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1. INTRODUCTION 
There are several s i t ua t i ons  where 

m i s c l a s s i f i c a t i o n  of ca tegor ica l  data can be 
observed. Dual system est imat ion  studies 
(used fo r  eva luat ion  of the coverage of a 
census) match records from a survey to a 
census, where both studies have co l l ec ted  
basic demographic var iab les  l i k e  age, race, 
sex, and e t h n i c i t y .  Studies are also 
conducted matching survey resu l t s  to 
adm in i s t r a t i ve  records,  such as heal th 
studies which match survey data to pa t ien t  
records.  Reinterv iew studies are conducted 
to evaluate the accuracy of censuses and 
surveys, or to moni tor  the work of 
i n t e r v i ewe rs .  F i n a l l y ,  panel s tudies 
designed to measure change over t ime of 
ce r ta in  var iab les  w i l l  o f ten c o l l e c t  the same 
demographic in format ion i f  there is a 
s u f f i c i e n t l y  long t ime between in te rv iews .  

?. STUDYING MISCLASSIFICATION 
In t ~ i s  paper, a method w i l l  be i n v e s t i -  

gated fo r  analyz ing c r o s s c l a s s i f i c a t i o n  data 
wi th  m i s c l a s s i f i c a t i o n  present .  In t h i s  
i nvest i  gat i on, the emphasis wi I 1 be on 
es t imat ion  of var ious parameters of i n t e r e s t ,  
such as the t rue  propor t ions of respondents 
or cases f a l l i n g  in to  the categor ies under 
study.  I t  w i l l  be shown tha t  using repeated 
observat ions on a q u a l i t a t i v e  va r i ab le ,  the 
t rue propor t ions f a l l i n g  in to  the categor ies 
of t h i s  va r iab le  usua l l y  cannot be est imated 
from the c r o s s c l a s s i f i e d  t ah le ,  except in 
very special  c i rcumstances. 

3. A MODEL FOR MISCLASSIFICATION 
There is r e l a t i v e l y  l i t t l e  research 

ava i lab le  on m i s c l a s s i f i c a t i o n ,  most l i k e l y  
because of the few oppo r tun i t i es  ava i lab le  to 
study data co l l ec ted  in the same way mu l t i p l e  
t ines  on the same va r i ab le .  In the research 
that  has been done, d i f f e r e n t  authors have 
used d i f f e r e n t  models to study the phenomenon 
of o~)serving m i s c l a s s i f i e d  data. The one 
under ly ing c h a r a c t e r i s t i c  of these st~Jdies is 
tha t  some assumption must be employed or 
device used to be able to est imate the t rue  
propor t ions in the categor ies being s tud ied.  
Press (lg6H) assumes tha t  the rates at which 
er rors  are made in observing (or repor t i ng )  
the data are known. Nordheim (19R4) assumes 
not tha t  the rates are known, but ra ther  tha t  
the r e l a t i v e  rates (the odds) of m isc lass i -  
f i c a t i o n  are known. This l a t t e r  approach 
works well  because i t  reduces the number of 
parameters to be est imated,  making Nordheim's 
model est imable,  but s t i l l  assumes tha t  the 
researcher w i l l  have ce r ta in  knowledge about 
the r e l a t i o n  between the rates at which 
er rors  are being made. Chert (197zL) s tudies 
m i s c l a s s i f i c a t i o n  and uses double sampling to 
ohtain a reso lu t ion  on a su~set of records so 
as to be a~le to est imate the propor t ions in 
the categor ies of the va r iah le  being s tud ied.  

This paper w i l l  take a s l i g h t l y  d i f f e r e n t  
approach by t r y i n g  to analyze the c rossc lass-  
i f i c a t i o n  of the dual or mu l t i p l e  observa- 
t ions  of a var iab le  by using the EM a lgor -  
i thm. The EM a lgor i thm is an i t e r a t i v e  

procedure that  cons is ts  of an expection step 
and a maximizat ion step; i t  can be used to 
ca l cu la te  parameters in a l i k e l i h o o d .  A 
p r o b a b i l i t y  model that  descr ibes how the 
c r o s s c l a s s i f i c a t i o n  was generated w i l l  be 
presented, and then the EM a lgor i thm w i l l  be 
used to est imate the value of the parameters 
in the model. 

