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1. INTRODUCTION
There are several situations where
misclassification of categorical data can be
observed. Dual system estimation studies
(used for evaluation of the coverage of a
census) match records from a survey to a
census, where hoth studies have collected
basic demographic variables like age, race,
sex, and ethnicity. Studies are also
conducted matching survey results to
administrative records, such as health
studies which match survey data to patient
records. Reinterview studies are conducted
to evaluate the accuracy of censuses and
surveys, or to monitor the work of
interviewers., Finally, panel studies
designed to measure change over time of
certain variables will often collect the same
demographic information if there is a
sufficiently Tong time between interviews.
2. STUDYING MISCLASSIFICATION
In this paper, a method will be investi-
gated for analyzing crossclassification data
with misclassification present. In this
investigation, the emphasis will be on
estimation of various parameters of interest,
such as the true proportions of respondents
or cases falling into the categories under
study. It will be shown that using repeated
observations on a qualitative variable, the
true proportions falling into the categories
of this variable usually cannot be estimated
from the crossclassified tahle, except in
very special circumstances.
3. A MODEL FOR MISCILASSIFICATION
There is relatively little research
available on misclassification, most Tikely
hecause of the few opportunities available to
study data collected in the same way multiple
times on the same variable. In the research
that has been done, different authors have
used different models to study the phenomenon
of observing misclassified data. The one
underlying characteristic of these studies is
that some assumption must be employed or
device used to be able to estimate the true
proportions in the categories heing studied.
Press (1968) assumes that the rates at which
errors are made in observing (or reporting)
the data are known. Nordheim (1984) assumes
not that the rates are known, but rather that
the relative rates (the odds) of misclassi-
fication are known. This ltatter approach
works well because it reduces the number of
parameters to be estimated, making Nordheim's
model estimable, but still assumes that the
researcher will have certain knowledge about
the relation between the rates at which
errors are being made, Chen (1974) studies
misclassification and uses double sampling to
obtain a resolution on a subset of records so
as to be able to estimate the proportions in
the categories of the variable being studied.
This paper will take a slightly different
approach by trying to analyze the crossclass-
ification of the dual or multiple observa-
tions of a variable by using the EM algor-
ithm, The EM algorithm is an iterative
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procedure that consists of an expection step
and a maximization step; it can be used to
calculate parameters in a likelihood. A
probability model that describes how the
crossclassification was generated will be
presented, and then the EM algorithm will be
used to estimate the value of the parameters
in the model.

The data observed in a study of misclassi-
fication can be summarized in a two-way table
{or higher dimensional if there are multiple
observations on a variable). There are r
rows and r columns, and the cells of the
tables are comprised of counts Z..; for i=j
the cell totals represent counts '8f cases
that agree in classification between the
first observation and the second observation.
For cells where i#j, Z.. the count of

A . 1.
cases classified in the'j ategory the
first enumeration and the j category the
second enumeration or observation. The Z..
represent counts of the way individuals atd
tabulated, not their true status; i.e. the
Z.. are not counts giving the correct
c1gssification of individuals unless there is
no misclassification. Assume there is an
underiying variable, X"k' which is a count
of the true number of &dSes in category k hut
ohserved or denoted as i at the first
observation and ohserved or denoted as being
in category j at the second observation. We
never observe the number of cases truly in
category k unless we have a situation with no
misclassification. What we do observe are
the 7. ., which are the sums of the true
countsvof cases in categories k = 1, ...,r,
observed in the (i,j) cell, expressed as:
r

25 I M
The X, . will be referred to as the complete
data zégich we do not observe), and 7Z.. will
be referred to as the observed data.

We nead a mechanism for estimating the
proportion of cases in a category, k, and so
we postulate a probability model such that
the probability that an individual we observe
is from category k is p,_, and that there is
further a probability tﬁat an individual will
be categorized as bheing in category i the
first observation and j the second observa-
tion that can be expressed as f"k’ which is
the probability that a case whidhis truly
from category k is observed as being in
category i the first observation and category
J the second observation. We assume that
misclassification will he differential
between groups being ohserved, and that the
event of being misclassified in the second
observation is not necessarily independent of
how the case was classified in the first
observation. With these definitions, we
consider sets of classification probahilities
for each category k, and have the standard
restriction:

k= 1,..0,r (1)

zp, = 1.0
v k



i ik = 1.0 for k = 1,...,r

Uith these assumptions and the restriction
(2), one could express the likelihood for the

Xijk as a product muitinomial.

rrr X..k

Le mam (pf..) "
ki ! (3)

The equation (3) is a joint probability of
observing individuals who come from certain
categories k and are ohserved in categories
(1,3,k).

