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I .  INTRODUCTION 

Extensive l iterature and software exists for 
statistical methods of analyzing cross-classified 
categorical data. For examining the relationships 
among the variables .determining the cross- 
classifications, hierarchical  loglinear models (see 
Bishop, Fienberg and Holland (1975)) have been a 
popular and ef fec t ive  tool. On the other  hand, 
researchers  wishing to distinguish between response 
variables and explanatory variables have used models 
that describe the ef fec t  of a set of explanatory 
variables on a response variable. Most prevelant has 
been the case of a two-category or dichotomous 
response incorporated into a logit model (see, for 
example, Cox (1970) and Fienberg (1977)). In the 
situation of a polytomous response variable (i.e. 2 or 
more response categories), a variety of models have 
been proposed, some of which take account of an 
ordering present in the response variable (see Agresti 
(I 98¢) and McCullough and Nelder (I 983)). 

Generally, these statistical methods have been 
developed under the assumption of multinomial 
sampling. In particular, for response models, an 
independent multinomial distribution is usually 
assumed on the response at each combination of levels 
of explanatory variables. These methods are, 
therefore, inappropriate for analyzing 
multidimensional tables arising from survey data 
because of the clustering and stratif ication in the 
survey design, which violate the multinomial 
assumption. As a result, such methods need to be 
adjusted to take account of the survey design in order 
that valid inferences may be made. 

Rao and Scott (198¢) and Roberts, Rao and Kumar 
(1986) have shown that the standard Pearson chi- 
squared statistic X2, i f  applied to survey data for 
test ing goodness of fit  of loglinear or logit models, is 
asymptot ical ly  distr ibuted as a weighted sum of "x~ 
random variables, ra ther  than as a cent ra l  chi-squared 
variable as would be the case under multinomial 
sampling. This result  demonst ra tes  tha t  the survey 
design can have a substantial  impact  on the 
significance level of the tes t .  To take account  of the 
survey design, Rao and Scott  (198#) and Roberts,  Rao 
and Kumar (1986) have developed simple correct ions 
to X2 based on cer ta in  general ized design ef fec ts  
(dells). Some of these correct ions may be 
implemented even when the full es t imated  covariance 
matr ix of cell e s t imates  is not available.  

The aim of this ar t ic le  is to develop a method of 
t ak ing  account  of the survey design when utilizing a 
general  class of polytomous response models with 
cross-classified ca tegor ica l  data.  In Section 2, the 
asymptot ic  distributions of es t imated  parameters  and 
of the tes t  s ta t i s t ic  X 2 are obtained. Simple 
correct ions  to X 2 requiring varying quanti t ies of 
survey design information,  are obtained in Section 3. 
Section ¢ contains some specific examples of models 
to which the results of Sections 2 and 3 apply - in 
part icular ,  some dichotomous response models and a 
polytomous response model with ordered response 
categories .  Finally, Section 5 contains an application 
of the results  of Sections 2 and 3 to a set  of data  from 
the Canada Health Survey, 1978-1979. 

2. ASYMPTOTIC PROPERTIES OF 
ESTIMATES AND TEST STATISTICS 

2.1 Assumptions and Notation 

Suppose that the f inite population of interest of 
size N is partitioned into R mutually exclusive 
exhaustive domains, the ith of size Ni. (The 
partitioning generally consists of combinations of 
categories of the explanatory variables, so that i 
actually represents a multiple subscript.) In the i th 
domain, i f  Nil of the units fall into the jth response 
category (j = I', 2, ... 3+I), then the proportion of units 
with the jth response is Pj(i) = Nij /Ni (where 
O+l 
j=l  Pj(i) = I). Let P_j denote the 3 x I vector 

(2.1) P__i = (Pl(i), P2(i), ..., P3(i))', 

and P denote the 3R x I vector  

-- - - I , - -P2'  "'" 

Suppose that a sample ~ of n ultimate units is 
drawn from the .population according to a specified 
sampling plan p(s). Let [~, Ni and Nil be survey 
estimates of N, N i and Nij respectively, such that 

(a) _w =W__ + Op(n -I/2) where 
w = (Wl, w2,- . . ,  WR)', wi = l~li/N, 

(b) ff=~(P - P) converges in distribution to a N (0_, 
_ _ pj 7) random vector  as n + = where (i) = 

Nij/lqi is the usual survey es t imate  of Pj(i) 
ana P is obtained from (2.1) by replacing Pj(i) 
with~j( i) .  

