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ABSTRACT 
Statist ical methods for analyzing cross- 

classified categorical data based on log-linear 
and logist ic models under more complex sampling 
schemes than the standard multinomial or product- 
multinomial models have been discussed widely in 
recent years. In a series of papers Rao and 
Scott (1979, 1981, 1984, 1986) have discussed 
approximate adjustments to the output of stan- 
dard log-linear programs using information 
l ike ly  to be available from well-conducted sur- 
veys. Roberts (1985) and Roberts, Rao and Kumar 
(1986) have looked at similar results for 
logist ic  regression models. We generalize their 
results and look at the impact in a practical 
example. We also look at the loss of eff iciency 
from using ad hoc adaptations of multinomial- 
based methods in a situation for which fu l ly  
e f f ic ient  maximum likelihood methods have been 
developed. 

1. INTRODUCTION 
This paper deals with the analysis of tables 

of counts or proportions which are derived from 
a sample survey rather than from a designed ex- 
periment. A typical example is shown in Table 
1, which is based on interviews with 9918 women 
in the Canada Health Survey (1981), a complex 
s t ra t i f ied multistage survey covering about 
12,000 Canadian households. 

Proportion of women who have never 
carried out a breast self-examination 

Education 

Secondary or 
less 

Some post- 
secondary 

15-24 

.45 

.28 

Age 
25-44 

.41 

.23 

45+ 

.40 

.22 

A natural way of analyzing such a table is by 
f i t t i ng  a logist ic regression model, i .e.  a 
model of the form 

log _~p = 80 + 81x I + . . .  + 8kX k 

for the population proportions corresponding to 
the cell estimates. Any good quantitative 
social science journal is ful l  of i l lust rat ions.  
For example, in a recent issue of the American 
Journal of Sociology, McLanahan (1985) f i t s  
models of the form 

log _~p = BO + B1FA + 

where p is the probability of s t i l l  attending 
school at age 17 and FA is an indicator of the 
father's absence, to compare the effect of 
parental absence on the educational achievements 
of black and white children. The source of the 

data used to f i t  the models is the Panel Study 
of Income Dynamics, which is a complex survey of 
about 5000 U.S. families conducted by the Survey 
Research Centre at the Univerity of Michigan. 

Almost all of these studies f i t  their 
logist ic model s using a standard computer 
package, such as SAS or GLIM, which implement 
methods based on the assumption that the propor- 
tions are estimated from independent random 
samples in each cell (or some equivalent scheme 
such as random sampling from the whole popula- 
tion etc). Good accounts of this standard 
methodology can be found in Cox (1970), Bishop 
et al (1975) or McCullagh and Nelder (1983). 
Any large-scale survey, however, has a much more 
complicated structure with st rat i f icat ion and 
several stages of sampling within each stratum, 
and the estimated proportions may well be 
weighted to ref lect selection probabilit ies and 
involve post-strat i f icat ion, ratio estimation 
and so on. The resulting covariance structure 
wi l l  often be a long way from that obtained 
under the assumption of independent binomial 
samples in each of the cells. The modifications 
necessary to allow for this complicated struc- 
ture are straightforward in principle, but their 
implementation in practice may not be straight- 
forward at a l l .  

We give a brief outline of the relevant 
theory in the next section and apply the results 
to the data in Table 1. In most cases a fu l l  
likelihood analysis is too complicated to be 
practicable but i t  is possible for some special 
designs. In these cases we can quantify the 
loss of efficiency from using an ad hoc adap- 
tation of the standard analysis. We look at one 
such special case in the final section. 

