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ABSTRACT

Statistical methods for analyzing cross-
classified categorical data based on log-linear
and logistic models under more complex sampling
schemes than the standard multinomial or product-
multinomial models have been discussed widely in
recent years. In a series of papers Rao and
Scott (1979, 1981, 1984, 1986) have discussed
approximate adjustments to the output of stan-
dard log-linear programs using information
likely to be available from well-conducted sur-
veys. Roberts (1985) and Roberts, Rac and Kumar
(1986) have looked at similar results for
lTogistic regression models. We generalize their
results and look at the impact in a practical
example. We also look at the loss of efficiency
from using ad hoc adaptations of multinomial-
based methods in a situation for which fully
efficient maximum likelihood methods have been
developed.

1. INTRODUCTION

This paper deals with the analysis of tables
of counts or proportions which are derived from
a sample survey rather than from a designed ex-
periment., A typical example is shown in Table
1, which is based on interviews with 9918 women
in the Canada Health Survey (1981), a compliex
stratified multistage survey covering about
12,000 Canadian households.

TABLE 1

Proportion of women who have never
carried out a breast self-examination

- Age
Education 15-24 25-44 45+
Secondary or
less 45 4 40
Some post-
secondary -28 23 22

A natural way of analyzing such a table is by
fitting a logistic regression model, i.e. a
model of the form

+ B, x
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for the population proportions corresponding to
the cell estimates. Any good quantitative
social science journal is full of illustrations.
For example, in a recent issue of the American
Journal of Sociology, McLanahan (1985) fits
models of the form

log TE—

where p is the probability of still attending
school at age 17 and FA is an indicator of the
father's absence, to compare the effect of
parental absence on the educational achievements
of black and white children. The source of the

B + 8 FA + ...,
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data used to fit the models is the Panel Study
of Income Dynamics, which is a complex survey of
about 5000 U,S. families conducted by the Survey
Research Centre at the Univerity of Michigan.

Almost all of these studies fit their
Togistic models using a standard computer
package, such as SAS or GLIM, which implement
methods based on the assumption that the propor-
tions are estimated from independent random
samples in each cell (or some equivalent scheme
such as random sampling from the whole popula-
tion etc). Good accounts of this standard
methodology can be found in Cox (1970), Bishop
et al (1975) or McCullagh and Nelder (1983).

Any large-scale survey, however, has a much more
complicated structure with stratification and
several stages of sampling within each stratum,
and the estimated proportions may well be
weighted to reflect selection probabilities and
involve post-stratification, ratio estimation
and so on, The resulting covariance structure
will often be a long way from that obtained
under the assumption of independent binomial
sampies in each of the cells. The modifications
necessary to allow for this complicated struc-
ture are straightforward in principle, but their
implementation in practice may not be straight-
forward at ali.

We give a brief outline of the relevant
theory in the next section and apply the results
to the data in Table 1. In most cases a full
1ikelihood analysis is too complicated to be
practicable but it is possible for some special
designs., In these cases we can guantify the
loss of efficiency from using an ad hoc adap-
tation of the standard analysis. We look at one
such special case in the final section.

2. BASIC THEORY
Suppose we have a vector, p say, of T estimat-

ed cell proportions and there is a Central Limit
theorem of some sort available so that we are

willing to assume that vn(p-p) converges in dis-

tribution to a T-variate normal random variable
random variable with mean vector 0 and covariance

matrix Vp, where p is the corresponding vector.

of population proport1ons and n is the sample
size (or at least an increasing function of the
sample size), Let % denote the vector with ith

p:

component li = log I:%_ . HWe are interested in
i

estimating §, and perhaps testing the hypothesis

that ?1 = 0, in the model



2 = XB

= XOBO + X8 (1)

where X = (XO,Xl) is a known T x p matrix of
rank p (p<T) derived from the factor levels, 8
is the p-vector of unknown parameters, X1 is a
T x Py matrix and §1 is Py X 1. For example, in