A general  class of polytomous response models for 
the proportions Pj(i) is given by 

. .  (2 .3 )  M t  : g_,)(0) j : t ,  2,  . . . ,  R; 
j :l, =, . . . , =  J+ ~'~ 

where 0 is an r-vector of unknown parameters (r<3R) 
and the-gij(O) are functions of known form satisfying 
the regularity conditions described in Bishop, Fienberg 
and Holland (t975, p. 510). Because of the additive 
restrictions on the Pj(i), model M i may be denoted 
equivalently by 

(2 .4 )  M t:  p_ : B(_o), 

where g(O) = g = (~', ~, ..., ~I~)', gl = (gil, gi2,-.., gi3)' 
and gij represents gij(O). 

2.2 Motivation of Methodology 
. . . .  

Under independent multinomial sampling in each 
domain, the likelihood equations for model M I are 

R n i J~Inij 1. agi~(O) 
(2.5) ~ ~- 

i=l j=l ni gij(~ ) a°k 
o=o 

=0 

k=l,2,...,r 
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where n i and ni; are, respectively,  the size of sample 
and the number Jof sampled units with the jth response 

3+1 R 
in the ith domain, where j~l nij = ni and ?=I ni = 

n. As well, the Pearson chi-squared statistic for 
test ing H: P_=g(0._) is 

2 R O+l ^ 
: r r (n (0)) 2 (o_} 

(2.6) X c i=1 j=l i j -  n ig i j  / nigiJ ' 

where~ is the solution of (2.5). It is a well-known fact 
that, g'iven H, X~ is asymptotically distributed as a 
central chi-squared variable. 

For a general sampling plan, since appropriate 
likelihood equations are difficult to obtain, pseudo 
likelihood equations are produced from (2.5) by 
replacing ni/n with wi and nij/ni with iSj(i), yielding 

R J+1  j(i) : 0 
(2.7) z wi z ^ 

i=1 j=l gi j (o) @Ok ^ O=0 k=l,2 ..... r. 

The solution of (2.7) for~', and the resulting gii~) are 
called the pseudo ma~mum likelihood estinTators 
(pseudo role's) for 0 and Pi(i~ respectively. The 
consistency^ of [5 ant w ensuJr'es the consistency of ~) 
and ~ = g(0). -The s ta t is t ic  parallel to X~ obtained 
from (2.5) by the same substitutions of wi and [Si(i ) for 
ni/n and nii/ni, and havingO the solution of (2.7),'is 

R J+l 
(2.8)X 2 = n z w i Z_l {Pj( i)  - glJ (~-)}2 / g l j  (~-)- 

i=l j -  
As will be shown in section 2.5, X2 is generally not 
asymptotically distributed as a central chi-squared 
variable. However, simple modifications to X2 
suggested by its asymptot ic  distribution do produce 
plausible tes t  s tat is t ics .  

Both the pseudo likelihood equations (2.7) and the 
test  s ta t is t ic  X2 may be expressed in matrix form in 
the following way. If Qi = diag (gi) - gi~ and Q 
denotes the 3Rx3R block-diagonal matr ix with the Qi's 
on the diagonal, then (2.8) is equivalent to 

(2.9) X2 = n(~- ~)'(~-l(D(w___)@I3)(_~- ~), 

where D(w.._) = diag (w), 13 is the 3x3 identity matrix,  fl 
denotes the direct  product operator  and Q is obtained 
from Q by replacing gj with ~j. As well, the pseudo 
likelihood equations are 

where D(x_) = diag (x_), x i = wi(l - ~gi) -I , I_3R and 13 

are unit vectors of lengths 3R and 3 respectively,  and 

G = ~ is the 3Rxr matrix of the derivatives of the 

functions gij(0) with respect  to the e lements  of 0. The 
regulari ty cb'ffditions require that  G be of full ra~k. 

