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I. INTRODUCTION 

In recent decades, regression analysis 
for survey data has received a great deal 
of attention. Two common problems often 
considered in the literature are those of 
estimating domain means and of deriving 
regression equations for survey data. In 
investigating limiting properties of the 
regression estimator of a finite popula- 
tion mean, Scott and Wu (1981) embedded 
the finite population in a sequence of 
fixed numbers possessing some well de- 
fined properties following Hajek (1960). 
Hidiroglou (1974) developed central limit 
theorem for regression coefficients esti- 
mated for a finite population. Fuller 
(1975) established large sample results 
for regression coefficients, assuming 
that the finite population is generated 
from an infinite superpopulation. 

In some types of surveys, some func- 
tions of auxiliary information are often 
used as the best possible auxiliary vari- 
ables to improve the estimation. For 
instance, in estimating the true propor- 
tion of individuals possessing an attri- 
bute of interest, one often utilizes the 
conditional probability of 'Y=I' given X, 
where 'Y=I' indicates that an individual 
has the attribute and X is an observable 
vector of auxiliary variables. A natural 
reason is that the expected value condi- 
tional on X of a zero-one variable Y is 
known as the probability of the event 'Y 
=I' conditional on X. In agricultural 
surveys, Sigman et al (1978) described 
the use of the U.S. Department of Agri- 
culture pixel classifier as an auxiliary 
variable in regression estimation of crop 
acres. The pixel classifier is a set of 
classification functions classifying 
individual spectral readings for each 
picture element to a probable crop type. 
Hung and Fuller (1984) investigated the 
use of the estimated probability that a 
point with a satellite value X is from 
crop j in improving the crop acreage 
estimation. 

This study investigates the use of 
functions of a vector X as auxiliary 
variables in the regression analysis for 
survey data. Functions of the vector X 
are estimated by estimating the unknown 
transformation parameters. As in Hung 
and Fuller (1984), the parameters of the 
transformation might be those (e.g. , 
location or shape parameters) of the 
distribution of X for the categories 
indexed by Y. Hung (1985) studied the 
cases where transformation parameters are 
independent of Y and hence are estimated 
based only upon ~. A regression estimator 
of the finite population mean of a survey 
variable Y and the estimation of regress- 
ion equations are considered in Section 2 
and 3, respectively. Large sample pro- 

perties of estimators are developed under 
the framework of Fuller (1975). The 
effects of estimating the transformed 
variables on the estimators are investi- 
gated. The results are extended in Sect- 
ion 4 to cover a broad class of transfor- 
mation functions. Discussions are pro- 
vided in Section 5. 

In subsequent sections, the finite po- 
pulation is taken to be a set of N indi- 
viduals indexed by the subscript t. 
Associated with the t-th unit is a vector 
(Yt' X~),~ where Y is a primary survey 
variate and X is a pxl vector of auxili- 
ary information. The values of X for 
individual population units are known at 
the design stage. The qxl vectors used 
as the auxiliary are denoted by g(Xt;d ), 
t = I,..., N, where the rxl parameter 
vector d is an interior point of e, a 
compact ~ubset of r-dimensional Euclidean 
space R r p+r Rq ; g: R + . Let Z~ -- [I, 

g'(X t; do ) ]' for all t. At the ~stima- 
tion stage, observations are available 
for a simple random nonreplacement sample 
of n units. For convenience, the sample 
units are assumed to be labeled from I to 
n. The finite population is assumed to 
be a random sample of an infinite super- 
population and E{ • } is used to denote 
expectation with respect to the infinite 
population. 