The problem, of course, is that we do not
nhserve the Xi' ; we only observe the sums of
the X.. , the 2.‘, and the probhahilities of
the 219%re convdlutions developed from (3).
They cannot bhe expressed in closed form, and
it will be shown helow that estimation of the
parameters in the likelihood (3) do not
involve the Zi" but instead require at least
some of the X»Jk values,

AR THE EM ALGORITHM

To obtain estimates of the propertion of
individuals in each of the categories for the
variable under study, and the parameters in
the model, we turn to the EM algorithm, A
complete description of the EM algorithm can
be found in Dempster, Laird, and Rubin
(1977},

For the problem under consideration in
this paper, the solutions to both steps can
he found in the works of other authors. The
M-step, estimation of the parameters by maxi-
mization of the lixelihood {(3), given the
restriction set forth in {2), is a well known
result that can be found in almost any text
on qualitative methods, such as Bishop, Fien-
berg, and Holland (1475). Maximum Tikelihood
pstimates (MLE's) for the parameters are
given by:

r
= X++k / z X++k for k = 1,..,r
; k
(4)
i=1,..,r
- f 1 =
P ™ K/ Ko Tom T }::::E
ror
where X++|< = Iz Xijk
LN
There are r-1 estimates of Py since
restriction {2) would give us
ro-1
n.= 1 - ? Py (5)

5 ) .
and r {r°<1) estimates of f.. , with f

. . . 1gk. 5 rrk.
heing estimated using restriction {?) agdin
fgr k=1, ..., r. There are (r<1)i1l+r(r+1)] =
r’-1}1 paraneters total to be estimated, In
a simple dichotomy, there would be seven
narameters to he estimated, Restrictions on
tne model would reduce the number of
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parameters to be estimated.

The development of the E-step is less
obvious. One must condition on the observed
data to calulate the conditional expected
valtues of the X.. . Work by Birch (1963) and
Bishop, Fienbergy and Holland (1975), Cowan
(1984), and Cowan and Malec (1984) show that
for the product multinomial, the conditional
expectations for the unobserved variables can
be expressed as: (6)

r
ECG 502455 Fig0Pk) = Z43P g/ 2 Pt

There are rz(r-l) separate conditional
expected values estimated, The remaining
conditional expected values do not need to be
estimated separately since they can he
obtained by subtraction using (1). In the
dichotomous case, there are four conditional
expected values to be estimated. The para-
meters and conditional expected values to he
estimated are presented for the dichotomous
case in Tahte 1 helow.

6. ESTIMATION

When one studies the data actually on
hand, one discovers that there are only r°-1
degrees of freedom available for estimation
in the twoway cros;c]assification of the
data., There are r cells in the table, but
the cell values must sum to a fixad value, N,
the total sgmple size or population size
With only r -1 degrees of freadom, but r -1
parameters to be estimated, there is no
unique solution for the parameters, The
Tikelihood is a hill or pair of hills with a
flat ridge at the top. The EM algorithm is
quaranteed to converge, and does, but to a
point on this ridge. Different arhitrary
starting points used for the algorithm lead
to different but equally likely solutions.
Since the solutions are equally likely, there
is no way to choose hetween the solutions,
and so the problem is indeterminate, Other
examples of this type of indeterminacy in
solution can he found in the EM literature
and in other areas like "errors-in-variahles"
models in regression,

There are two approaches that can he taken
to obhtain a solution to the probiem of
estimating the model parameters: double
sampling and restriction of the model.

The double sampling method is to draw a
sample for adjudication only from the off
diagonal cells, This will be described more
fully in an example that follows for the
dichotomous case.