2.3 Nested Models 

Suppose that  the vector  0 = (0'I, 0'2)', where 01 is 
sxl a n d 0 2  is uxl (s + u = ~, If we--were to t e s t  the 
hypothesis H(2/I)~) 2 = O, given MI, we would have the 

reduced model 

(2.11) M2: P = L(0 i) 

where "g(0_l),, denotes "g(0_l, 0_)". Using a similar 
extrapolat ion from independent multinomial sampling 
to a general sampling plan, as done in section 2.2 for 

model M l, the pseudo mle's~l_ and g = 1 ) o r e  1_  and 
P respect ively under M2 are the solution of the pseudo 
likelihood equations 

' = Cao_1) o_~_C~_1.0 )cD(xl)@IJ}-IJ (2.12)(%1 o_=(~_l.0)CD(w)'IjlQ -I~_ ~ ' 

where ~ = Q((~,, 0)) and D(x l) = diag(x l) with Xli = 
w~ I - l ' 3g i~  i)) -~. - As well, t-he Pearson chi-squared 
s ta t is t ic  for test ing H(2/I) is given by 

R d+l 
(2.13) X2(2/I) = ni=iz w I J=IZ {gij (~) - glj(~-I ))2 / giJ{~-I ) 

= nC~l(o_) - ~l(~_l))'Q-ICD(w)@Ij)Cg(_o) - goal) ) • 

Since G =-~A 3 g  @ g = IB01 ' 3 0 ~  is 3 R x r o f  full r a n k r ,  
- ~ 1  - - ~g must be of full ranks s and u GI = and G2 = 302 

respectively.  

It may be shown easily that  test ing of goodness of 
fit of model M 1 is a special case of test ing of a nested 
model, where nesting is within a sa turated model, i.e. 
a model where s + u = 3R. 

2.# Asymptot ic  Distribution of~  and 9~] 

Lemma 2.g Under H and the assumed regulari ty 
conditions for the gij, 

(2.1g) "6- 0 = (G'VG)-IG'VI~_ - g(_0)) + op(r~l/2) 

where V is the 3Rx3R matr ix defined by 

(2.15) V = ~D(W__)flI31Q-I . 

Proof: See Roberts (1985) 

Since it was assumed that  x/'fiI_~- g!0_)~ = N(Q,T.), 
where "=,, denotes "asymptotical ly distributed as", the 
asymptot ic  covariance matr ix  of P is 

(2.16) C(P) = r / n .  

This fact ,  together  with (2.1#), implies that  the 
asymptot ic  covariance matrix of ~ is 

u 

(2.17) C(~ = n-I(G'VG)-I(G'V T VG)(G'VG)-I. 
u 

In the case of product multinomial sampling, T = V-I 
and C@_ reduces to CM_(~) -- n -I(G'VG) =I . 

Because of the assumed regulari ty conditions and 
the lemma above, 

(2.L8) ~IC~) - ~l(o) : G(~ - o) + Opln -½} 

: G(G'vG)-IG'v(~ _ ~l(o)] + Op{n -½} , 
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so that  the asymptotic covariance matrix of g('0...) is 

(2.19) C~_~)] = GC(~_G' " 

As well, the vector of residuals [ 5 - g~__), often useful 
in detecting model deviations, has asymptotic 
covariance matrix 

(2.20) C~_- d~))) = n-IAFA'  , 

where A = (I -  G(G'VG)-IG'vI .  

Consistent est imators of the above covariance 
matrices are obtained by replacing 0 by ~) and r by the 
survey est imate  ~Z (when available).-- - 

2.5 Asymptotic Distribution of the Test 
Statistics X 2 and X2(2/1) 

From (2.18), 

(2.21) a{~_) - a(o_) - GI{~ I - 0 I) + GZ{~_ 2 - o e) + Op(n -½) 

under H. Similarly, under H(2/I), 

(2.22) ~I[~ I} - ~l(O_) - G1(o I - oi) + Op{n -½) . 

