Erdogan Gunel, West Virginia University

ABSTRACT

Consider a random response sampling plan where a respondent answers "yes" or "no" to a sensitive question Q: "Do you belong to group A?", or to the complementary question Q^C. The problem is to estimate the proportion of the sampled population who belong to group A. The information is elicited by asking each individual to choose question Q or Q^C by using a chance mechanism where the probability of choosing the question Q is p. We consider a Bayesian approach to choosing the value of p when n individuals are to be interviewed.

1. INTRODUCTION

We consider a problem in survey sampling where individuals are asked a sensitive question. If the individuals feel that answering could be used to their disadvantage they may choose not to respond. Randomized response sampling is an attempt to overcome such a nonresponse problem. For the mathematics and application of several randomized response sampling plans see Horvitz, Greenberg and Abernathy (1976), Greenberg, Kuebler, Aber-nathy and Horvitz (1971), Campbell and Joiner (1973). The original randomized response plan is due to Warner (1965). A Bayesian approach to Warner's randomized response model is considered by Winkler and Franklin (1979). In Warner's model a respondent answers "yes" or "no" to a sensitive question or to the complement of the question. For example, let group A be the population of women who had an abortion. Let question Q be "Do you belong to group A?" then the complementary question Q^C is "Do you belong to group A^{C} ?" where A^C is the population of women who did not have an abortion. The information is elicited by asking each individual to choose question Q or Q^C by using a chance mechanism where the probability of choosing the question Q is p. This method assures the highest degree of confidentiality if p = 1/2and as $p \rightarrow 0$ or $p \rightarrow 1$ the degree of confidential-ity diminishes. The problem of interest is to estimate the proportion of the sampled population who belong to group A. We will denote this proportion by π .

In sampling surveys where randomization is not used the individuals interviewed are asked the question A and are given the opportunity to not respond if they wished to do so. It is assumed that if an individual chooses to respond then he/ she does not falsify his/her answer.

We consider a Bayesian approach to choosing the value of p in the randomized response plan. The value of p is chosen by comparing the Bayes risks of the estimators of π under the randomized and voluntary response plans. The loss functions is taken to be the quadratic loss function

 $L[\pi, t(D)] = [\pi - t(D)]^2$

where t(D) is the estimator of π based on data D. We take the prior distribution of π to be a Beta distribution and find the smallest value of p(1/2<p<1), say p₀, such that the Bayes risk of the estimator of π under the voluntary response model is greater than the Bayes risk of the estimator of π under the randomized response plan. Then, it is more advantageous to use the randomized response plan when the p value is taken to be greater than $p_0.$

2. BAYES RISK

We first consider the voluntary response model. The question Q is asked to n individuals who are chosen at random. Suppose we have n.2 nonrespondents and n.1. respondents among whom n₁₁ answered yes and n₂₁ answered no. Clearly each individual belongs to one of the four mutually exclusive and exhaustive categories: (respond, belong to group A), (do not respond, belong to group A), (respond, do not belong to group A), (do not respond, do not belong to group A), Let $\theta_{11}, \theta_{12}, \theta_{21}, \theta_{22}$ denote the probabilities of the four categories above respectively.

A mathematically tractable choice of the joint prior distribution for $\theta = (\theta_{11}, \theta_{12}, \theta_{21}, \theta_{22})$ is the three-variate Dirichlet distribution with parameters a_{11} , a_{12} , a_{21} , a_{22} .

$$f(\theta_{11}, \theta_{12}, \theta_{21}, \theta_{22}|a_{11}, a_{12}, a_{21}, a_{22}) =$$

$$\frac{ r(\Sigma a_{ij}) }{ \frac{ij}{\pi r(a_{ij})} \pi \theta_{ij}^{a_{ij}} }$$

if $\theta_{ij} > 0$, $\Sigma \theta_{ij} = 1$ and zero elsewhere (Wilks,

1962). An important consequence of taking a Dirichlet prior distribution for $\boldsymbol{\theta}$ is that