Table 1 we might be interested in fitting a
model of the form

Pj;
255 = log I:B%; = Byt BiE + BAL,
for the proportion pij where Ei = 1 for women

with some post-secondary education and zero
otherwise and Aj is the median age for the women

in the jth column. N
If we have an estimate, Vp say, of the

covariance matrix Vp we can obtain a generalized

least squares estimate of B based on the empiri-

A P
cal logits zi = log ——{— . It follows from
1-p.,
i

standard asymptotic theory that /n(2-2) con-

in distribution to a T-variate normal with mean
1 -1
v

pD

with D = diag(pi(l-pi)). The generalized least

vector 0 and covariance matrix V2 =D

squares estimator is

c o oy Tumlyy -1y, To-1;
By = (X'V, X)XV, " e

with estimated covariance matrix (XTVZIX)-I.
Asymptotic tests for linear hypotheses about 8

can be produced immediately from this. Good
illustrations of this approach are given in Koch
et al (1975).

A11 this requires a good estimate of the
covariance matrix Vp and, unfortunately, such

estimates are still rarely available. Even when
an estimate is available, it will usually be
obtained using a random group method (see Wolter
(1985)) or a design with a small number of
p.s.u.'s per stratum. In either case the degrees
of freedom of the estimate will be relatively
tow and, for a table of any complexity,

vg 1 will either not exist or at best be rather
unstable. For these reasons researchers often
simply run their data through the logistic
regression program in a standard computer
package. Typically these packages produce the

maximum l1ikelihood estimate of B along with its

estimated covariance matrix and the likelihood
ratio test statistic for the hypothesis that
Bl = 0 in the model specified by (1) under the

assumption of an independent binomial sample of
n. observations in the ith cell (i=1,...,T).
Let B be the pseudo maximum-Tikelihood

estimate of B obtained by running the observed

vector of proportions, together with a vector of

pseudo sample sizes n = (nl,...,rlT)T through a

standard package. Asymptotic properties of 8

~ ~

when n; = nini’ where Hi is the estimated propor-

tion of the whole population falling in the ith

cell, have been developed by Roberts (1985) and

Roberts, Rao and Kumar (1986) using the methods
developed in Rao and Scott (1984) for general

log-linear models. Exactly the same methods

carry through for more general choices of n;

provided "i/" > with 0 < o <lasn >,

~

The resulting pseudo m - % estimator B is a con-

sistent estimator of B with asymptotic covariance
matrix -

D(B) = (XTRVORX)-I(XTRVPRX)(XTRVORX)-I/n. (2)
where R = diag(pi) and Vv, = diag(pi(l-pi)/pi)
(i.e. VO/n is the covariance matrix of P that

would be appropriate with independent binomial
samples from the cells of the table). The final
factor in (2) is the asymptotic covariance

~

matrix of B under the standard assumptions so

that the product of the first two factors is the
adjustment that needs to be applied to the out-
put from a standard package to allow for the
complexity of the design.

The choice of n; can have considerable impact

on the properties of the resulting estimator.
Common choices for n, are the actual sample

gize in the ith cell or, if this is not known,

n; = nni as above., It is possible to do

better than this if more is known about the co-

~

variance structure of p. For example, if we have
estimates of the cell variances, say Vi’ then we
could take n; = pi(l-pi/Vi to make diagonal

AA A

elements of RVpR identical to those under the



assumed binomial model. In most of the examples

we have tried, this choice of n; has worked so

well that the standard output needs very little
modification.

Now turn to the problem of testing the
hypothesis Ho: 81 = 0 in model (1). The

standard 1ikelihood ratio test is based on the
statistic

PN

T -~ N : (B)
62(2|1) =2 2 ni[?i(g) log Pi -
1 p; (8g)

(1-p; () ]

- (3)
(1-p; (Bg))

+ (1-p;(8)) Tog

where pi(g) is the solution of (1)} correspond-
ing to the pseudo maximum likelihood estimate