A second method to obtain a solution is to
restrict the model in some way. The most
ohbvious way is to consider the classification
events independent of one another; that is,
classification to category i in the first
ohservation is independent of classification
to cateqory j in the second observation.

This reduces the parameter space in each
Tevel x of the complete data tahble from r” -1
to 2{r-1). In general, let g. be the
probahbility of a correct classification for
class k in the first data set, and h.k hbe the
nrobability of a correct classificatidn for
class k in the second data set. Then the



joint classification probahilites can be
reexpressed as:

fooy = 9o . (7)
with the rest%%étionxfh%%
z i = L0 and z ho = 1.0
For the dich&tomous case we ﬂavA
Flie = 91k (7*)
Fro = 9ok = 91 (M)

f (1-9y Mg,

21k T 92k T

ook = 9okhak =
and we see there are only two parameters for
each level of k rather than three to he
estimated, With this restriction we now have
(r-1)(2r+1) paramegers to be estimated, but
still have only (r°-1) degrees of freedom, so
the solution is still indeterminate, From
this point there are two approaches that can
he taken to make the problem tractinle,

The first approach is double sampling. To
make the prohlem estimable, one could take
all the cases tallied in the off-diagonal
cells, recheck or revisit these cases, adju-
dicate between responses and allocate the
cases to the cells in the complete data
table, This approach has the advantage that
in almost all situations there will be
relatively few cases off the main diagonal of
this table, so that rechecking these cases
will be inexpensive since few cases have to
be resolved. The other advantage relative to
double sampling is that the off-diagonal
cells have much more information about
misclassification than do the diagonal cells,
since these cases are by definition mis-
classified at least once whereas in the
diagonal cells most cases will not likely be
misclassified, 5

Taking this apprgach adds r{r-1)" degrees
of freedom to the r"-1 degrees of freedom we
had originally in the two way classification
table. le now have (r-1)(r"+1) degrees of
freedom, hut need to estimate (r-1)(2r+1)
parametsrs in the independence model, (and
(r-1){r°+r+l) narameters in the unconstrained
model). For 5> 1, ang r an integer,

rotr+l > r+l > 2r+l
(with equality holding only for r=2),
so the unconstrained model still cannot be
resolved (in terms of estimation of
parameters), hut the model involving
independence of classification can he,

In the £M algorithm, hy forcing the
conditional expectations of the off-diagonal
cells to he equal to the values determined in
the adjudication, (i.e. the Xi'k’ itj, are
known) one gets two solutions I8 the
iterative process. One solution is the
correct solution with the maximum likelihood
estimators (MLE's) of the parameters being
exactly what they should be. The other
solution is the mirror solution to the
correct solution set.

[f one cannot double sample those cases
which fall in the off diagona; calls, one is
left with only the original r"-1 degrees of
freedom. The only estimable models in this
situation are those models with fewer para-
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meters than degrees of freedom., Two types of
restrictions suggest themsalves in addition
to the independence model. One is to set all
parameters for a class equal across the two
sources, as

i = Ny for = 1,00,r ()
The other method is to set the probability
for a correct classification to a constant
reqardless of the category, but allow it to
differ by source. Of necessity, to make the
prohlem tractinle, we would also make the
probability of a misclassification a constant
regardless of the category incorrectly
specified. This can be expressed as:

Yip = S for 1 =k
9y = (1-s)/(r-1) for i # k
(9)
hjk =t for j = k
hjk = {1-t)/(r-1) for j # k

He can attempt to use the EY algorithm to
solve for the MLE's of the parameters in the
restricted pronlems. For the first restric-
ted independence model, that descrihed hy
(&), tanle 2 presents the conditional
expected values and estimators for parameters
in the model where parameters are restricted
across sources within classes.

The alternative restriction, using the
rastrictions in (9), is presented in table 3.
This is the case where classification at-
tempts are independent, and classification
parameters are the same hetween classes but
differ between sources. Examples of where
either type of restrictions may be appro-
priate are ygiven in the next section.