Thus, under H(2/I), 

(2.23)~I{~} - g{~l} = Gl{°-I - °I} + G2°-2 - GI{~I - °1) + °p(n-½. ) 

However, it may be shown (see Roberts (1985)) that 

(2,2/~) [~-I - 21) = (0-I - 21) + (G'lVG1)-I(GI vG2)~-2 + °P (n-½} ' 

which, when substituted into (2.23) yields 

(2,25) ~l{~} - !](~ 1} = (I - GI(G{(G'IVGI)-IG~v)G2~2 + Op(n -½) . 

Theorem 2.5 

Under H(2/I). 0_2 = O (given M 1), 

I 

(2.26) X2(2/1) : n~2(H2vH2)o2 + Op~n-½} , 

where ~_ = (~I, _~)2) is the pseudo mle of 0 under M 1, and 

(2.27) H 2 : ( I  - GI(G~vGI}-IG{v)G2 . 

Furthermore, 
U 

(2.28) X2(2/1) : ~ ~ Z 2 
i=i i i 

where the Z?are independent~t~ variables and the 6i 
are the eigenvalues of 

I I 

(2.29) nC(~2){HzVH2)= IH2vH2)-I(H2vzvH2 } . 

Proof: See Roberts (1985). 

As a special c a s e ,  under product multinomial 
sampling, Z = V -1 and (H'2VH2)-I(H~VZVH2) = I so 
that  6i = 1, i = 1,2,...,u and we get the standard result 
that  X z(2/1 ) z'~2 under H(2/1 ). 

It should be noted that  the asymptotic covariance 
matrix of H'2VP is n-l(H'2vZVH2).un.de r the survey 
design and n-I'CH'2vv-IvH2) = n-I(H'2VH2 ) under 
product multinomial sampling, so that  the 6i are the 
"generalized design effects" of the vector H'2V~, as 

defined by Rao and Scott (1981). 

The asymptotic distribution of X2, the Pearson chi- 
squared stat is t ic  defined in (2.9) for testing the 
goodness of fit of model M1, may be obtained as a 
special case of Theorem 2.5. Specifically, 

OR-r 
X 2 9 

- z a i Z ~  
i=I 

with the Z~being independent~ variables and the 6i  
being the eigenvalues of (H'~H)-I(H'V r V H) where H = 
Cl -G(G'VG)--IG'v)G22 and G22 is any 3RxJR-r matrix 
of rank JR-r such that (G G22) is JRxJR of rank JR. 
Furthermore, the eigenvalues of (H'VH)-I(H'V ~V H) 
are equivalent to the eigenvalues of the more easily 
computable matrix (E'V-IE)-I(E'~ E), where E is any 
(JRxJR-r) matrix of rank JR-r with E'G = 0 (see 
Appendix). 

3. ADJUSTMENTS TO X 2 AND X 2(2/1) 
. . . .  

The asymptotic distribution of X2(2/1) (and of X2, 
as a special case) is a weighted sum of chi-squared 
variables for which there are generally no published 
tables of critical values. It is important,  therefore,  to 
have adjustments to X2(2/1) that  can be practically 
implemented with survey data. Two such corrections 
that  require k n o w l e d g e  of the full es t imated 
covariance matrix of P (sa)/~) are the following. 

Compare X 2 ( 2 / 1 ) / ~ .  to the critical values of a 
variable, where 

U 
(3.1) u6. = z a i 

i=l  

I I 

= t r  {H2vH2)-I{H2vzvH2 ) 

and ~oiS the survey estimate of 6 • • The rationale for 
this approach is the fact that the asymptotic mean of 
X2(211) / ~'. is equal to the mean of a "X~ variable. 