The data observed in a study of m isc lass i -  
f i c a t i o n  can be summarized in a two-way tab le  
(or higher dimensional i f  there are m u l t i p l e  
observat ions on a v a r i a b l e ) .  There are r 
rows and r columns, and the ce l l s  of the 

• fo r  i= j  ta~les are comprised of counts Zi_ f 
the ce l l  t o t a l s  represent counts cases 
that  agree in c l a s s i f i c a t i o n  between the 
f i r s t  observat ion and the second observat ion.  
For ce l l s  where i # j ,  Z ~ the count of 
cases c l a s s i f i e d  in theIJi t ~a tego ry  the 
f i r s t  enumeration and the 3 category the 
second enumeration or observat ion.  The Z 
represent counts of the way i nd i v i dua l s  a ~  
tabu la ted ,  not t h e i r  t rue s ta tus ;  i . e .  the 
Z are not counts g iv ing  the cor rec t  
c l ~ s s i f i c a t i o n  of i nd i v i dua l s  unless there is 
no m i s c l a s s i f i c a t i o n .  Assume there is an 
under ly ing va r i ab le ,  , which is a count 

X i ikes in c of the t rue  number of cms ategory k but 
observed or denoted as i at the f i r s t  
observat ion and observed nr denoted as being 
in category j at the second observat ion.  We 
never observe t~e number of cases t r u l y  in 
category k unless we have a s i t u a t i o n  wi th no 
m i s c l a s s i f i c a t i o n .  ~hat we do observe are 
the Z , which are the sums of the t rue  
count~Jof cases in categor ies k = i ,  . . . .  r ,  
observed in the ( i , j )  c e l l ,  expressed as: 

r 

ZIJ = k Z= I X i jk  , k = ] . . . . .  r ( ] )  

The X w i l l  he re fer red to as the complete 
data i ~ i c h  we do nnt ohserve),  and Z w i l l  
be re fer red to as the observed data. 13 

~Je need a mechanism fo r  est imat ing the 
propor t ion  of cases in a category,  k, and so 
we pos tu la te  a p r o b a b i l i t y  model such tha t  
the p r o b a b i l i t y  that  an i nd i v idua l  we observe 
is from cat~gory k is Pk' and that  there is 
f u r t h e r  a p roba f ) i l i t y  t~iat an ind iv idua l  w i l l  
be categor ized as being in category i the 
f i r s t  observat ion and j the second observa- 
t i on  tha t  can he expressed as f , which is 
the p r o b a b i l i t y  that  a case wh i i~k is  t r u l y  
from category k is observed as being in 
category i the f i r s t  nbservat ion and category 
j the second observat ion,  lie assume tha t  
m i s c l a s s i f i c a t i o n  w i l l  be d i f f e r e n t i a l  
between groups being ohservecl, and tha t  the 
event of being m i s c l a s s i f i e d  in the second 
observat ion is not necessar i l y  independent of 
how the case was c l a s s i f i e d  in the f i r s t  
observat ion.  With these d e f i n i t i o n s ,  we 
consider sets of c l a s s i f i c a t i o n  p r o b a b i l i t i e s  
fo r  each category k, and have the standard 
r e s t r i c t i o n :  

r 
Pk = 1.0 

k 
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r r 

~ Z f  
i j 

i j k  
= 1.0 f o r  k = I . . . . .  r 

(2) 

Uith these assumptions and the r e s t r i c t i o n  
(2) ,  one could express the l i k e l i h o o d  fo r  the 
X i j  k as a product mu l t i nom ia l .  

r r r X 

L a ~ ~ ( P k f i j k )  i j k  
k i j (3) 

The equat ion (3) is a j o i n t  p r o b a b i l i t y  of  
observ ing i n d i v i d u a l s  who come from c e r t a i n  
ca tegor ies  k and are observed in ca tegor ies  
( i , j , k ) .  