6. EXAMPLES

To test the methods described in the last
section, a computer program was written that
would perform the iterations required for the
EM algorithm, Different versions of the
programs were written to reflect the differ-
ent restrictions and concommitant estimators
presented in tables 1, 2, and 3, The
programs accept a two-hy-two table with
cross-classified data and attempt a series of
runs of the EM algorithm. Each attempt
begins with a different starting point and
iterates until it converges. In no case did
any exarmple take more than 39 itergtions to
converge; the criterion for convergence was
that no parameter estimate changed from the
estimate of the same parameter in the prior
iteration hy more than 0,00001. In most
cases it took less than 10 iterations to
achieve convergence.

The first model considered was the model
with the fewest restrictions. An artificial
data set was constructed using parameters pl
= .90, g;; = .88, g,, = .02, hyy = .94, h, s
.96, and k = 10,0000" The artificial data Set
was used so that the correct convergence
point would he known, and furtharmnre so that
the off-diagonal values would be known for
use in determining the convergence properties
of the use of the double sampling informa-
tion. In other words, all values of the



complete data were generated and summed to
form the Zi' values which were used as input
to the compﬁter program; at the same time the
values of the X.. were retained so that the
of f-diagonal vallés {al1 X.. where i#j)
could he used as input to geﬁdy the double
sampling solutions. The 7. values generated
are presented in Table 4 hbelow. Starting
values used were vectors of the form {(p,,
Yi7s 99os Noq,N,,): starting vectors uséed
were (3 V30000, L3, o3, L3, L3,
.3), (.5, .5, .5, .5, .8), (.7, .7, .7, .7,
.7}, and (.9, .9, .9, .9, .9).

Table 5 presents the results of applica-
tion of the EM algorithm to the data in table
6. It's easily seen that different starting
values used in the starting vectors lead to
widely divergent results for the parameter
estimates. All of the vectors which result
are equiprobable since each represents a
point on the ridge at the top of the like-
Tihood. In this case the use of a vector
consisting of all probabilities set equal to
0.5 equally splits the 7.. into two sets with

sy = X (53 which 19ad514mmediat91y to a
céﬂverge%ée point,

The last line in table 5 presents the
results of the EM algorithm when the true
parameter values are used as starting values,
Again, the algorithm converges immediately,
in this case to the true values. One would
expect this result since the parameter values
input would generate the correct X.. values
which would then be used to estima%%kthe
parameter values, and these would bhe
unchanged from the initial values.

Table 6 gives the results for the EM
algorithm for the Z.. values presented in
tahle 4 and the same“starting values
presented in table 5, 1In this case the
algorithm was changed so that the off-
diagonal elements in the complete data (the
Xi K i#j) were used in the X. . table for
edtimation of the parameters, vather than the
conditional expected values. As can he seen
from table 6, by supplying the off-diagonal
elements (the values used were the correct
Xi'k values used to tabulate to the 7.,
valiies), the algorithm converges to ohd of
two points, Starting values where all values
are less than or equal to 0.5 lead to
convergence, and convergence to the same
result but to a result that makes no sense,
The result for starting values of .1, .3, or
.5 Tead to estimation of correct classifi-
cation values of less than 0.5, But starting
values above 0,5 lead to convergence at a
single point, the correct point, with all
correct classification rates ahbove 0,5, As
noted in the last section, there are two
points of convergence, even though the
off-diagonal values are fixed, hecause the
likelihood function has a mirror image.
Attempts to climb the likelihood (the method
used by the EM algorithm) will lead to one
peak or the other in the multidimensional
bimodel distribution. A choice can be made
hetween the two solutions as long as one
would expect all correct classification rates
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to be greater than 0.5.

Examples of the convergence properties of
the EM algorithm for the two restricted
models described above are not given here
because of space limitations. A more exten-
sive version of this paper including the
examples are available from the author.

7. CONCLUSIONS

It has been demonstrated that using a
general model of misclassification, the
parameters in the model are not usually
estimable without some assumptions on the
process by which misclassification occurs,

As a minimum, one must either conduct a
double sampling study to make estimates of
appropriate allocations for each cell in the
miscliassification table, or one must assume
independence between classification attempts
and either double sample the off-diagonal
cells or further restrict the model. It has
also been shown (by counter-example) that not
all restrictions of the parameter space will
serve to make the problem estimable.