2. ESTIMATION OF FINITE POPULATION MEANS 

Consider the regression estimation of 
the finite population mean Y . The 
unknown vector d is estimateNd by an 
estimator d which°is a function of (Y , 
X~), t = nl,..., n. The transformtd 

auxiliary vectors Z t are obtained by 
in Z for the substituting d for d o t 

whole finite pnpulation. The regression 
estimator of ~N constructed by use of 
g(X; d ) as the auxiliary is 

n 

^ - B A 
YN = Y + '(Z - Z ), (2.1) 

n n N n 

where 

Z 

is the sample mean of Y, and 
n 

K ^ 

K = K-I Z Zt K = n, N, 
t=1 

n ^ ^ 

: n-1  ZtZ , 
n 

t : l  

- I  n ^ 

n : n ~ ZtY t , 
t=1 

^ 

B = ~ - 1 ~  • 
n n n 

In deriving the large sample distri- 

bution of the estimator YN' let {~n: n = 
1,2,...} be a sequence of finite popu- 
lations, where ~n is a random sample of 
size N , N > N selected from an 
infini~e po~ulatio~ -I' " Let a simple random 
nonreplacement sample of size n be taken 

4 2 1  



from the n-th finite population, n = 
1,2, .... We assume: 

n 
-I 

(i) d - d = n Z F(Xt , Yt; d ) n o o 
t=1 

-I/2 
+ o (n ) , for some function F, 

P 
where E{F(X, Y; d )} : O. 

o 
(ii.a) g(x; d) is continuous and has 
continuous partial derivatives of order 
up to three with respect to d on e. Let 
D , i-I,..- .,q, be the column random vec- 
tor of partial derivatives of order up to 
three for the i-th element g (x; d) of 
g(x; d) with respect to d, evaluated at 
(X; d ). Let D = (DI',... , D~)'. 
(iii.~) Let the infinite population be 
such that the vector (Y, U' , D', F') has 
finite fourth moments, where U - g(X;d ). 
All the covariance matrices in the multi- 
variate population are positive definite. 

The following theorem investigates the 
effect of estimating Z on the regression 

^ 

estimator of Y The roof is similar to 
the proof of T~eorem 3.1 in Hung (1985). 
For simplicity, we drop the subscript n 
from N in the sequel. 
Theore~ 2.1. Let the assumptions given 
above hold. Then 

YN- YN = YN- YN + o (n-I/2), 
P 

where 
K 

~'K : K-I Z Zt 
t:1 

n 
-I 

B = ( Z Z Z~) 
n t 

t=1 

- Y N  = ~ + B'(~. 
n n N 

K : n, N, 

n 

Z ZtY t 
t:1 

- ~ ). 
n 

(2.2) 

-I) : f, Moreover, as n, N @oe, and lim(nN 

where 0 < f < I, n÷oo 

~t I/2 
n ( N N -> N[0, (1-f)V], 

where 

V : E{[Y t - B'Zt ]2} - [E{Y t - B'Zt}]2 

-I 
B = [E(ZIZ ~) ] E(ZIYI). 

A consistent estimator of the variance 
A 

of YN can be constructed by estimating V 
by 
^ ^ 

V = L - 1  n Z rLY t _ ~ -- B'(Z _ ~ ~j 2 
n n t n ' 

t=1 
where L = n - q -I. 

When q = I and g(x; d ) > 0, it can be 
easily shown that the r°sults of Theorem 
2.1 are also applied to the usual ratio 
estimator of ~N. In the prediction ap- 
proach, one often considers the model 

Yt - ='v + e t : I, N 
- ~ ~t t "''' ' 

where Z t and B are defined as above; e 
are random errors satisfying 

E(e t) = O, 

E(e te s) : o 2v t(do ) 
= 0 

t = s, 
t % s; 

{e~, en2,... , e N} and {X X 2 X~}, are 
in epe dent; v t(d) , t I' ' "" "' = I, ..., are 
known positive functions indexed by d. 
When d is known, the best model unbiased 

o 
linear predictor of Y , conditional on 
ZI, Z 2,..., ZN, is give N by 

YG : N-InYn + (I - N-In)BGLsZN^ -n, 

where 
N 

: (N- n) -I ~ Z 

N-n t=n+1 t' 

^ n 

BGLS = ( ~ [vt(do)]-Iztz~)-1 
t=1 

n 

x E [vt(do)]-IztYt . 
t:1 

When d is unknown, it seems natural to 
consider the predictor Y by substituting 
d for d O . Surprisinglg, the results of 
T~eorem 2.1 in general do not apply to 
the predictor YG; that is, the effect of 
estimating d on the predictor is at 
least of orde~ I/vr5 under the above cond- 
itions. If vt~d ) is an element of ~t' 
one can prove h~t ~G = ~ + ~" (Z - 
- GLS 
Z ). Hence there is no limiting cost due 
t~ estimating Zt; that is, YG G and Y have 
the same limiting variance. If the orig- 
inal model does not contain vt(d ) in Zt, 

o 
YG and YG will not have the same limiting 
variance except for a special class of 
transformation functions. 