The problem, of course, is tha t  we do not 
observe the Xi~k;. we only observe the sumsfof 
the X i j k ,  the and the p r o b a b i l i t i e s  o 
the Z..  are c o n l ~ u t i o n s  developed from (3) .  
They l~nnot be expressed in closed form, and 
i t  w i l l  be shown below tha t  es t imat ion  of  the 
parameters in the l i k e l i h o o d  (3) do not 
invo lve  the Z i j  , but instead requ i re  at leas t  
some o~ the X~,!k va lues.  

• THE EH ALGORITHM 
To ohta in  est imates o ~ the l ) ropor t ion  of 

ind iv i , i~ la ls  in each of the ca tegor ies  fo r  the 
va r i ah le  under s tudy,  and the parameters in 
the model, we tu rn  to the EM a lgo r i thm.  A 
complete d e s c r i p t i o n  of the E,,H a lgor i thm can 
he found in Dempster, l_aird, and Rubin 
( I ()7 7). 

For the prohle~,~ under cons ide ra t i on  in 
t h i s  paper, the so lu t i ons  to both steps can 
he found in the works of o ther  authors .  The 
I t -s tep,  es t imat ion  of the parameters by maxi- 
miza t ion  of th~ l i '<e l ihood (3 ) ,  given the 
r e s t r i c t i n n  s~t f o r t h  in (?) ,  is a wel l  known 
resu l t  tha t  can l)e found in almost any t e x t  
on q t J a l i t a t i v e  methods, such as Bishop, F ien-  
berg, and Hol land (1975).  liaximum l i k e l i h o o d  
est imates (MI_E's) fo r  the parameters are 
given by: 

r 

Pk = X++k / ~ X++k  fo r  k = ] . . . .  r 
k 

i = I , . .  , r  
f i j k  = X i j k  / X++k fo r  ,i = 1 . . . .  r 

k = I . . . .  r 

(~) 

where X ++k 

r r 

= ~ ~ X 
i j i jk  

There are r-1 es t i~a tes  of Pk' s ince 
r e s t r i c t i o n  (2) would give us 

r -  I 
Pr = I - Z Pk (5) 

k 

and r ( r L - ! ) e s t i m a t e s  o +- f i  , w i th  f r r k  
being est imated ,Ising r e s t r l ~ i o n  (2) again 
,:,~r k~1 . . . . .  r .  There are ( r - ! ) [ l + r ( r + 1 ) ]  = 
r ' - 1 )  parar~eters t o t a l  to I~e est imated.  In 
a simple dichotnmy, there v;ould be seven 
para~qeters to be est imated.  R e s t r i c t i o n s  on 
the modpl would reducc~ the n~,Jmb~r of 

parameters to be est imated.  
The development of the E-step is  less 

obvious.  One must cond i t i on  on the observed 
data to c a l u l a t e  the cond i t i ona l  expected 
values of  the X i Work hy Birch (1963) and 
Bishop, F ienbergjkand Hol land (1975),  Cowan 
(19£4),  and Cowan and Malec (1984) show tha t  
f o r  the product mu l t i nom ia l ,  the cond i t i ona l  
expec ta t ions  f o r  the unobserved va r iab les  can 
be expressed as: (6) 

r 

E ( X i j k l Z i j ' f i j k ' P k ) ,  = Z i J P k f i j k /  ~;k p k f i j k  

2 
There are r ( r - l )  separate cond i t i ona l  

expected values est imated.  The remaining 
cond i t i ona l  expected values do not need to be 
est imated separa te ly  s ince they can he 
obtained by sub t rac t i on  using (1) .  In the 
dichoto~.qous case, there  are four  cond i t i ona l  
expected values to be est imated.  The para-  
r~eters and cond i t i ona l  expected values to he 
est imated are presented f o r  the dichotomous 
case in Table I below. 