2. BASIC THEORY ^ 
Suppose we have a vector, p say, of T estimat- 

N 

ed cell proportions and there is a Central Limit 
theorem of some sort available so that we are 

^ 

wil l ing to assume that ~(p-p) converges in dis- 

tr ibution to a T-variate normal random variable 
random variable with mean vector 0 and covariance 

matrix Vp, where p is the corresponding vector 

of population proportions and n is the sample 
size (or at least an increasing function of the 
sample size). Let ~ denote the vector with i th 

Pi 
component h i = log l_Pi . We are interested in 

estimating B, and perhaps testing the hypothesis 

that ~1 = O, in the model 
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: XB 

= X 0 B 0 + X I B I ( 1 ) 

where X = (Xo,X 1) is a known T x p matrix of 

rank p (p<T) derived from the factor levels, B 

is the p-vector of unknown parameters, X 1 is a 

T x Pl matrix and ~ B 1 is Pl x 1. For example, in 

Table 1 we might be interested in f i t t i n g  a 
model o f  the form 

~ij = log Pi~ = BO + BIEi + B2Aj ' 
l -P i j  

for the proportion Pij where E i = 1 for women 

with some post-secondary education and zero 
otherwise and Aj is the median age for the women 

in the j th column. ^ 
I f  we have an estimate, Vp say, of the 

covariance matrix Vp we can obtain a generalized 

least squares estimate of B based on the empiri- 
^ 

^ Pi 
cal logits ~. = log . I t  follows from 

1 
1-p i 

^ 

standard asymptotic theory that Jn'(~-~) con- 

in distr ibut ion to a T-variate normal with mean 

vector 0 ~ and covariance matrix V~ = D-1VpD -1 

with D : diag(pi(1-Pi)).  The generalized least 

squares estimator is 
^ 

.BG= (xTv~Ix)-IxTv~I i 

with estimated covariance matrix (xTv~Ix)_I . A  

Asymptotic tests for linear hypotheses about B 

can be produced immediately from this. Good 
i l lus t ra t ions of this approach are given in Koch 
et al (1975) 

All this requires a good estimate of the 
covariance matrix V and, unfortunately, such 

P 
estimates are s t i l l  rarely available. Even when 
an estimate is available, i t  wi l l  usually be 
obtained using a random group method (see Wolter 
(1985)) or a design with a small number of 
p.s.u. 's  per stratum. In either case the degrees 
of freedom of the estimate wi l l  be re lat ively 
low and, for a table of any complexity, 

-1 
V wi l l  either not exist or at best be rather 

unstable. For these reasons researchers often 
simply run their data through the logist ic  
regression program in a standard computer 
package. Typically these packages produce the 

maximum likelihood estimate of B along with i ts  

estimated covariance matrix and the likelihood 
rat io test s ta t i s t i c  for the hypothesis that 
B 1 = 0 ~ in the model specified by (1) under the 

assumption of an independent binomial sample of 
n i observations in the i th cell (i=1, T). 

Let B be the pseudo maximum-likelihood 

estimate of B obtained by running the observed 

vector of proportions, together with a vector of 

" " " T 
pseudo sample sizes n = ( n l , . . . , n  T) through a 

^ 

standard package. Asymptotic properties of B 
- ,  ^ ^ 

when n i = niII i, where II i is the estimated propor- 

tion of the whole population fa l l ing in the i th 
cel l ,  have been developed by Roberts (1985) and 
Roberts, Rao and Kumar (1986)using the methods 
developed in Rao and Scott (1984) for general 
log-l inear models. Exactly the same methods 

carry through for more general choices of n i 

provided ni/n ÷ Pi with 0 < Pi < 1 as n ÷ ~. 
^ 

The resulting pseudo m - ~ estimator B is a con- 

sistent estimator of B with asymptotic covariance 
ma t r  i x ~ 

D(~) : (xTRVoRX)-I(xTRVpRX)(xTRVoRX)-I/n. (2) 

where R = diag(pi ) and V 0 = diag(p i(1-p i ) / p i )  
^ 

( i .e .  Vo/n is the covariance matrix of p that 

would be appropriate with independent binomial 
samples from the cells of the table). The final 
factor in (2) is the asymptotic covariance 

^ 

matrix of B under the standard assumptions so 

that the product of the f i r s t  two factors is the 
adjustment that needs to be applied to the out- 
put from a standard package to allow for the 
complexity of the design. 