$$\pi = \theta_{11} + \theta_{12}, \ Z_1 = \theta_{11}/(\theta_{11} + \theta_{12}),$$

$$Z_2 = \theta_{21} / (\theta_{21} + \theta_{22})$$

are independently distributed and

$$\pi \sim \text{Beta}(\alpha,\beta), Z_1 \sim \text{Beta}(a_{11},a_{12}),$$

where $\alpha = a_{11} + a_{12}$, $\beta = a_{21} + a_{22}$. Moreover $\theta_1 = \theta_{11} + \theta_{21}$, $W_1 = \theta_{11}/(\theta_{11} + \theta_{21})$, $W_2 = \theta_{12}/(\theta_{12} + \theta_{22})$ are independently distributed and $\theta_1 \sim \text{Beta}(a_{11}, a_{22})$, $W_1 \sim \text{Beta}(a_{11}, a_{21})$, $W_2 \sim \text{Beta}(a_{12}, a_{22})$ where $a_1 = a_{11} + a_{21}$, $a_{.2} = a_{12} + a_{22}$. If X -Beta (a,b) where a > 0, b > 0, the probability density function of X is

$$f_{\beta}(x|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1}$$

if O<x<l and zero elsewhere.

Gunel (1985), obtained the Bayes risk $\rho_{\rm V}$ under the voluntary response sampling model

$$\rho_{v} = A[\alpha(\alpha+1) + (2\alpha+1)E(n_{1}^{*}) + E(n_{1}^{*}^{2}) \\ +E[n_{.2}(n_{.2}^{+a}, 2)]V(W_{2})] - B[\alpha^{2}+2\alpha E(n_{1}^{*}) + E(n_{1}^{*2})] \\ where$$

$$n_{1.}^{*} = n_{11} + n_{.2}(a_{12}/a_{.2})$$

and
$$A = \frac{1}{(n+\alpha+\beta)(n+\alpha+\beta+1)} \qquad B = \frac{1}{(n+\alpha+\beta)^{2}}$$

$$E(n_{1.}^{*}) = n E(\theta_{1.})E(W_{1})+n[1-E(\theta_{.1})] E(W_{2})$$

$$E[n_{.2}(n_{.2}+a_{.2})] = n(n+\alpha+\beta)[V(\theta_{.1})+[1-E(\theta_{.1})]^{2}]$$

$$E(n_{1.}^{*2}) = C E (W_{1})E(\theta_{.1}) + D E^{2}(W_{1})E^{2}(\theta_{.1})$$

$$+ 2D E(W_{1}) E(\theta_{.1})[1-E(\theta_{.1})] E(W_{2})$$

$$+ E^{2}(W_{2})\{n^{2}+ C E (W_{1}) E(\theta_{.1}) + D E^{2}(W_{1}) E^{2}(\theta_{.1})$$

$$+ C [1-E(W_{1})] E(\theta_{.1}) + D [1-E(W_{1})]^{2} E^{2}(\theta_{.1})$$

$$- 2n^{2} E(\theta_{.1}) + 2D E(W_{1})E(\theta_{.1}) [1-E(W_{1})][1-E(\theta_{.1})]\}$$

in which $C = \frac{n(n+\alpha+\beta)}{\alpha+\beta+1} \qquad D = \frac{n(n-1)(\alpha+\beta)}{\alpha+\beta+1}$
$$E(\theta_{1.}) = a_{.1}/(\alpha+\beta), V(\theta_{.1}) = \frac{a_{.1}a_{.2}}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$$

$$E(W_{1}) = a_{11}/a_{.1}$$

$$E(W_{2}) = a_{12}/a_{.2}, V(W_{2}) = \frac{a_{12}a_{22}}{a_{.2}^{2}(a_{.2}+1)}$$

In the randomized response model, each individual answers the question Q or Q^C where the probability of choosing the question Q is p. Without loss of generality it can be assumed that p > 1/2. Suppose we have n individuals resulting in r "yes" answers. Gunel (1985), obtained the Bayes risk ρ_R by taking a Beta (α,β) prior distribution for π .

