit mode! follows the form of (4.1) with

(w.4) £ =£(Pj) = In|Py/(1 - P})| = x6 -

4.2 An Ordered Response Model

Let Cj(;) denote the jth cumulative probability in
the ith domain, defined by

J
(4.5) Ci() = ) Pk(i) -
The model proposed by McCullagh and Nelder (1983)
for the situation of a response variable with ordered
categories has the form

%6  In [Cm/(1 - Ciw)] = vj - BYi 5 i=L2wend

Slylgeenyy

where vj and g are unknown parameters and yj is a
known vector oF length L. It follows from (4.5) that
(®7)  Ci=LPp,

where Ci = (C1(), C2(i)s «-»s C3(j)) and L is the IxJ
nonsingular matrix of the form

100 ... 0

110 ... 80

(4.8) o

111 ...1

Letting 8 = (V[, V2, ..., V3, B)y Which is of length J +
% and ?ecalling that G is the matrix of partial
derivatives derived from the model (4.7) expressed in
the form Pj(j) = gjj(6), it follows that

(4.9) G = (IreL-1)C|1RreI7,A|

where C is a JRxJR block-diagonal matrix with the
JxJ matrix D(Cj)D(1 - Cj) forming the ith block on the
diagonal and

-1, @y,
(4.10) S
a=| LY

LR



With this model, nested hypotheses of interest
generally take the form H(2/1): 82 = 0 where 8 = (81,
B8%), B1 is sx1 and B2 is uxl (s + U =2). Using theorem
2.5 and (4.9) the asymptotic distribution of the

Pearson chi-squared statistic X2(2/1) is readily
obtained.
5. APPLICATION

An illustration of the relative performance of the
Pearson chi-squared statistic and some of the
modifications suggested in Section 3 is now provided,
utilizing data from the Canada Health Survey, 1978-
1979 and the ordered response model of section #.2.
The Canada Health Survey was designed to provide
reliable information on the health status of Canadians.
A complex multi-stage design involving stratification
and cluster sampling was employed and the estimates
of totals and proportions underwent post-stratification
adjustment on age-sex to improve their efficiency.

The data set considered consisted of the estimated
counts of females aged 20-64 cross-classified by
frequency of breast self-examination (with 3
categories: monthly, quarterly, less often or never),
education (with 3 categories: secondary or less, some
post-secondary, post-secondary) and age (with 3
categories: 29-24, 25-44, 45-64). The frequency of
breast self-examination, which obviously has ordered
categories, was taken as the response variable while
education and age were explanatory variables, so that
the number of responses, J+l, equalled 3 and the
number of domains, R, was 9.

Models of the type described in section 4.2 were
fitted to the cumulated probabilities in each domain.
The model considered for goodness-of-fit was

In [Citiky / (1 - Cj(ik) = vj +Ai+Ek, j=1,2

; Ex=0

&1 K

where Cj(jk) is the jth cumulated probability for the
ith age level and the kth education level. One nested
hypothesis, given this model, H(2/1): Ex = 0 (i.e. no
education effect), was considered.

Table 1 gives the values of the Pearson chi-squared
statistic and some modifications, plus their estimated
asymptotic Type I error rates, for testing goodness-of-
fit of the model and the nested hypothesis described
above. The asymptotic Type I error rates were
estimated through Satterthwaite approximations; as
well, the Satterthwaite statistics X< were adjusted so
that their values could be compared to the same
critical values as the other test statistics.

First, considering the goodness-of-fit statistics,

since X2 is larger thant.zoj (12) = 21.03, the model

would be rejected if the sample design was ignored.
On the other hand, the value of any of the modified
statistics would indicate that the model is adequate.
Because of the high cv of the §j, the Satterthwaite
statistic would be a better modification than X2/3.
The effect of survey design on the (estimated)
asymptotic Type I error rate of X2, §(X2) is quite

3
1=

severe: 0.40 compared to the nominal 0.05. The
modification Xzfs. performs better, but is still
elevated, with § = .10, while Xé/C is overly

conservative, withg = .0l.
For testing of the nested hypothesis, again the
model would be rejected if X2 was used as the test
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statistic, while the values of any of the modified
statistics, taking the survey design into account, would
indicate that the model was adequate. The effect of
the survey design ona(X2) was still fairly severe (0.20
compared to the nominal 0.05). The modification X2/3
performed guite well @ = .06), due to the low cv of the
81, while X4/C was overly conservative & = .0004).

It is thus clear from this example that the survey
design should be taken into account when testing the
fit of models to survey data. As well, the greater the
amount of survey design information used, the better
are the properties of the test statistics.

TABLE 1
SERDAT o
(Age only)
X2 35.88 6.58
X2/8. 21.21 3.43
X2/c 14.38 1.23
X¢ 15.84 3.29
3. 1.69 1.92
cov@)) 94 40
c(*) 2.50 5.36
a(x2)(**) 40 21
a(x2/s.) .10 .06
8(X2/c) .01 .0004
Critical value “x2(12)=21.03 “X2(2)=5.99
(% c is the average of the u largest eigenvalues

of VI.
(%) & is the estimated asymptotic Type I error
rate.

APPENDIX

In the special case of goodness of fit of M|, the
asymptotic distribution of X2 has the same form as
(2.28) with the §; being the eigenvalues of A = (H'V H),
where H = (I - GGV G)-1GV)Gy2 and Go7 is any
JRxJR-r matrix of rank JR-r such that (G G327} is
JRxJR of rank JR. Let E = VH. Then A = (EV-1E)-
YE'SE), rk E=rkH=JR-rand E'G =HVG = 0. If E is
ana/ other JRxJR-r matrix of rank JR-r satisfying FE'G
= 0, there exists a nonsingular matrix B suchthat E =
EB. Then,

(E'972E)Y(E"5E) = 871 (e v tey~L(8") 1B (¢ ' vE)8



which has the same eigenvalues as A. Thus, the § | are
the eigenvalues of (EW -1E)-I(E'L B} where E is any
JRxJIR-r matrix of full rank with E'G = 0.
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