B and p,(B,) is the corresponding value under the
- itl0

restriction that §1 = 0. Under stratified bi-

nomial sampling, GZ(ZII) has an asymptotic chi-
squared distribution with Py degrees of freedom

under H0 but this does not remain valid when we

have a more complex design. If n; > py > 0,
then, again following the argument in Roberts
(1985) and Roberts, Rao and Kumar (1986)
exactly, it can be shown that the asymptotic
null distribution of G2(2|1) is a weighted sum,

1

2

G°(2]1) ~ I &M.,
111

(4)

where wl,...,wp are independent x% random vari-

ables and 61,...,5 are the eigenvalues of

Py
T L
(X RVRE,)TH(RRV RR) ) with

X TRy RX

TRVGRX,.  (5)

= - T -1
1= X1 XO(XORVORXO) X

The choice of Ny can again have a considerable

impact on the quality of the output. If we
choose ;i to be ;i(l-;i)/&i then G2(2|1) needs
no modification at all if Vp is a diagonal
matrix, since G2(2|1) ~ xpi under HO’ and needs

1ittle modification if the off-diagonal elements
are small,

27

In principle, we could use the results in (2)
and (4) to correct the output of a standard

package. This is a useful approach when Vp has
Tow degrees of freedom since the corrections do

not involve Vgl. In many cases, however, an
estimate of the full covariance matrix is not
available and we have to make do with partial
information such as estimates of the cell
variances. The GLIM package has a procedure for

adjusting the estimated covariance matrix of B
and the Tikelihood ratio statistic that needs no

external information about Vp at all. Let 62(1)
be the standard goodness of fit statistic for
the full model (1) (i.e. the Tikelihood ratio
statistic for testing model (1) against a

completely saturated model), and let 02

Gz(l)/(T—p). The adjustments are simple; the

estimated covariance matrix is multiplied by 02

and G2(2|1) is replaced by F = 62(2 1)/;2 (see
McCullagh and Nelder (1983) for details). If
vp = 6V0 for some constant &, then F has an

asymptotic F distribution with Py and T-p degrees

of freedom. Such a structure is rather special
but arises, for example, with the Dirichlet-
multinomial model for cluster sampling developed
by Brier (1979). One implication of this struc-
ture is that all the estimated proportions have
a common design effect (i.e. ratio of the actual
variance to the variance for a simple random
sample of the same size). If the estimated cell
design effects differ widely then it is likely
that the GLIM correction will not be completely
effective.

There has been a great deal of recent work on
producing approximations for the 1ikelihood-
ratio test for log-linear models based on par-
tial information about Vp, Details can be found

in Bedrick (1983) Rao and Scott (1984), Kumar and
Rao (1984), Nathan (1984), Gross (1985), and

Scott and Styan (1985). Although the logistic
model is formally a special case of the log-linear
model the approximations do not work well for

the logistic in general. Rao and Scott (1987)
consider approximations hased on the eigen-
values, Al > Az es 2 AT say, of nvolvp. Using
standard results for eigenvalues, it follows
that Al gives an upper bound for the design

A, > 8, > . if the
effect of Bi and that A, 61 XT-p+1 if
Gi's are arranged in increasing order. It is

often adequate to approximate the null distribu-



tion of 62(2(1) by 3X§, where § = 18:/p;. It
follows that § < T'X/p1 where X only requires

the diagonal terms of Vp‘ This gives a good

bound if Py is large compared to T as when
checking goodness-of-fit against a saturated
model, If ;i is taken to be pi(l_pi)/vi’ then
xX=1,

3. EXAMPLE .

A good estimate of the full covariance matrix
is available for the Canada Health Survey Data
in Table 1 (see Hidiroglou and Rao (1983)) so
that it is possible to make reasonably precise
comparisons. Suppose we fit a model of the form

Pij
1og I—_—p-; = BO + BlE'i + BZAJ (6}

where pij is the population proportion for the

(i1,3)th cell and Ei and Aj are as in the pre-

a

vious section., Tables 2 and 3 give values of Bi’
the pseudo maximum likelihood estimate of Bi’

along with its estimated true standard error and
the nominal standard error under the assumption
of independent binomial sampling, for i = 0,1,2.