$$\rho_{R} = A[\alpha(\alpha+1) + (2\alpha+1) E(n_{1.}) + E(n_{1.}^{2})]$$

-B {\alpha^{2} + 2\alpha E(n_{1.}) + E_{r|n} [E^{2}(n_{1.}|n,r,p)]}

where

$$E(n_{1}.) n \alpha/(\alpha + \beta)$$

$$E(n_{1}^{2}.) = [n(n+\alpha+\beta)\alpha\beta/(\alpha+\beta)^{2}(\alpha+\beta+1)]+n^{2}\alpha^{2}/(\alpha+\beta)^{2}$$

$$E_{r|n}[E_{n}^{2}(n_{1}.|r,n,p) = \frac{\sum_{n=0}^{n} f_{\beta b}(n_{1}.|\alpha,\beta,n)f(r|n,n_{1}.,p)]^{2}}{n_{1}.=0} f_{\beta b}(n_{1}.|\alpha,\beta,n)f(r|n,n_{1}.,p)$$

$$f(r|n,n_{1}.,p) = \frac{\min(r,n_{1}.)}{\sum_{j=max}(0,r-n+n_{1}.)} f_{j}(r-j)$$

$$p^{n-n}].^{-r+2j} (1-p)^{n}].^{+r-2j}$$

and

$$f_{\beta b}(n_{1}, |\alpha, \beta, n) = {n \choose n_{1}} \frac{B(n_{1}, +\alpha, n-n_{1}, +\beta)}{B(\alpha, \beta)}$$

in which $B(a,b) = \Gamma(a)\Gamma(b)/\Gamma(a+b)$.

CHOOSING THE VALUE OF P

Since under both models $\pi \sim \text{Beta}(\alpha,\beta)$ a priori, we can compare the Bayes risks (with respect to the beta prior) of the Bayes estimators of π under the voluntary and randomized response plans. We may examine the behavior of $R = \rho_V/\rho_R$ as a function of p under various prior opinions. It can be shown that R is an increasing function of p and for a given value of p, R is a decreasing function of the prior expectation of θ_1 , the probability of responding under the voluntary response model.

Let us define p_0 as follows: R>1 if $p>p_0$. Then p_0 is the smallest value of p for which the randomized response plan is superior to the voluntary response plan. To find p_0 , one has to plot R versus p. As an illustration consider the case where $a_{11} = 2$, $a_{12} = 8$, $a_{21} = 4$, $a_{22} = 16$, then $\alpha = 10$, $\beta = 20$ and we have these following prior expectations and variances: $E(\theta_1)=.2$, $E(\pi) = E(W_1) = E(W_2) = .333$, $V(\theta_1) = .0051$, $V(\pi) = .0071$, $V(W_1) = .0317$, $V(W_2) = .0088$. We plot R versus p for n = 50 and n = 20. From the graph we see that when n = 50 we have $p_0 = .66$ and for n = 20 we have $p_0 = .7$.

REFERENCES

Campbell C., Joiner B., (1973). "How to Get the Answer Without Being Sure You've Asked the Ques-tion." The American Statistician, 27, 229-231. Greenberg, B. G., Kuebler, R. T., Abernathy, J. R., Horvitz, D. G., (1971). "Application of Randomized Response Technique in Obtaining Quantitative Data." Journal of the American Statistical Association, 66, 243-250. Gunel, E., (1985). "A Bayesian Comparison of Randomized and Voluntary Response Sampling Models." To appear in Communication in Statistics, Part A: Theory and Methods. Horvitz, D. G., Greenberg, B. G., Abernathy, J. R., (1976). "Randomized Response. A Data Gathering Device for Sensitive Questions." International Statistical Review, 44, 181-196. Warner, S. L., (1965). "Randomized Response: A Survey Technique for Eliminating Evasive Answer Bias." Journal of the American Statistical Association, 60, 63-69. Wilks, S. S., (1962). Mathematical Statistics. J. Wiley. Winkler, R. and Franklin, A., (1979). "Warner's Randomized Response Model. A Bayesian Approach." Journal of the American Statistical Association, 74, 207-214.