The choice of n i can have considerable impact 

on the properties of the resulting estimator. 

Common choices for n i are the actual sample 

size in the i th cell or, i f  this is not known, 
, .  ^ 

n i = nll i as above. I t  is possible to do 

better than this i f  more is known about the co- 
^ 

variance structure of p. For example, i f  we have 
^ 

estimates of the cell variances, say V i ,  then we 
. .  ^ ^ 

could take n i = Pi(1-Pi/Vi to make diagonal 
^ ^  ^ 

elements of RV R identical to those under the 
P 
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assumed binomial model. In most of the examples 

we have t r i e d ,  t h i s  choice of n i has worked so 

well that the standard output needs very l i t t l e  
modi f i  c a t i  on. 

Now turn to the problem of t e s t i n g  the 
hypothesis H ° B I = 0 ~ in model ( i ) .  The 

standard likelihood ratio test is based on the 
stat ist ic 

T . .  

G2(211) = 2 ~ n [p (~) log 
1 i i - 

^ 

Pi(~) 

Pi(~O ) 

(1-Pi(~)) ] 
+ (l-Pi(_))B log (3) 

(I pi (~0)) 

where pi(~), is the solution of (1) correspond- 

ing to the pseudo maximum likelihood estimate 

and pi ( 0 ) is the corresponding value under the 

restriction that .B 1 = 0.~ Under stratif ied bi- 

nomial sampling, G2(211) has an asymptotic chi- 
squared distribution with Pl degrees of freedom 

under H but th is  does not remain valid when we 
0 

have a more complex design. I f  n i ÷ Pi > O, 

then, again following the argument in Roberts 
(1985) and Roberts, Rao and Kumar (1986) 
exactly, i t  can be shown that the asymptotic 

null distribution of G2(211) is a weighted sum, 

Pl 
G2(211) - ~ ~iWi , (4) 

1 

are independent ~ random vari- where WI,...,W p 

ables and al . . . .  '~Pi are the eigenvalues of 

(xTRv oR)~I)-I ()~TRVpR)~I) with 

X 1 = X 1 - Xo(XTRVoRXo)-IxTRVoRX1 . (5) 

The choice of n i can again have a considerable 

impact  on the q u a l i t y  of the ou tpu t .  I f  we 
. .  ^ ^ 

choose ni to be Pi(1-Pi )/vi then G 2(211) needs 

no m o d i f i c a t i o n  a t  a l l  i f  V i s  a d iagonal  
P 

G 2 2 under H O, and needs matrix, since (211) - Xpl 

l i t t l e  m o d i f i c a t i o n  i f  the o f f - d i a g o n a l  e lements  
a re  smal l .  

In principle, we could use the results in (2) 
and (4) to correct the output of a standard 

^ 

package. This is a useful approach when V has 
P 

low degrees of freedom since the corrections do 

not involve V; 1. In many cases, however, an 

estimate of the full covariance matrix is not 
available and we have to make do with partial 
information such as estimates of the cell 
variances. The GLIM package has a procedure for 

^ 

adjusting the estimated covariance matrix of 

and the likelihood ratio statist ic that needs no 

external information about V at al l .  Let G2(1) 
P 

be the standard goodness of f i t  stat ist ic for 
the full model (1) (i.e. the likelihood ratio 
stat ist ic for testing model (1) against a 

"2 
completely saturated model), and let ~ = 

G2(1)/(T-p). The adjustments are simple; the 

estimated covariance matrix is multiplied by ~2 

and G2(211) is replaced by F = G2(2 1)/~ 2 (see 
McCullagh and Nelder (1983) for details). I f  
Vp = aV 0 for some constant a, then F has an 

asymptotic F distribution with Pl and T-p degrees 

of freedom. Such a structure is rather special 
but arises, for example, with the Dirichlet- 
multinomial model for cluster sampling developed 
by Brier (1979). One implication of this struc- 
ture is that all the estimated proportions have 
a common design effect (i.e. ratio of the actual 
variance to the variance for a simple random 
sample of the same size). I f  the estimated cell 
design effects differ widely then i t  is l ikely 
that the GLIM correction will not be completely 
effective. 