3. ESTIMATION OF REGRESSION COEFFICIENTS 

Consider the estimation of the regres- 
sion equation for a sample selected from 
the finite population. The finite popu- 
lation regression coefficient is defined 
to be 

N N 
-I 

B N : ( E ZtZ ~) E ZtYt. 
t:1 t:1 

In case d is completely known, an effec- 
tive estimator of BN. is the well-known 
least squares estimator B defined in 
(2.2). When auxiliary v~riables are 
estimated, one estimator worthy of consi- 
deration is B defined in (2.1). The fol- 

n 
lowing theorem demonstrates the asympto- 

A 

tic distribution of B and the effects of 
estimating Z t on th~ estimator of B 

N[ 
The proof is similar to the proof 5f 
Theorem 4.1 in Hung (1985). 
Theorem 3.1. Let the assumptions of 
Theorem 2.1 hold. 

I/2 ^ I/2 
n (Bn - BN ) : n (Bn - BN ) + Op(1), 

Moreover, as n, N ÷ eo and lim(nN "i) : f, 

where 0 < f < I, n~6o 

~ / 2  " ,Z., 
n (B - B ) .... > N(0, v-lv v-l), 

n N zz o zz 
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where ~it is a vector of the first parti- 
al derlvatives of g(X; d) with respect to 
the i-th component d. of d, evaluated at 
(Xt, d ), t:1, , N 1 o ... , and e I = YI - Z B, 

2 
Vo = (I - f) E[ZIZ~e I] - 2W I + W2, 

V = E{Z Z zz I ~1' 
r 

7, G13(j)[V B + V' B- V WI = j = I zQj j j • zQ Q Y 

r r 

W2 : Z 7. G33(ij) [V 0 B + V' 
• zQ i=I j=1 z-1 i 

B - 

V ][V B + V' B - V ]' 
. zQ Q Y ' Qi Y zQj j j 

G13(j ) = the j-th column of 

E{ZIF'(XI' YI; d )e } o I ' 

G33(ij) = the ij-th element of 

E{F(XI' YI; do)F'(X1, YI; 

V = E{Z Q' } 
zQ. I ii ' 

1 

VQ.y = E{QiIYI} , i,j = 1,2,..., r. 
1 

,, 

d O ) }, 

In regard to the estimation of the 
infinite population coefficient B, it 
follows from Theorem 3.1 that 

112 ^ _~ - n (B - B) -. N[0, V V*V I], 
n zz zz 

where V* = V + fE{ZZ'(Y - B'Z)2}. The 
large sample°variance of ~ can be consi- 
stently estimated by estimating the com- 
ponents V , W , and W 2 in V o. 

It i~ ~rthlnoting that one can employ 
d, and B~ as initial estimates to obtain, 
if exists, the Gauss-Newton iterative 
estimator of B, when additional informa- 
tion on the superpopulation leads to the 
model 

Yt = B'Zt + et t = I,...,N, (3.1) 

where et, t = I,..., N, are i.i.d, with 
mean zero and constant variance; e t and 
X t are independent. The asymptotic vari- 
ance of the Gauss-Newton iterative esti- 
mator, BG. , does not depend upon B. 
Hence, as ~he true value B falls in a 

A 
certain range, the estimator B can be at 
least as good as the Gauss-NeWton estim- 
ator under the model (3.1) because of the 
dependence of var(~ ) on B; that is, 
var(B~N) - var(B n) i~ positive semidefi- 
nite for some B. 

When the null hypothesis H : B = 0 is 
tested in the model (3.1~, the°probabili - 
ty of Type I error for B will be nearly 
equal to that for Bn i~ large samples. 
However, in principal component regress- 
ion models where d is a location or a 

o 
scale parameter of the distribution of X 
and hence is estimated based only on X, 
the construction of sample principal 

components will possibly largely increase 
the variance of B These results are 

n 4 shown in Corollary .I of Hung (1985) . 