6. ESTIMATION 
When one s tud ies  the data a c t u a l l y  on 

hand, on~ d iscovers tha t  there  are only r2-1 
degrees of freedom a v a i l a b l e  f o r  es t imat ion  
in the twoway c r o s ~ c l a s s i f i c a t i o n  of the 
data.  There are r c e l l s  in the t a b l e ,  but 
the ce l l  values must sum to a f i xed  value,  N, 
the t o t a l  s~mple s ize or popu la t ion  s ize 3 
I J i th only r - I  degrees of  freedom, but r - 1  
parameters to be est imated,  there is no 
unique so l u t i on  fo r  the parameters.  The 
l i k e l i h o o d  is a h i l l  or pa i r  of h i l l s  w i th  a 
f l a t  r idge at the top .  Th~ EM a lgor i thm is 
guaranteed to converge, and does, but to a 
po in t  on t h i s  r idge .  O i f f e r e n t  a r b i t r a r y  
s t a r t i n g  po in ts  used fo r  the a lgor i thm lead 
to d i f f e r e n t  bt~t equa l ly  l i k e l y  s o l u t i o n s .  
Sincp the so lu t i ons  are equa l l y  l i k e l y ,  there  
is no way to choose between the s o l u t i o n s ,  
and so the problem is inde te rmina te .  Other 
examples of t h i s  type of indeterl;~inacy in 
s o l u t i o n  can be found in th~ E;! l i t e r a t u r e  
and in o ther  areas l i k e  " e r r o r s - i n - v a r i a b l e s "  
models in regress ion .  

There are two approaches tha t  can he taken 
to ob ta in  a s o l u t i o n  to the problem of 
es t imat ing  the model parameters: double 
sampling and r e s t r i c t i o n  of the model. 
The double sampling method is to draw a 
sample f o r  a d j u d i c a t i o n  only from the o f f  
diagonal c e l l s .  This w i l l  be descr ibed more 
f u l l y  in an example tha t  fo l l ows  fo r  the 
dichotomous case. 

A second method to obta in  a s o l u t i o n  is to 
r e s t r i c t  the model in some way. The most 
obvious way is to cons ider  the c l a s s i f i c a t i o n  
(~vents independent of one another ;  tha t  i s ,  
c l a s s i f i c a t i o n  to category i in the f i r s t  
observa t ion  is independent of c l a s s i f i c a t i o n  
to category j in the second observa t ion .  
This reduces ~he parameter spac ~ in eaChr2 
level  K of th ,~ complete data tab le  from -1 
tn ? ( r - l ) .  In genera l ,  l ~ t  gi he the 
p r o b a b i l i t y  of a co r rec t  c l a s s k f i c a t i o n  f o r  
c lass k in the f i r s t ,  data set ,  and, h. be the 
probability of a correct c l a s s i f i c a t ~ k n  fo r  
c lass k in the second data set .  Then the 
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j o i n t  c l a s s i f i c a t i o n  p r o b a b i l i t e s  can be 
reexpressed as" 

h. f = 

with the res t i rdk t ion 
~: I ()and ~ h = I N 

• g i k =  • • 
For the dichotomous case we v 

f l l k  = g lkh lk  

(7)  

( 7 ' )  

f l 2k  = glkh?k = g l k ( l - h l k )  

f21k = g2khlk = ( l -g1<)h ]k  

f2#k = g2kh2k = ( 1 - g l k ) ( l - h ] k )  

and we see there are only two para~.~eters fo r  
each level  of k ra ther  than thrpe to he 
est imated.  ~,,!ith t h i s  r e s t r i c t i o n  we now have 
( r - 1 ) (2 r+1 )  parame~;ers to he est imated,  hut 
s t i l l  have only ( r ~ - ! )  degrees of freedom, so 
thp so lu t i on  is s t i l l  indeterminate .  From 
th i s  point  there are two approaches that  can 
he taken to make the problem t r a c t i b l e .  

The f i r s t  approach is double sampling. To 
make the problem est imable ,  one could take 
a l l  the cases t a l l i e d  in the o f f -d iagona l  
c e l l s ,  recheck or r e v i s i t  these cases, ad ju-  
d ica te  between responses and a l l oca te  the 
cases to the ce l l s  in the complete data 
tab le .  This approach has the advantage that  
in almost a l l  s i t u a t i o n s  there w i l l  be 
r e l a t i v e l y  few cases o f f  the main Hiagonal of 
t h i s  t ab le ,  so tea t  rechecking these cases 
w i l l  be inexpensive since few cases have to 
be resolved.  The other  advantage r e l a t i v e  to 
double sampling is tha t  the o f f -d iagona l  
ce l l s  have much more in format ion ahout 
m i s c l a s s i f i c a t i o n  than do the diagonal c e l l s ,  
since these cases are by d e f i n i t i o n  mis- 
c l a s s i f i e d  at least  once whereas in the 
diagonal ce l l s  most cases w i l l  not l i k e l y  be 
miscl assi f i ed .  ,~ 

