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Choice of a sampling unit -- its size and its 

shape -- is a basic sample design problem [see 

Cochran, 1972, p. 233 and Hansen, Hurwitz and 

Madow, 1953, section 6.28], just as is choice of 
plot size and shape in experimental design. The 

setting for this choice in the present instance 

is systematic sampling from a one-dimensional 

frame. We propose to choose how many adjacent 

elements to observe at each of the evenly spaced 
sampled locations. Thus the choice here involves 

size alone as there is only one shape -- a row. 

It is supposed that some data are available to 

allow us to fit a theoretical one-dimensional 

stochastic process, a time series, to serve as the 

superpopulation process. A simple linear cost 

function will also be taken to be reasonable and 

for which we have some idea of the cost coeffi- 

cients. From the correlogram of the process on 

the elements we show how to transform it to the 

correlogram for the sampling unit process. By 

fixing total variable cost we can calculate the 

systematic sample spacings for different sizes of 
sampling unit. We show, in passing, how to select 

a systematic sample when sample size does not ex- 

actly divide population size. We then compute 

process average sampling variances, using the 
expression for this variance given by Cochran 

(1946), for various sizes of sampling unit. The 

recommended size becomes that which makes this 

variance smallest. Finally, we show how to esti- 

mate process variance. 
Although our initial work on this problem dealt 

with sampling the fuel stream of an electric power 
generating plant (Proctor, 1981) and this explains 
our use of "increment" in the title, the example 

we will be using below is the seedling counts data 

in Cochran's sampling textbook (Cochran, 1977, 

p. 230). These are the numbers of tree seedlings 

in each one-foot (about 0.3 m.) of row in a 200 ft. 

long bed. They are easily accessible data and 
this may encourage others to compare our approach 

to theirs. 

Frame elements are the one-foot lengths and a 

sampling unit (SU) will be defined as M adjacent 

such elements. The case M=I has N=200; for M=2, 

N becomes i00; for M=3, we will take population 

size to be 67 although we set N=66.66 ... in the 
formulas, and so forth. The cost function is 

given as: 

C T = n(C 1 + C2M) , (i) 

where C T is total available resource, for example, 

30 minutes, C I is a per-location cost coefficient 
and C is a per-element cost, while n is the num- 

ber o~ sampled locations, each at N/n SU's apart. 

Our formulas will work even when k=N/n is not 

integer. We will simply suppose the results to be 

close to what more exactly would be found using 

some gaps of IN/n] and others of IN/n] + i. The 

square brackets signify "largest integer in." As 

a somewhat reasonable cost coefficient we will 

take C I = i minute and C 2 = 2 minutes. As a some- 
what unreasonable, but interesting, case we will 

take C I = 2.5 and C_ = 0.5 and also we will take 

the very unreasonable case of C I = 2.8 and C 2 = 0.2. 
As stochastic process we use a sum of first 

order Markov processes which has a mixture-of- 

exponentials correlogram. Denote the correlation 

between two elements d units apart as p(d). For 

this process: 

J 
p ( d )  : S ~ p , ( 2 7  

J=l J J 

with ZJ~ = i. This correlogram shape has been 
J 

suggested by A. C. Das (1956). From experience we 

have settled on J = 2 components. To fit this model 

one first computes the serial correlations r d for 

d = 1(1)10(5)100 and then finds values for HI, and 

thereby ~2 = i - ~I' for p I and for 02 that produce 

a fitted p(d) that most closely, in generalized 
least squares, matches the r..a The serial correla- 

tions were found to be: .503~ .451, .381, .305, .326, 

.315, .270, .274, .241, .295, .214, .281, .209, .135, 

.091, .188, .037, .117, -.002, .023, .025, .200, .146, 

.135, -.024, -.127, -.085, -.129, -.058, .129, -.017, 

and .104. 

As variance-covariance matrix for the empirical 

r d we use a (~, 1-7) mixture of the two variance- 

covariance matrices, one based on Pl and the other 
on Pp, for first-order processes as gzven by Bartlett 

(194B). This formula is 

- d 2k 2 2 ) - i+ d 
n iCov(rk, rk+ d) = 0 (1-20 )(i+0 )(i-0 dp 

2k+d 
- (2k + d)p , (3) 

where n is sample size in the pilot survey. The 

pooled covariances are those in the matrix: 

= ~ + (1-~)~ (4) 
1 2 

where the entries in ~i are based on Pl and those 

in ~ on O • 
2 2 

We used star~ing^ i) valueslO based(1)on r I as 

^(i) = rl and 02 1 01 = r with ~ = .5. The 

(u+l)st values are obtained by settings: 

8 (u+l) = 8 (u) + W F'z-l(r - 7 ) (5) 
U U U U 

where the 3 by I vectors 8 contain the three param- 

eters. F has derivatives of (2) with respect to 

the parameters; W = (F'Z-IF)-I; r contains the 

sample serial correlations, and ~ has the fitted 
values. The subscript u refers t~ the uth itera- 

tion values in 8 (u). For the seedling count data 

found ~ ~ .48, Pl = .9297 and p? = .0990. we 

Actually, we fitted'to % = -log (~) and 
1 i 

X~ = -log (pz). Also of interest are the alterna- 
tzve quantitles YI = i/X] and yp = i/Xp, which may 
be called "terms"'in temporal n~menclaEure. That 

is, ~i = 14 feet and Y2 = 0.4 foot (or 5 inches) 
which distances represents the separation required 

to bring correlation to e -I = .37. The component 

with y = 14 feet is the longer term component and 

Y2 = 0~4 foot is the shorter term. 
The shorter term component may, depending on the 

applications, reflect, to some extent, measurement 

error. That is, a measurement error term may have 

been added to each observation as an uncorrelated 

sequence of effects or only slightly correlated 

ones. However, natural processes also exhibit short 
term correlations. In the present case of counts 

of numbers of seedlings the short term correlations 

are more likely natural than arising from the mea- 

surement (counting) operation. If we had judged 
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otherwise then we would need to divide the observed 

correlations by measurement reliability to correct 

them for attenuation before fitting. 