A more accurate  approach, particularly when the 
c.v. of the 6 i's is large, is a Sat ter thwaite  
approximation, which consists of comparing 

(3.2) X~ = X2(2/1) / [~. ( I  + a2)l 

to a ~ variable where c~ = u/(t + 82 ) and 82 is the 
squared c.v. of the ~S i's. The first two moments of the 
asymptotic distribution of X~ equal those of t h e ~  
variable. As demonstrated in Rao and Scott (198~, 
the individual 6 i's need not be evaluated to compute 
x~. 

In practice, such as in secondary analyses from 
published reports, ~ .  cannot be calculated since the 
full es t imated covariance matrix ~: of ~ is unavailable. 
However, a possible al ternat ive approach is to 
compare to the critical values oI~(~ the value of a 
stat ist ic of the form X2(2/1) / e, where c is an upper 
bound on 6 .  • To be workable, calculation of c must 
require less information than ~ .  One method to obtain 
such a bound is described below. 

Since H~VH2 is symmetric,  there exists a 
nonsingular matrix B and diagonal matrix D such that  
BH~vH2B' = D (see C.R. Rao (1965), p. 20). If Y = 
BH~ = (YI~ Y2, .-., Yu)', , 
then YV Y = D and thus ZjV Yj = 0 for i ~ j. Therefore, 
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(3.3) 
u6. = t r  (B 

I I I 

' ) - I ( H 2 V H 2 ) - I B - I B ( H 2 v z v H 2 ) B  

: t r  (YvY ' ) - I (yvzvY ' )  

u 
I I 

= Z l [ Y i ( V z v ) x i ]  / Y iVY i  " 
i -  

Since Qi is a posit ive def ini te  covar iance  matr ix  for 
each i, V is also posit ive def ini te ,  so tha t ,  extending a 
mat r ix  resul t  in C.R. Rao (1965), p. 63, it follows tha t  
(3.0 u I I 

ua. = _z [yl(vZv)yi] / ylvZi <_ x 1 + x 2 + ... + x u . I-1 
where >,I > k2 ... > },JR > 0 are eigenvalues of VF.. 
Since the t-igenvalLres of V Y. are independent of any 
hypothesis, if they were reported along with the 
published tables, the required number for bounding 8- 
for any particular hypothesis could be chosen. 

If the estimated eigenvalues of V F. are not 
available, an upper bound may still be estimated by 
noting t h a t  

u JR 
(3.5) u6. <_ r x i <_ _SlX i = JRx. 

i=I i- 
and 

(3.6) 
R J 

JRx. = tr vz = iS=l j=SlVjj(i)/[Pj(1)(1 - Pj(i))/wi] 

R J 
= s s O./ = JRD. i) i=l j=1 a, 

where vjj(i) and Di(i) are  the var iance and def t  
respec t ive ly  of ~=j(P" i)-" However,  this upper bound on 8. 
may not be sa t i s fac to ry  if u is small  compared  to 5R. 

When model M 1 is sa tura ted ,  tha t  is s + u = 3R, 
(3.5) and (3.6) lead to 

(3.7) (3R-s) 8.  < 3RD. ,  
i 

so tha t  D. is a sa t i s fac to ry  upper bound on 8.  if s << 
3R. 

#. E X A M P L E S  

Since an extens ive  var ie ty  of response models 
sat isfy the assumptions of sect ion 2.1, the resul ts  of 
sect ions  2 and 3 have wide applicabil i ty.  The f irs t  
example  in this sect ion consists of a group of binary 
response models,  including the logit .  As well, a model 
suggested by McCullagh and Nelder (1983) to be 
par t icular ly  applicable to da ta  for which there  is a 
na tura l  ordering of the ca tegor ies  of the response 
variable,  is examined.  

#.1 Binary Response Models 
! !  For a binary response,  say success or fai lure" or 

"alive or dead", 3=1. Thus, P is an Rxl  vec tor  of the 
scalar  quant i t ies  Pi = P I(i) from each domain, g(0) = 
(g 1( 0, . . . . ,  g R ( 0 T  Q = D(g)D(I -g), and 
V ='D(W_.)D(g)'~D( 1 - g)- l -  Suppose tha t  the models are 
r e s t r i c t ed  even fur ther  to those  for which a monotone 
d i f fe ren t iab le  function f of Pi exists  such tha t  fi = 

! 

f(Pi) = xi (~ Model MI then has the form 
I 

! 