Taking t h i s  approach adds r ( r - ] ) '  degrees 
of freedo;q to the r - - I  degrees of fre~.dom wp 
had o r i g i n a l l y  in the two wa~y c l a s s i f i c a t i o n  
tab le .  I/e now have ( r - ] ) ( r ~ - + ] )  degrees of 
freedom, hut need to est imat~ ( r - 1 ) ( 2 r + ] )  
parameters in the independence model, (and. 
( r - l ) ( r ' - + r + l )  9arameters in the unconstrained 
model). For ~ > I ,  an# r an in teger .  

r +r+1 > r +1 > 2r+l  
(wi th equa l i t y  hold ing only for  r=2),  
so the unconstrained model s t i l l  cannot he 
resolved ( in  terms of es t imat ion of 
parameters),  hut the model i nvo lv iqg  
independence of c l a s s i f i c a t i o n  can he. 

In the EH a lgor i thm,  hy fo rc ing  the 
cond i t i ona l  expectat ions of the o f f -d iagona l  
ce l l s  to he equal to the values determined in 

i # j ,  are the ad j ud i ca t i on ,  ( i . ~ .  the X i j k ,  
known) one gets two s o l u t i o n s . ,  the 
i t e r a t i v e  process. One so lu t ion  is the 
cor rec t  so lu t i on  wi th  the maximum l i k e l i h o o d  
est imators  (MLE's) of the parameters being 
exac t ly  what they should he. The other 
so lu t ion  is the m i r ro r  so lu t ion  to the 
cor rec t  so lu t ion  set .  

I f  one cannot double sample those cases 
which f a l l  in the o f f  diagona~ c e l l s ,  one is 
l e f t  wi th  only the o r i g i n a l  r - - ]  degrees of 
freedom. The only est imable models in t h i s  
s i t u a t i o n  are those models wi th fewer ~ara- 

meters than degrees of freedom. Ft.,.~o tyF)es of 
r e s t r i c t i o n s  suggest themselves in add i t ion  
to the inaep~ndpnce model. One is to sPt a l l  
parameters fo r  a class equal across the two 
sources, as 

, .  = h f o r  i = I , r  (~)  -)Ik ik . . . .  

The other method is to set the p r o h a b i ] i t y  
fo r  a cor rec t  c l a s s i f i c a t i o n  to a constant 
regardless of the category,  hut al low i t  to 
d i f f e r  I!y source. Of necess i ty ,  to make the 
problem t r a c t i o ] p ,  we v,,ni~Id also makp the 
p roha l~ i l i t y  of a m i s c l a s s i f i c a t i o n  a constant 
regardless of the category i n c o r r e c t l y  
spr~cif ied. This can !~ expr#ssed as: 

gik = s fo r  i = k 

gik = ( ] - s ) / ( r - 1 )  fc)r i # k 
(9)  

hjk = t fo r  j = k 

l!jk = ( i - t ) / ( r - 1 )  for  j # k 

t!e can attempt to ~Jsp the Er,I a]gorith,m to 
solve for  the HLE's of the parameters in the 
r e s t r i c t e d  l)ronlems. For the f i r s t  r e s t r i c -  
ted indepenHpnce model, tha t  df~scrib~d hy 
(~q), tah lp  2 presents the cond i t iona l  
exppcted values and est imators  for  para.-.)eters 
in the i.~odel where i)aram~ters are r e s t r i c t e d  
across source, s w i t h i n  c lasses.  

The a l t e r n a t i v e  r e s t r i c t i o n ,  using the 
r e s t r i c t i o n s  in (9) ,  is presented in tab le  3. 
This is the case where c l a s s i f i c a t i o n  a t -  
tel.opts are independent, and c l a s s i f i c a t i o n  
parameters arP the same hetween classps but 
d i f f e r  between sources. Examples of where 
e i t he r  type of r e s t r i c t i o n s  may be appro- 
p r i a te  are given in the next sec t ion .  