4. IRREGULAR TRANSFORMATION FUNCTIONS 

We extend the study to the case where 
the transformation function g(x; d) is 
not necessarily continuous. The estima- 
tor ~ in (2.1) possesses an interesting 
charanteristic in the sense that it invo- 
lves substituting estimates for nuisance 
parameters. Sukhatme (1958) investigated 
the asymptotic normality of a U-statistic 
with estimated nuisance parameters. 
Randles (1982) extended the results of 
Sukhatme to a broad class of statistics 
with estimated parameters. 

To cover a much broader class of trans- 
formation functions, we specify the foll- 
owing assumptions: 
(ii.b) There is a constant Mo > 0 and a 
neighborhood of do , denote it by M(do) , 
such that if de M(d ) and a sphere 
S(d; h) centered at ° d with radius h such 
that S(d; h) ~s a subset of M(d o ) , then 

E{suPeeS(d;h)[max1.<j.<rtgj(X1; e) - 

gj(Xl; d)I]} 2 _< Moh2 , (A) 

limh@0E{SUPeeS(d;h) [max1cj~<rlgj(X 1;e) - 

4 
g(X 1;d) ~ ]} = 0. (B) 

(iii.b) Let the infinite population be 
such that the vector (Y, U', F') has 
finite fourth moments, where U = g(X; 
d ). All the covariance matrices in the 
o 

multivariate population are positive 
definite. For any j, E[g (X; d) ] has a 
finite supremum over ~ . The functions, 
E[g(X; d)Y] and E[g(X; d)g'(X; d)], have 
differentials at d - d . 

o 
Note that any continuous function g(x; 

d) described in Section 2 apparently sa- 
tisfies the above conditions. If Y and 
g(X; d) are uniformly bounded, then Cond- 
itions (A) and (B) can be replaced by 

E{suPeeS(d;h)[max1.<j.<rlgj(X1; e) - 

h gj(X1; d) I]} < M ° . 

Certain classification functions such as 
those constructed in Hung and Fuller 
(1984) satisfy these conditions. 
Theorem 4.1. Let the sequence of samples 
and finite populations stated in Section 
2 satisfy the conditions (i) , (ii.b) , and 
(iii.b) . Then, the results of Theorem 
3.1 follow, provided that in W I and W 2 of 
var(~ ) the term 

n 
V B + V' B - V 
zQ . zQ . Q .Y 

J 3 3 
is replaced by the qxl vector of the 
first derivatives of E{g(X; d)[Y - g'(X; 
d)B]} with respect to d evaluated at 
do, j : I,..., r. J' 
Proof. Let ~ > 0. Condition (i) asserts 
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that we can find a bounded sphere S cent- 
ered at the origin such that 

p(nl/2(d - d ) ~ S) < q/R, 
n o 

for every n. Let -I/2 

Zti(s) = gi(Xt; do + n s), 

T (s) = E[Z (s)Z (s) ], 
ij Ii lj 

Zti = Zti(O), 

T.. = T..(O), z j  z j  
1'I 

-I/2 (s)Z (s) - T (s) Rnij(s) : n E [Zti tj ij 
t=1 

- ZtiZtj + T.zj "]" 

for i,j = 1,2, ...,r; t = 1,2, ...,N; and 

s e R r. Let h : q/ ~/16M M[, where M 2 : 
o 

sup [E~g (X ; d) f 2] max14j~<r dee j I " 

Let S = {t: ah<Itl<(a+1)h}, a=0,1,... 
a,h - - 
* = sup IZ (s) - Z (ah) Let Zti,ah SeSa,h ti ti ' 

for any t, i. Ignoring the term of order 
-I 

n , we obtain from condition (ii.b) that 

for any a, 

E[suPse S ~ Zti(s)Zt j (s)-Zti(ah)Ztj (ah)O] 
a,h 

_< E[Z~i,ahZ~j,a h] + E[IZti(ah) IZ~j,a h] 

+ E[ IZtj(ah) }Z~i,a h] 

I/2 I/2 -I/2 
< 2M M 2 hn . 
- o 

Therefore, for any s e S 
a,h' 

IR (s) - R . .(ah) I 
nij nzj 

n 

< n -I/2 E{sup IZ (s)Z (s) - 
- seS ti tj 

t=1 a,h 
Z (ah)Z (ah) I - 
ti tj 

E[sup IZ (s)Z (s) - 
seS ti tj 

a,h 

Zti(ah)Ztj(ah) I]} + q/2. 