There has been a great deal of recent work on 
producing approximations for the likelihood- 
ratio test for log-linear models based on par- 
t ial  information about V Details can be found p" 

in Bedrick (1983) Rao and Scott (1984), Kumar and 
Rao (1984), Nathan (1984), Gross (1985), and 
Scott and Styan (1985). Although the logistic 
model is formally a special case of the log-linear 
model the approximations do not work well for 
the logistic in general. Rao and Scott (1987) 
consider approximations based on the eigen- 

> ~2 ~ L T say, of nVoIV . Using values ' ~1 " '"  P 

standard results for eigenvalues, i t  follows 
that Xl gives an upper bound for the design 

^ 

effect of B i and that xi > ai ) ~T-p+i i f  the 

a.'s are arranged in increasing order. I t  is 
I 

often adequate to approximate the null distribu- 
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2 where ~ = 7ai/p 1. I t  tion of G2(2(1) by-~Xp, 

follows that -~ < l'~/p I where -)[ only requires 

the diagonal terms of Vp. This gives a good 

bound i f  Pl is large compared to T as when 

checking goodness-of-fit against a saturated 

model. I f  n i i s  taken to be P i ( 1 - P i ) / V i ,  then 

3. EXAMPLE 
A good estimate of the ful l  covariance matrix 

is available for the Canada Health Survey Data 
in Table 1 (see Hidiroglou and Rao (1983)) so 
that i t  is possible to make reasonably precise 
comparisons. Suppose we f i t  a model of the form 

Pij (6) 
log = 80 + 81E i + 82A j 1-Pij 

where Pij is the population proportion for the 

( i , j ) t h  cell and E i and Aj are as in the pre- 
^ 

vious section. Tables 2 and 3 give values of 8 i ,  

the pseudo maximum likelihood estimate of 8i, 

along with i ts estimated true standard error and 
the nominal standard error under the assumption 
of independent binomial sampling, for i = 0,1,2. 

^ ^ 

In Table 2 ni j  was taken to be nIIij, where IIi j 

is the estimated proportion of the target popu- 
lation fal l ing in the ( i , j ) t h  cel l ,  and in Table 

• - ^ ^ ^ ^ 

3 n i j  was taken to be P i j ( l - p i j ) / V i j ,  where Vij 
^ 

is the estimated variance of Pij" 
TABLE 2 

0 

1 

2 

Estimates for Canada Health Survey 
data with n.. =n~... 

^ 

8 l 

-0.090 

-0.803 

-0.115 

z3 z3 
. . . . .  

Estimated Standard Errors 
Nominal True 

. . . . .  

.052 .057 

.052 .i00 

.024 .031 

Clearly the naive estimates of the standard 
errors are all far too small in Table 2 and need 
to be inflated by a substantial amount. In this 

case G 2(1) = 4.20 giving a value of ~2 = 1.40 
so the GLIM correction (based on only 3 degrees 
of freedom)works well for 80 , reasonably well 

for 82 , and is inadequate for 81 . Of course, 

since the inf lat ion factor needed varies from 

1.2 for 80 to 3.7 for 81 no single correcting 

factor could possibly be satisfactory here. The 
fact that the design effects of the cell propor- 
tions vary from 1.27 to 3.23 gives us prior 
warning that this is l ikely to happen. 

TABLE 3 

Estimates for Canada Health Survey 

data with nij = Pij (l-Pij)/Vij. " 

i 

0 

1 

2 

l 

-0.096 

-0,817 

-0.111 

Estimated Standard Errors 
Nominal True 

. . . . .  