6. EXAHPI_ES 
To tes t  the methods d~scribed in the las t  

sec t ion ,  a computer program was w r i t t en  tha t  
would l)erform the i t e r a t i o n s  required fo r  the 
EH a lgor i thm.  D i f f e ren t  versions of the 
programs were w r i t t e n  to r e f l e c t  the d i f f e r -  
ent r e s t r i c t i o n s  and concommitant est imators  
presented in tables ] ,  2, and 3. The 
programs accept a tv#o-by-two tah le  wi th 
c r o s s - c l a s s i f i e d  data and attempt a ser ies of 
runs of the EI.I a lgor i thm.  Each attempt 
begins wi th a d i f f e r e n t  s t a r t i n g  point  and 
i t e ra tes  u n t i l  i t  converges. In no case did 
any example take more than 39 i t e r a t i o n s  to 
converge; the c r i t e r i o n  fo r  convergence was 
that  no parameter esti~,nate changed from the 
est imate of the same parameter in the p r i o r  
i t e r a t i o n  by more than 0.00001. In most 
cases i t  took less than ]13 i t e r a t i o n s  to 
achieve convergence. 

The f i  rs t  model considered was the model 
wi th  the fewest r e s t r i c t i o n s .  An a r t i f i c i a l  
data set was constructed using parameters Pl 

= "R£' g22 = .q2, h = q4, h2s2.e = 
=.96"q0" andgl~ 1( ) ,000.  The a r t i ~ c i  i d a t a a  t 
was used so that  the cor rec t  convergence 
point  would he known, and fur thermore so tha t  
the o f f -d iagona l  values would be known for  
use in determining the convergence proper t ies  
of the use of the double sampling infor lna- 
t i on .  In other words, a l l  values of the 
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complete data were generated and stemmed to 
form the Z.. values which were used as input 
to the com~ter  program" at the same time the 
values of the X. were retained so that  the 
of f -d iagonal  val~iks (a l l  X. p where i # j )  
could be used as input to l~i]dy the double 
sampling so lu t ions .  The Z. vala~es generated 
are presented in Table zl ~ low•  Star t ing  
values used were vectors of the form (p],. 
g l l '  g25' h ); s t a r t i ng  vectors use~ 
were ~ ~., .~ l 'h~ 2 ' I ,  . i ) ,  ( .3,  .3 3, '3 . ~ ,  e . L ,  , • , 

.3) ,  ( .5,  .5, .5, .5, .5) ,  ( .7,  .7, .7, .7, 

.7) ,  and ( .9 ,  .9, .9, .9, .9) .  
Table 5 presents the resul ts  of appl ica-  

t ion  of thp EM algor i thm to the data in tab le 
6. I t ' s  eas i ly  seen that  d i f f e ren t  s ta r t i ng  
values used in the s ta r t i ng  vectors lead to 
widely divergent resul ts  for  the parametpr 
est imates. All  of the vectors which resu l t  
are equiprobable since each represents a 
point on the r idge at the top of the l i k e -  
l ihood• In th is  case the use of a vector 
consis t ing of a l l  p r o b a b i l i t i e s  set equal to 
0.5 equal ly sp l i t s  the Z in to  two sets with 
X. i = X , which leadsl~mmediately to a 
c$~verge~ 2 po in t .  

The last  l ine  in tab le  5 presents the 
resul ts  of the EM algor i thm when the true 
parameter values are used as s ta r t i ng  values. 
Again, the algor i thm converges immediately, 
in th is  case to the true values. One would 
expect th is  resu l t  since the parameter values 
input would qenerate the correct  X. values 
which would then be used to estima~_kthe 
parameter values, and these would be 
unchanged from the i n i t i a l  valtles. 