Under Conditions (ii.b) and (iii.b), 
n 

-I/2 
E[n Z {sup IZ (s)Z (s) - 

t=1 sES ti tj a,h 
Z (ah)Z (ah) I - 
ti tj 

E[ SUPse S IZti(s)Ztj(s) - 
a,h 

Z (ah)Z (ah) I]}]2 
ti tj 

z . 2  2 2 2 
_< E[ ~i,ahZ~j,ah ] + E[Zti(ah)Z~j,a h] + 

+ RE[ tZtj(ah)IZ~ 2i,ahz~j,ah] 

+ RE[ IZti(ah) I ~Ztj(ah) IZ~i,ahZ~j,a h] 

+ E[Z 2 (ah)Z~ 2 
tj i , a h  ] 

+ RE[ IZti(ah)IZ~ 2 j,ahZ~i,ah ] 

= o ( 1 ) .  

Thus, sup IR (s)-R (ah) I = o (I) 
ssS nij nij p 

a,h 

and {P (ah5 I = o (I), for any a. 
nij p 

It follows that SUPseSa,h IRnij(s) I = 
o (15. Hence, 
P 

-I n ^ Z'B) 
n E Zt(Y t - 

~ t 

t=1 
n n ^ 

= n-1 E Z t(Yt - Z~B) + n -I E (Z t - Zt)y t 
t=1 t=1 

- 1  n Z~ - Z Z[)B 
- n E (Zt t 

t=1 
n ^ ^ 

-I 
= n E Zt(Y t - Z~B) - E[ZI(Y I - Z~B)] 

t=1 
- 1 / 2  

+ Op(n ) .  

F o l l o w i n g  t h e  s a m e  a r g u m e n t s  a s  i n  t h e  
p r o o f  o f  T h e o r e m  3 . 1 ,  we c a n  c o m p l e t e  t h e  
proof. O 
Theorem_4=2. Let the sequence of samples 
and finite populations stated in Section 
2 satisfy the assupmtions (i), (ii.b), 
and (iii.b). Then the results of Theorem 
2.1 follow. 
Proof. Following the same arguments as 
in the proof of Theorem 4.1, we can show 
that 

_ ~ _ 
Z N - Z N - Z + Z = o (I), n n p 

and 

- B = o (11. 
n p 

5. S_UMMARY AND DISCUSSIONS 

We provided some discussions on the 
results presented in previous sections. 

In estimating the population ~ean YN' 
the estimation of the transformed 
variable Z will affect the regression 
estimator by a term of order in probabi- 
lity smaller than I/~'~. Hence, the large 
sample variance will not be increased 
when the unknown parameters in the trans- 
formation are estimated with the error of 
order no larger than I/ ~-6. However, 
under a general multiple regression mo- 
del, the effect of estimating Z on the 
best model unbiased linear predictor of 
w 

YN may be at least of order I/J'6. If the 
model contains the variance of the random 
error as a part of independent variables, 
then the best model unbiased linear 
predictor will be affected only by a 
negligible term as indicated in Theorem 
2.1. 

In estimating the finite population 
regression coefficient B , the e~timation 
of Z will affect the estimator ~y a term 
of order I/~. The order of the effect 
is the same as that of the error of B . 
The first component in the asymptotic 
variance of ~ is the variance of B , the 
usual sample ~egression coefficient n. The 
inflation component has the same order as 
the variance of B does, and hence in 

n 
general the effects of estimating d can 

0 
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not be neglected. In cases where the 
finite population data can be character- 
ized by the model (3.1), the Gauss-Newton 
estimator of B may be constructed with 
the large sample variance independent of 
the true value B. Noneless, B may be 
more efficient than the Gausn-Newton 
estimator, depending on the true value B. 
When prior knowledge about the range of B 
is available, it is advised to take B 
into account, n 
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