To transform a correlogram fitted to the element 

process to one for the sampling unit (SU) process, 

with M elements per SU, requires a bit of tedious 

but simple algebra. 

It turns out that the resulting correlogram 

becomes : 

PM(S) = Y.~*(j p )M s , 

where 

I-M -2 ~,. = ~ (pM+l_ 2p +p. ) (I - p ) / 
] J ] J J J 

J 

require o z to be estimated. If we treat the N = 200 

values as the finite population Y-values so that 

YI = 8, Y2 = 6, "''' Y200 = 3 (see Cochran, 1977, 

p. 230), then S 2 = Z(Y.- Y)2/(N-I) = 23,601/199 = 119.6. 

Because of the correl~tion structure ~(S 2) = o2(i-~) 

where 6 is the average correlation over all N(N-I)/2 

pairs of Y-values in the finite population. 

In fact: 

N 
5 = 2 Z (N-u)oCu)/[N(N-I)] 

u=l 

N+I 2 N = 2Z ~ [(N-I)o - NO 2+p ]/[(l-p ) (N-I)] 
J J J J J 

^ 

- .058 . 

[,z ~e(M- Mp~- + 2p~ +1) (I p l )  2] ~=I ~ 2Pl - . (6) The numerical value is obtained by putting our est- 

mates in for ~ , ~ = i~ ~ Pl and P2" Thus we 
Thus the weights are rather messy features to adjust, find ~2 = I19.~/(i~.059 =i127. I . 

Having a correlogram appropriate to the SU pro- From the first entry in the table, namely .061, 

tess one next applies Cochran's (1946) formula for the variance of the one-in-twenty systematic sample 

the variance of a systematic sample from a first would be expected to average, over all finite pop- 

order process. We require to apply the modified ulations generated by the superpopulation process: 

weights to the two versions of the basic variance E V(~s ) = 127.1 x .061 = 7.75 . 
expression. That is, = y 

-2 = Z~* (p) 
o VSy S j VSy S j , 

where 

2k+k -2 
VSYS(O) = (k-l)/nk+2[(n-l)0 k- no 2k+0 ]n X 

k -2 N+I 2 
(i - P ) - 2[(N-I)o - NO 2+p ]N- X 

-2 
(i -P) , (7) 

and o 2 is process variance. 

The values of Vsy S are given in the table for 

the two cost functlons. Under the reasonable cost 

coefficients of C I = i and C 2 = 2 the design with 

M = 1 is best, but if we set C I = 2.5 and C 2 = .5 
then M = 2 is better than either M = i or M = 3. For 

the very unreasonable case where C I = 2.8 and 

C 2 = .2 the optimum SU size is M=6 but the "opti- 
mum is very flat." On the other hand the low per 
element cost permits one to reduce variance from 

.061 when M = i to .045 when M = 6. 

The variance formula is perfectly servicable, 
as we mentioned earlier, even wehn the cost func- 

tion calls for k and n values that are not integers. 

Realizing the design may, however, require some 

slight struggle. Let us illustrate how to imple- 

ment the design with M = 2 and cost function 

30 = n(2.5 + .5(2)) which seems to imply n = 8.57. 

We round to n = 9 and draw a systematic sample of 

size 9 from the reconstituted frame having N = i00 

sampling units. To do this we select a random 

start number in the range i to i00 and add the gap, 

100/9 = Ii.ii, successively nine times to the start 

number, subtracting I00 when needed. This should, 

barring arithmetic error, return us exactly to the 

start number. Finally, we round the resulting se- 

quence to produce the selection numbers. 

The results thus far on optimal size of sampling 

unit are unaffected by the size of the process 

variance o 2 and thus we have not bothered to esti- 

mate the value of o 2 . In applications one might 

like to know whether a suggested design would at- 

tain a sufficiently small variance and thus would 

This should be compared with the exact variance of 

the one-in-twenty systematic sample for that parti- 

cular population, namely 8.19. 
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Table i. Systematic Sample Variance for Designs 

with the Same Total Cost~ / but Varying Increment 

Size and for Differing Cost Coefficients. 

Increment or C I = I C 1 = 2.5 

Cluster Size, M C 2 = 2 C 2 = 5 
CI= 2.8 

C2= 2 

1 .061 .061 .061 

2 .097 .059 .052 

3 .143 .062 .048 

4 .195 .066 .046 

5 .252 .073 .045 

6 .310 .080 .045~/ 
7 .371 .088 .045 

8 .432 .097 .045 

9 .493 .106 .046 

i0 .555 .116 .047 

a/ Total cost is C = 30. 
T 

b/ Smallest variance occurs at M = 6 
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