Table 6 gives the resul ts  for the EM 
algor i thm for  the Z .  values presented in 
table z~ and the sam~Jstarting values 
presented in table 5. In th is  case the 
algori thm was changed so that the o f f -  
diagonal elements in the compl~te data (the 
Xi k '  i # j )  were used in the Xi~ k tab le for 
es~Imation of the parameters, l~ ther  than the 
condi t ional  expected values. As can he seen 
from table 6, by supplying the of f -d iagonal  
elements (the values used were the correct  

k values used to tabulate to the Z 
Xi~L]es), the a gor ges to o ~  o va 1 ithm conver f 
two points .  S tar t ing  values where a l l  values 
are less than or equal to 0.5 lead to 
convergence, and convergence to the same 
resu l t  but to a r~sul t  that  makes no sense. 
The resu l t  for  s ta r t i ng  values of .1, .3, or 
.5 lead to est imat ion of correct  c l a s s i f i -  
cat ion values of less than rl.5. f~ut s ta r t i ng  
values above r~.5 learl to convergence at a 
s ingle po in t ,  the correct  po in t ,  with a l l  
correct  c l a s s i f i c a t i o n  rates above 0.5. As 
noted in the last  sect ion,  there are two 
points of convergence, even though the 
of f -d iagonal  values are f ixed,  because the 
l i ke l i hood  funct ion has a mi r ror  image. 
Attempts to climb the l i ke l ihood  (the method 
used by the EH algor i thm) w i l l  lead to one 
peak or the other in the mult idimensional 
bimodel d i s t r i b u t i o n .  A choice can be made 
between the two solut ions as long as one 
would expect a l l  correct  c l a s s i f i c a t i o n  rates 

to be greater than 0.5. 
Examples of the convergence propert ies of 

the EH algor i thm for  the two res t r i c ted  
models described above are not given here 
because of space l i m i t a t i o n s .  A more exten- 
sive version of th is  paper inc lud ing the 
examples are ava i lab le  from the author. 

7. CONCLUSIONS 
I t  has been demonstrated that  using a 

general model of m i s c l a s s i f i c a t i o n ,  the 
parameters in the model are not usual ly 
estimable without some assumptions on the 
process by which m isc l ass i f i ca t i on  occurs• 
As a minimum, one must e i the r  conduct a 
double sampling study to make estimates of 
appropriate a l loca t ions  for  each ce l l  in the 
m isc lass i f i ca t i on  tab le ,  or one must assume 
independence between c l a s s i f i c a t i o n  attempts 
and e i the r  double sample the of f -d iagonal  
ce l l s  or fu r ther  r e s t r i c t  the model. I t  has 
also been shown (by counter-example) that  not 
a l l  r es t r i c t i ons  of the parameter space w i l l  
serve to make the problem estimable. 

The rea l l y  outstanding feature of the 
examples in th i s  paper is that  wi thout the 
use of the EM algor i thm, one could be 
severely misled about the proport ion of cases 
that  f a l l  in a p a r t i c u l a r  category• Modeling 
of the m isc lass i f i ca t i on  process can give a 
much bet ter  appreciat ion of the qua l i t y  of 
the data being analyzed and should be 
attempted when the data are ava i lab le•  
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Table i" Parameters and Condi t iona l  Expected Values 
to be Estimated by the EM Algor i thm 

Parameter 

] )  Pl = X + + I / N  
A 

2) f = X 11] 111/X++1 
A 

3) f = X 121 I? I /X++I  
A 

4) f211 = X211/X++1 

5) } 112 = X112/X++2 

A 

6) f122 = X122/X++2 
A 

7) f212 = X212/X++2 

Condi t iona l  Expected Value 

I )  X l I I  = Z 1 1 P l f l l l / ( P l f 1 1 1  + P2f i12 ) 
A 

2) X121 = Z12Plf121/(Plf121 + P2f122 ) 
A 

3) X211 = Z21Plf211/(Plf211 + P2f212) 

4) X221 = Z22Plf221/(Plf221 + P2f222) 

where X ++I 

2 2  
= Z : ~  X 

i j i j l  

2 
and N = ~ X 

k ++k 

Table 2" Parameters and Condi t iona l  Expected Values to be Estimated hy toe Etl 
A lgo r i t hm/w i th  C l a s s i f i c a t i o n  Attempts Independent Between Sources and C lass i -  

f i c a t i o n  Parameters/Equal Across Sources But D i f f e r i n g  Between Classes 
(91k=hlk) fo r  Dichotomous Case 