.062 .061 

.079 .099 

.031 .033 

The true standard errors are roughly the same 
in both tables but the nominal values are very 
much more real is t ic  in Table 3, although the 

^ 

value for 81 s t i l l  needs adjusting. The value 

of G2(1) in this case is 1.522. 
In most examples we have looked at, both the 

GLIM correction and the device of using 

ni = Pi(1-Pi )/vi work somewhat better than the 

example above. In Scott (1986), for example, we 
look at some data on unemployment from the 
Canadian Labour Force Survey quoted in Kumar and 
Rao (1984) and find the both corrections work 
extremely well. 

4. SPECIAL CASE 
There is one very important special case 

where results can be obtained e x p l i c i t l y  In a 
case-control study, independent random samples 
are drawn from the cases (e.g. women who have 
never carried out a breast self-examination in 
the example of the previous section) and the 
controls. There has been a great deal of work 
on f i t t i ng  logist ic models to such data in the 
medical l i terature where cases correspond to 
people with disease. A good survey of this work 
can be found in Breslow and Day (1980). There 
has been a parallel development in the econo- 
metric l i terature under the heading of 
"choice-based sampling". A survey of this 
l i terature can be found in Manski and McFadden 
(1981). Both approaches are put in a sampling 
context in Scott and Wild (1986). 

Let Nlt and NOt denote the number of cases and 

controls respectively in the t-th cell for the 
whole population and n l t  and not the correspond- 

ing sample numbers. Assuming the populations 
are large enough to ignore the f in i te  population 
correction, n~~ = (n~,...,n~T) has a multinomial 

distr ibution with parameters n~ = sT and n£ t i 

I I  = (II~l . . . .  ,II~t) where R~t = N~t/N~ with 
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I "  

N~ = ~N~t for z = 0,1. The usual survey 

sampler's estimator of Pt = Nlt/(Not + Nlt) 
^ ^ 

would be Pt = Nlt/(Not+Nlt ) where Nzt is the 
^ 

Horwi tz Thompson estimator Nzt = n ~t/w~ wi th 

w~ = n~/N~ being the corresponding selection 

probabil i ty (4=0,1). The asymptotic covariance 
^ 

of p can then be derived from standard results 

for ratio estimators. The resulting matrix has 
( i , j ) t h  element Vii given by the expression 

E ] pipj(1-Pi)(1-pj)  a i j k i - (~ l  + (7) 
n o n 1 

= 1 + 1 and ai = 1 i f  i = j 
where k i n o ~ o i  n~l~'li J 

and 0 otherwise. This enables us to evaluate 

D(~) in expression (2) exp l ic i t l y  for any 
matrix X. 

For simplicity, consider the case of a simple 
linear regression model for the logits,  i .e.  
h i = S ° + BlXi ( i = l , . . . , T ) .  Combining (7) and 

(2) we find, after some rather tedious algebra, 
^ 

that the asymptotic variance of B1 is 

T 
~n ( )2 ~ 2  

^ 1 tPt 1-pt kt(xt-x) 

Var( B 1) = t 

(Z ntPt(l-Pt) (xt-x)2) 2 
1 

(8) 

" T ~ 
where x = ~1 ntPt(1-Pt)Xt/~ ntPt(1-Pt )" We can 

use th i s  expression to compare the e f f i c i e n c i e s  

for d i f f e r e n t  choices of nt .  In p a r t i c u l a r ,  
^ . .  