(4.1) MI: fi = x_iO = x_'ILO I + x2i0__2, 

and M2 is fi = x'li01. Then G = DX, where D is a 
diagonal matrix wFt'h ith diagonal element equal to 
@ fi/@ Pi] - I  and X is the Rxr matrix defined by 

(4.2) X = [ x l ,  x2, ..., XR)'- 

It then follows, by subst i tut ion,  tha t  H2 = DX2 where 

X~= [I - XI(XIIDV DXl)-IX'IDV DIX2, where ,X - [Xl l ,  
x12, ..., XlR) and X2 = [x21, x22, ..., x2P0" I s  well, 

the asymptotic distribution of X2(2/I) is i~_l 8iZ~ 

where the Z~ are independent~.~ random variables and 
the 8 i are the eigenvalues of 

m 

(t4.3) [)~2DV DX2)- I(~2DV Y. V DX2). 

The logit model follows the form of (4.1) with 

(4.4) fi : fCP0 : I. I Pi/(1 - Pill : 

#.2 An Ordered Response Model 

Let Cj(i) denote the jth cumulative probability in 
the ith domain, defined by 

} 
(4.5) Cj(i) = ~=I Pk(i) • 

The model proposed by McCullagh and Nelder (1983) 
for the situation of a response variable with ordered 
categories has the form 

(4.6) In [C j ( i ) / { !  - Cj( i ) ) ]  : v j -  B'Yi, j - 1 ,2 , . . . , 3  , 
- -  i = I , 2 , . . . , R  , 

where vj and B are unknown pa rame te r s  and Zi is a 
known vector  o-f length Jk It follows from (4.5) tha t  

(4.7) C__i= L P i ,  

where C i = {Cl(i), C2(i),f...,C3(i))orm and L is the 3x3 
nonsingular mat r ix  of the 

1 0 0 ... 0 
I i 0 ... 0 

( 4 . 8 )  L - . 

I i i ... 1 

Letting 0 = (vI, v2, ..., v3, (3'I', which is of length 3 + 
and r-ecalling that G i~ the matrix of partial 

derivatives derived from the model (/4.7) expressed in 
the form Pj(i) = gij(0), it  follows tha t  

(4.9) G = (IR~L=I)CIIR~I3,A[ 

where C is a 3Rx3R block-diagonal  matr ix  with the 
3x3 matr ix  D(C__i)D(1 - - C i) forming the i th block on the 
diagonal and 

(4.10) 
A = -!a o Y'2 
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With this model, nested hypotheses of interest 
generally take the form H(2/I): f~2 = 0 where f3 = (f l ,  
_B~]', fll is sxl and t32 is uxl (s + u- = £). Using t-~eor~m 
2.5 Fnd (4 .9 ) the"  asymptotic distribution of the 
Pearson chi=squared statistic X2(2/1) is readily 
obtained. 

5. APPLICATION 

An illustration of the relative performance of the 
Pearson chi-squared statistic and some of the 
modifications suggested in Section 3 is now provided, 
utilizing data from the Canada Health Survey, 1978- 
1979 and the ordered response model of section 4.2. 
The Canada Health Survey was designed to provide 
reliable information on the health status of Canadians. 
A complex multi-stage design involving stratification 
and cluster sampling was employed and the estimates 
of totals and proportions underwent post=stratification 
adjustment on age-sex to improve their efficiency. 

The data set considered consisted of the estimated 
counts of females aged 20-64 cross-classified by 
frequency of breast self-examination (with 3 
categories: monthly, quarterly, less often or never), 
education (with 3 categories: secondary or less, some 
post-secondary, post-secondary) and age (with 3 
categories: 2%2% 25-4% 45-64). The frequency of 
breast self-examination, which obviously has ordered 
categories, was taken as the response variable while 
education and age were explanatory variables, so that 
the number of responses, :1+1, equalled 3 and the 
number of domains, R, was 9. 