Parameters Condi t iona l  Expected Values 

A 

1) ;)1 = X++IIN 
A 

2_.) gl l  = (Xl+I 
A 

3) g12-- (Xl,2 

+ x ) / 2x  +I I  ++I 

+ X+12)/2X++ 2 

1) 1111 : zllpl j 2 ? 11/(Pig11 + p2 g ~) 
A 

2) X121 = Z12t) lg11921/(plg11921 + P2U12g22 ) 

B) X211 = Z21i } ig l lg21/( i ) Ig11921 + P2g12922 ) 

A 

a.) X221 = Z22PI!]2 2 2 21/({)1921 + p2g??) 

where the plus subscr ip t  denotes suml,~ation over 
ca tegor ies  fo r  tha t  i n d i c a t o r ,  

r 
and H = £: X 

k ++k 

Table 3. ParaT,~eters and Condi t iona l  Expected Values to he Estimated hy the E,~i 
A lgor i thm wi th  C ] a s s i f i c a t i o n  /\t [empts Independent getween Sources and C lass i -  
f icat ior ' ,  Parameters Equal l.!hen C l a s s i f i c a t i o n  is to Correct  Category gut ~)if- 

f e r ing  Between Sources (gkk = s and l]Kk = t )  fo r  0ichnt:oI~.Ious Case 

Parametmrs Condi t iona l  Expecte(i Values 
A 

1) i) 1 = X++I/N 1) 
A 

2) s = (Xl+ I + X?+~)/l,l 2) X 
A 

3) t = (x+]  l + x+~2)/; , '  3) x 
A 

4) × 

111 

I? I  

211 

221 

= Z l ] r ) i s t / ( P l S t  + I ~ 2 ( l - s ) ( l - t )  ) 

= Z 1 2 P l S ( l - t ) / ( p ] S ( ! - t  ) + i )2 ( ! -S ) t )  

= -/ i) ( l - s ) * / ( p  ( ] - s ) t  + I ) s ( l  t~ i  "21 1 " ~ 1 2 - " " '  

= '-272i. ) ] ( l _ s ) ( l _ t ) / ( P ! ( ] _ s ) ( l _ t  ) .  + P2st ) 
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Table 4- Z i j  Values Used in F i r s t  Example of EM Algori thm ~Jith Res t r i c t ion"  
Independence Between C lass i f i ca t i on  Attempts 

Second Data Source 
Category 

1 2 Total 
F i rs t  Data Category 1 72~9 691 7980 

Source Category 2 1031 989 2()21) 
Total 8320 1680 10000 

Table 5: Results of EM Algori thm for  Data in Tahle 4 for  D i f fe ren t  
Star t ing  Values 

Parameters 
Number of 

Pl g11 g22 n11 h22 I te ra t ions  
Start  

. I0 . l(]gg .07~)5 .I017 .I131 .0787 7 

.30 .1869 .2516 .3152 .0764 .0492 13 

.50 .5000 .7980 .g320 .2~20 .1680 1 

.70 .8131 .9236 .9508 .7484 .6£49 11 

.()() .8911 .£R6q .9213 .9295 .,q983 6 
True .9 .88 .92 .94 .96 1 

Table 6: Results of EM Algorithm for  data in Table 4 for  
D i f fe rent  Star t ing Values with Double Sampling Values (X i j k ,  i # j )  

Subst i tuted for  Condit ional Expected Values 

Parameters 
Number of 

Pl g l l  g22 h l l  h22 I te ra t ions  
Start  
.1 .3253 .3906 .5013 .0056" .0086 26 
.3 .3253 .3906 .5013 .0056 •0086 16 
.5 •3253 .3906 .5()13 .0(]56 .()0~6 4] 
• 7 .9000 . 880(I  .9200 .940(] . q6(]() I 0 
• 9 .9000 .88()( , )  .9200 .9400 .9f-;O 0 6 

True .9000 . £HON .920[) .9400 .9600 i 
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