Var(B 1) is  minimized by choosing n t equal to 

~ ( o p t )  i 

n t = ktPt(l_Pt) , (9) 

which results in a value 

1 (xt_x)2 -1 
Vop t = xt (10) 

^ 

for Var(~l). This optimal choice has another 
^ 

very su rpr i s ing  proper ty;  the est imate of Var(g 1) 

obtained from a standard program (given by the 
f inal term in expression (2)) is exactly r ight. 
Similarly the null distr ibution of the l i k e l i -  
hood s ta t is t ic  for testing H O" B1 = 0 is exactly 

chi-squared with one degree of freedom• Thus 

" ~ (opt) is not only e f f ic ient  but choosing n t = n t 

enables us to use the output from a standard 
program direct ly (apart from the variance of the 
constant term). Of course we have to estimate 

^ 1 + ~ w h e n  we use (9) in P t by Pt and k t by not n l t  

practice but the asymptotic properties are unaf- 

" " (opt) is not fected. Note that choosing n t = n t 

the same as taking n t = Pt(1-Pt)/V t which leads 
to 

" 1 n = 
t Pt(l_Pt) (kt _ 1 _ 1 )  

n o n I 

~ ^ (opt) 
In general, n t > n t so the nominal stan- 

dard errors produced wi l l  be sl ight ly smaller 
than the true values on average. I f  T is large, 

i+_£I however, k t wi l l  be much larger than no nl 

and n t wi l l  be close to nt (°pt). Thus the 

approximation should work very well for large 
tables. 

We can also look at the properties of the 
generalized least-squares estimator exp l ic i t l y  
in this important special case. I t  follows from 
(7) that 

V~ = A - (__~1 + 1)11 t ( I I )  
n o n I -- , 

• m where A = d iag(k l , . . . ,X T) and 1T. (1 , . . . , 1 ) ,  and 

hence that the generalised least squares estima- 
tor of B 1 has asymptotic variance equal to Vop t. 

I t  is straightforward to extend this to more 
general linear models provided the model inclu- 
des a constant term. Suppose X = (1,X 1) and we 

center the columns of X 1 so that X TX = O. Then 
J .  

^ 

the asymptotic covariance matrix of B G, the 

generalized least squares estimator, is 

D(!G ) : (xTv~Ix) -1 

1 1 
u -  n o - n-~ 

m 

0 

with ~ = (~T xtl ) 1 

oT 11 (12) 

~ " (opt) (as in (9)) and sub- I f  we take n t = n t 

st i tute these values in (2) we find that the 
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asymptotic covariance matrix of the resulting 
pseudo maximum likelihood estimator is identical 

^ ~ (opt) as our pseudo to D(BG). Thus i f  we take n t 

sample size, any standard logist ic regression 
program produces estimates that are asymp- 
to t ica l ly  equivalent to the generalized least 
squares estimates. Moreover, the standard 
errors produced by the program are consistent 
estimates of the correct values with the excep- 
tion of the constant term where the program pro- 

1 1 duces a value of ~ instead of ~ 
n o n 1 

The standard way of analyzing data from simple 
case control studies is to ignore the s t r a t i f i -  
cation into cases and controls completely and 
feed the raw counts, not and nl t ,  into a stan- 

dard program. Provided the model contains a 
constant term, the resulting values are the 
maximum likelihood estimates of all coefficients 
except the constant term and, although the 
standard assumptions are not met, they are 
asymptotically ef f ic ient .  (See Prentice and 
Pyke (1979) and Cosslett (1981) for details.) A 
valid estimate of the constant term can be 
obtained by adding log(W1/W O) to the estimate 

given by the program. The asymptotic covariance 
matrix of this maximum likelihood estimator is 
given in Scott and Wild (1986) and turns out to 

^ 

be identical to D(B G) with categorical explana- 

tory variables as here. 
Thus the technique of constructing consistent 

estimates of Pt and feeding the resulting values 

into a standard package can be made fu l ly  e f f i -  
cient in this special case by careful choice of 
the pseudo sample sizes. The common choice of 
n t = Pt(1-Pt)/V t does not give ful l  efficiency 

here but the differences are negligible i f  there 
is a large number of cells in the table. The 
resulting estimates of the standard errors wi l l  
be sl ight underestimates of the true values for 
al l  coefficients except the constant. The stan- 
dard error of the constant wi l l  be an 
overestimate. 
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