Models of the type described in section 4.2 were 
fitted to the cumulated probabilities in each domain. 
The model considered for goodness-of-fit was 

lnECj( ik) / ( l -Cj ( ik ) ]  = v j  + A i + E k ,  j=1,2 

3 3 
wi h Ai : Ek:  o 

where Ci(ik) is the jth cumulated probability for the 
ith age l~ve'l and the kth education level. One nested 
hypothesis, given this model, H(2/1): Ek = 0 (i.e. no 
education effect), was considered. 

Table I gives the values of the Pearson chi-squared 
statist ic and some modifications, plus their estimated 
asymptotic Type I error rates, for testing goodness-of- 
f i t  of the model and the nested hypothesis described 
above. The asymptotic Type I error rates were 
estimated through Satterthwaite approximations; as 
well, the Satterthwaite statistics X~were  adjusted so 
that their values could be compared to the same 
cri t ical values as the other test statistics. 

First, considering the goodness-of=fit statistics, 

since X2 larger than~% 5 (12) = 21.03, the model is 

would be rejected if the sample design was ignored. 
On the other hand, the value of any of the modified 
statistics would indicate that the model is adequate. 
Because of the high cv of the 8i, the Satterthwaite 
statistic would be a better modification than X2/~. 
The effect of survey design on the (estimated) 
asymptotic Type I error rate of X2, ~(X2) is quite 
severe: 0.q0 compared to the nominal 0.05. The 
modification X2/~. performs betterz but is still 
elevated, with ~ = .10, while Xz/c is overly 
conservative, with~ = .01. 

For testing of the nested hypothesis, again the 
model would be rejected if X 2 was used as the test 

statistic, while the values of any of the modified 
statistics, taking the survey design into account, would 
indicate that the model was adequate. The effect of 
the survey design on~(X2) was sti l l  fair ly severe (0.20 
compared to the nominal 0.05). The modification X2~ 
Aoerformed (]uite well G = .06), due to the low cv of the 

i, while Xz/C was overly conservative ~ = .0004). 
It is thus clear from this example that the survey 

design should be taken into account when testing the 
f i t  of models to survey data. As well, the greater the 
amount of survey design information used, the better 
are the properties of the test statistics. 

TABLE 1 

Goodness of fit Nested 
(age & edn) Hypothesis 

(Age only) 

X2 35.88 6.58 

X2/8. 21.21 3.#3 

X2/c 14.38 1.23 

X~ 15.84 3.29 

%. 1.69 1.92 

cv~ i) .94 .q0 

C(*) 2.50 5.36 

~(X2)(**) .40 .21 

~(X21a .) .10 .06 

~(X21c) .01 .0004 

Critical va lue "3(2(12)=21.03 ")~2(2)=5.99 

(*) 

(**) 

c is the average of the u largest eigenvalues 
of V~. 

is the estimated asymptotic Type I error 
rate. 

APPENDIX 

In the special case of goodness of f i t  of M I, the 
asymptotic distribution of X 2 has the same form as 
(2.28) with the 6 i being the eigenvalues of A = CH'V H), 
where H = Cl - G(G'VG)-IG'VIG22 and G22 is any 
Z]Rx3R-r matrix of rank 3R-r such that (G G22] is 
ZIRx3R of rank 3R. Let E =VH.  Then A = [E 'V- IE  I-  
IIE'ZE), rk E = r k H = 3 R - r a n d E ' G = H ' V G  =0. I f E i s  
an other ZIRx3R-r matrix of rank 3R-r satis~ing ~,'G 
= _~, there exists a nonsingular matrix B such t ha tE  - 
EB. Then, 

(E'v-IE)-I(E'zE) = B-I(E'v-IE)-I{B')-IB'(E'vE)B 
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which has the same eigenvalues as A. Thus, the 6 i are 
the eigenvalues of IE~/-1E)-I(E'E E) where E is any 
3RxJR-r matrix of full rank with E'G = 0. 

D 
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