. I, . I, .
In Table 2 "iJ was taken to be n i5° where i3
is the estimated proportion of the target popu-
lation falling in the (i,j)th cell, and in Table

3 ng; was taken to be pij(l_pij)/vij’ where vij
is the estimated variance of Pije
TABLE 2
Estimates for Canada Health Survey
data with n..=nm, . .
1] 1]
i é Estimated Standard Errors
i Nominal True
0 -0.090 .052 .057
~-0.803 .052 .100
2 -0.115 .024 .031
Clearly the naive estimates of the standard

errors are all far too small in Table 2 and need
to be inflated by a substantial amount. In this
case Gz(l) = 4,20 giving a value of 02 = 1.40

so the GLIM correction (based on only 3 degrees
of freedom) works well for 80, reasonably well

for 82, and is inadequate for 8 0f course,

1°

since the inflation factor needed varies from

28

1.2 for BO to 3.7 for Bl no single correcting

factor could possibly be satisfactory here. The
fact that the design effects of the cell propor-
tions vary from 1.27 to 3.23 gives us prior
warning that this is likely to happen.

TABLE 3

Estimates for Canada Health Survey
dat ith .=p..(1-p, . so .
ata wi n; s plj( plj)/Vljl

i é . Estimated Standard Errors
i .

Nominal True

-0.096 .062 .06l

1 -0,817 .079 .099

-0.111 .031 .033

The true standard errors are roughly the same
in both tables but the nominal values are very
much more realistic in Table 3, although the
value for Bl sti1l needs adjusting. The value
of Gz(l) in this case is 1,522,

In most examples we have looked at, both the
GLIM correction and the device of using

n, =

i pi(l-pi)/vi work somewhat better than the

example above. In Scott (1986), for example, we
lTook at some data on unemployment from the
Canadian Labour Force Survey quoted in Kumar and
Rao (1984) and find the both corrections work
extremely well.

4, SPECIAL CASE

There is one very important special case
where results can be obtained explicitly. In a
case-control study, independent random samples
are drawn from the cases (e.g. women who have
never carried out a breast self-examination in
the example of the previous section) and the
controls, There has been a great deal of work
on fitting logistic models to such data in the
medical 1iterature where cases correspond to
people with disease. A good survey of this work
can be found in Breslow and Day (1980). There
has been a parallel development in the econo-
metric Titerature under the heading of
"choice-based sampling". A survey of this
1iterature can be found in Manski and McFadden
(1981). Both approaches are put in a sampling

context in Scott and Wild (1986).
Let Nlt and NOt denote the number of cases and

controls respectively in the t-th cell for the
whole population and LPPS and Mot the correspond-

ing sample numbers, Assuming the populations
are large enough to ignore the finite population
correction, n, = ("2""’"£T) has a multinomial

T
distribution with parameters n, = 21 Not

= Nzt/Nz with

and

I = (Hll"”’nf.t) where 1

L 1t



T
g = INpe

] < _
sampler's estimator of Pt = Nlt/(NOt + Nlt)

N for £ = 0,1. The wusual survey

would be p, = Nlt/(NOt+N1t) where Ny 1s the

Horwitz Thompson estimator Nnt = nlt/wz with

W, = nllN2 being the corresponding selection

probability (2=0,1). The asymptotic covariance

of p can then be derived from standard results

for ratio estimators. The resulting matrix has
(i,j)th element Vij given by the expression

1 1
psps(1=-p:)(1=p.) | 8, A, =(<= + 2) (7)
itj i i 1359 "'ng "0y
Ll o+ L1 ands,,=149f1i=3j
— — L. = =3
fo"oi MMy
and 0 otherwise. This enables us to evaluate

where Ai =

D(B) in expression (2) explicitly for any
matrix X.
For simplicity, consider the case of a simple
tinear regression model for the logits, i.e.
25 = B, * BX; (i=1,...,T). Combining (7) and