The really outstanding feature of the
examples in this paper is that without the
use of the EM algorithm, one could bhe
severely misled about the proportion of cases
that fall in a particular category. Modeling
of the misclassification process can give a
much better appreciation of the quality of
the data being analyzed and should be
attempted when the data are available.
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Table 1: Parameters and Conditional Expected Values
to be Estimated by the EM Algorithm

Parameter Conditional Expected Value

1) By = Xy /0 D Ry = ey F /0y * pofyyp)
2) f111 = X/ %en 2 X1a1 = DePrfia/ (i * Pafrg))
3 f121 7 X1/ % 3) Yo Lorprfor/ (P Torn + Pypfary)
4) f211 = %1/ %en B Xoo1 = LoaP1 o1/ (1 Fpp1 * Pofop))
5 fliz 7 K1/ % -

6) ?122 = X102/ %442 e e 24 ? i

7) f212 i X212/X++2 and N =£i X++k

Taole 2: Parameters and Conditional Expected Values to be Estimated by the EM
Algorithm/with Classification Attempts Independent Between Sources and Classi-
fication Parameters/Fqual Across Sources But Differiny Between Classes

(g1K=n1k) for Dichotomous Case
Parameters Conditional Expected Values
. A 2 2 2
Dy = N = 9. 0% /{n.¢ .y
1) by o= X/ 1) Xy1q = 20810/ (P8 + 0py0)
20 9py = (X # XXy 2 Xypg = LygPr9yp9p17/ (P9 U0y * oYy pdpp)
3) 915 = (Kpp v K/ 2% 0 3) Kopp = 2op0q 910901 /(0911901 * Pp9p08p)
A 2o ?
) Xony = Lyon 01/ (01951 + Pyd5))
where the plus subscript denotes summation over r
categories for that indicator, and N = £ X++K
K

Table 3. Parameters and Conditional Expected Values to bhe Estimated by the £H

Algorithm with Classification Attempts Independent Between Sources and Classi-

fication Parameters tqual ihen Classification is to Correct Cateqory But Dif-
fering Between Sources (gkk = S and th = t) for Dichotomous Case

Parameters Conditional Expected Values
1) by = X /0 1) 9111 = 2y ypqst/(pyst + py(1-5)(1-t))
2) s = (x1+1 Ky ) /i ?2) X0y = 212915(1—t)/(915(1-t) * py(l-s)t)
3)t o= (x+11 + x+2?)/u 3) x2}1 = Zylpl(l—S)t/(Dl(]-S)t + pgs(l-t})

4) Xopy = Loy (1=5) (1-t)/(p (1-5)(1-t) + p,st)
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Table 4: Zi' Values Used in First Example of EM Algorithm With Restriction:
Independence Between Classification Attempts

Second Data Source

Category
1 2 Total
First Data Category 1 7289 691 7980
Source Category 2 1031 989 2020
Total 8320 1680 10000

Table 5: Results of EM Algorithm for Data in Table 4 for Different
Starting Values

Parameters
Number of

P g g n h Iterations

Start 1 11 22 11 2 2
.10 L1089 L0705 L1017 L1131 L0787 7
.30 L1869 L2516 .3152 .0764 .0492 13
.50 .5000 L7980 L8320 .2020 L1680 1
.70 .8131 .9236 L9508 7484 .6849 11
.90 .8911 L8869 .9213 .9295 LR983 6
True .9 .88 .92 .94 .96 1

Table 6: Resulits of EM Algorithm for data in Table 4 for
Different Starting Values with Double Sampliing Values (X..k, it3)
Substituted for Conditional Expected Values !

Parameters
Numbher of
p C g.,. h h,. Iteration
Start 1 911 992 11 22 ~terations

.1 L3253 L3906 L5013 L0056 L0086k 26
.3 L3253 L3906 L5013 L0056 L0086A 16
.5 . 3253 L3906 L5013 D056 LU0RA 41
.7 . 9000 LR800 L9200 L9400 L9600 10
.9 L9000 LR800 .9200 . 9400 L9600 6
True L4000 L8800 L9200 L9400 L9600 1
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