(2) we find, after some rather tedious algebra,

that the asymptotic variance of Bl is

T -
R i ntpt(l—pt)zkt(xt-x)2
Var(Bl) =3 (8)
“2\2
(f ntpt( l-pt)(xt"x) )

- T~ _
where x = I; ntpt(l-pt)xt/z1 “tpt(l'pt)‘ We can

use this expression to compare the efficiencies

for different choices of n In particular,

t.
var(Bl) is minimized by choosing ny equal to

“(opt) _ 1 (9)
¢ Atptll—pt$ 4

which results in a value
T (0?77
Vopt =[§ T{[ (10)
for Var(él). This optimal choice has another
very surprising property; the estimate of Var(él)
obtained from a standard program (given by the
final term in expression (2)) is exactly right.

Similarly the null distribution of the likeli-
hood statistic for testing HO: 81 = 0 is exactly

chi-squared with one degree of freedom. Thus
~ (opt)
t

choosing n, = is not only efficient but
enables us to use the output from a standard
program directly (apart from the variance of the
constant term). Of course we have to estimate

Py by py and At by-—L— 1 when we use (9) in

for Mt
practice but the asymptotic properties are unaf-
~ (opt)
"t

:ge same as taking ny = pt(l-pt)/vt which leads

fected. Note that choosing n, = is not

N 1
n =

t

- -1 1
pt(1 pt)(xt ny nl)

In general, n, > nt(opt) so the nominal stan-

dard errors produced will be sTightly smaller
than the true values on average. If T is large,
however, A_ will be much larger than R

~

and n_ will be close to nt(OPt). Thus the

t

approximation should work very well for large
tables.

We can also look at the properties of the
generalized least-squares estimator explicitly
in this important special case. It follows from
(7) that

1 114t
v = A - (_+_)11 (11)
3 n0 ny -’

where A = diag(},...,2) and 1" = (1,...,1), and

hence that the generalised least squares estima-
tor of 61 has asymptotic variance equal to Vopt'

It is straightforward to extend this to more
general linear models provided the model inclu-
des a constant term. Suppose X = ({,Xl) and we
center the columns of X1 so that XI} = 0. Then
the asymptotic covariance matrix of Bos the

generalized least squares estimator, is

n(gy) = (x"vpho™

1 1
p=== == oT
g M -
= T (12)
0 (Xu\'lxl)'1
. T -1yl
with v = (Zl Ay ) E
If we take n, = nt(°pt) (as in (9)) and sub-

stitute these values in (2) we find that the



asymptotic covariance matrix of the resulting
pseudo maximum 1ikelihood estimator is identical

t(opt) as our pseudo

to D(BG). Thus if we take n
sample size, any standard logistic regression
program produces estimates that are asymp-
totically equivalent to the generalized least
squares estimates. Moreover, the standard
errors produced by the program are consistent
estimates of the correct values with the excep-
tion of the constant term where the program pro-

duces a value of u instead of u - A .

n n
0 1
The standard way of analyzing data from simple
case control studies is to ignore the stratifi-
cation into cases and controls completely and
feed the raw counts, ot and Ngs into a stan-

dard program. Provided the model contains a
constant term, the resulting values are the
maximum likelihood estimates of all coefficients
except the constant term and, although the
standard assumptions are not met, they are
asymptotically efficient. (See Prentice and
Pyke {1979) and Cosslett (1981) for details.) A
valid estimate of the constant term can be
obtained by adding 1og(w1/w0) to the estimate

given by the program. The asymptotic covariance
matrix of this maximum Tikelihood estimator is
given in Scott and Wild (1986) and turns out to

be identical to D(BG) with categorical explana-

tory variables as here.
Thus the technique of constructing consistent
estimates of Py and feeding the resulting values

into a standard package can be made fully effi-
cient in this special case by careful choice of
the pseudo sample sizes. The common choice of
Ny = pt(l-pt)/vt does not give full efficiency

here but the differences are negligible if there
is a large number of cells in the table. The
resulting estimates of the standard errors will
be slight underestimates of the true values for
a1l coefficients except the constant. The stan-
dard error of the constant will be an
overestimate.
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