Prediction Theory Approach to Multistage Sampling when Cluster Sizes Are Unknown
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A model for two-stage cluster sampling when sample cluster
sizes are unknown is used to derive an optimal (model-based) es-
timator for the population total and to determine robust sam-
pling strategies. In an empirical study using 1970 and 1980
census data for Los Angeles and surrounding counties, comparis-
ons are made between the model based estimator and conven-
tional estimators. The results favor the new estimator over those
derived from randomization theory. In addition, the empirical
study shows that the robust sampling strategies suggested by
the theory can reduce biases, improve efficiency, and decrease
the frequencies of large errors.

1. Introduction

In previous studies the model-based approach has proved to
be a valuable tool for studying finite population sampling. The
theoretical results of Royall (1976), and the theoretical and em-
pirical results of Royall and Cumberland (1981a, 1981b, 1982)
have brought new understanding of conventional estimators and
introduced new, bias robust variance estimators. This paper uses
prediction theory to develop criteria for selecting good sampling
strategies (sampling plans and estimators) for two-stage sam-
pling when the cluster size is unknown. The traditional ap-
proach to this problem, Randomization Theory, assumes that
the population variables are fixed constants and that the proba-
bility framework is determined by the sampling plan, statistical
properties such as bias and MSE are defined in terms of averages
over all possible samples. This averaging masks the importance
of the sample actually observed in determining bias and MSE.
Royall and Cumberland(1981a, 1981b, 1982) show that such
masking can be dangerous when making inferences since bias
and variance as well as variance estimators can depend on sam-
ple characteristics. The prediction approach assumes that the
population values are realizations of random variables and the
probability framework is described by the joint distributions of
the variables in the superpopulation model. Statistical quantities
are defined with respect to the model and conditioned on the
observed sample. The prediction approach allows us to study
bias, variance, and variance estimators as functions of charac-
teristics of the observed sample and thus to determine those
samples that produce good estimates. Prediction theory also per-
mits us to study estimators under conditions of model failure
and to determine those estimators and sampling plans that are
robust to certain types of model failure.

2. The Two-Stage Design with Unknown Cluster Sizes
In the two-stage sampling framework the population is di-
vided into N clusters, each contains M, secondary units. A sam-
ple, s, of n clusters is taken and a subsample, s, of m, secondary
units is drawn from each sampled cluster. All sampling is done
without replacement. The situation considered kere is the com-
mon one where the M, are known only for the sampled clusters,
but there exist related auxiliary variables, X,, that are known
for all clusters. AfterA observing y,, for the sampled secondary
units one produces 7, an estimate of the population total,
N M;
T=2Y, Zyu. The total number of sampled secondary urits is
g=] y==]
m = ), m, while the sample means of the y,, for each cluster
€S

. - Y R .
are given by ¥, == 3,—L- i==12._.n. Letting r denote the
i m
Jes;
clusters that are not in the sample the following examples illus-
trate the notational convention used for summations of amy

—— Ml
variable: X,=Yx,, X,=1¥x, (¥),=1%x2 v, = Ly,
1=l
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N
M= ZI\/I, The quantity f = n/N is the first-stage sampling
1==)

fraction and f, = m /M, is the second-stage sampling fraction.

3. Conventional Estimators for the Population Total
A sampling design used by many large surveys selects the
clusters with probability proportional to a size measure (7ps
sampling), and the secondary units with simple random sam-
pling (SRS). In this case a Horvitz-Thompson estimator is fre-
quently used to  estimate the population total
TP= N EMJS'_ —;2{— For another common sampling design
(s t
which selects both the clusters and the secondary units by sim-

ple random sampling (SRS-SRS), a ratio estimator is often
chosen: Tp = N EMJS’_ %—

1es s

. Traditionally Tp and Ty have

been the estimators of choice for populations where the Y, are

approximately proportional to the X,. When no such X, exists

then for SRS-SRS designs the "unbiased” estimator, Ty, can be

used (Cochran,1978): TU=1—:~ Y"M.y,. The Horvitz-Thompson
1S

estimator, Tp, is unbiased with respect to a 7ps-SRS plan and T,

is unbiased with respect to an SRS-SRS plan. The ratio estima-
tor, TR, is biased with respect to SRS-SRS, however the bias is
negligible for large n (Cochran,1977). Although these estimators
are developed under traditional sampling theory, they will be
studied as estimators for the population total under prediction
theory.

4. The Superpopulation Model

The prediction approach to finite population sampling treats
the y,, as realizations of random variables Yu' In this applica-
tion cluster size is unknown except for sampled clusters, there-
fore, the M,'s are also treated as realizations of random vari-
ables. The superpopulation model is a working model that
describes the gross structure of many real populations. Devia-
tions from this or any other model are to be expected and an
important component of the prediction approach is to study
conditions of model failure and determine strategies that are
robust to such deviations. The superpopulation model proposed
by Royall(1985) describes a population where cluster size is pro-
portional to the previous size measure and cluster totals are in-
creasing linearly conditionally with cluster size. (The Y, are
correlated within clusters but are independent between clusters.)
Denoting conditional expectations, variances, and covariances by
E* Var* and Cov*, the model is as follows:

MODEL M,

(i) E(M)= X, i=12,.,N

(51) Var(M,) = 7°X, and Cov(M, M) =0 i%#j
(i5i) Pr(M,<2) = 0

(iv) EXY,)=n  i=12..M,

1

(v) VarX(Y,)=d?

2 .
. POy f==k, gl
(vi) Cov*(Y, ) Yy) = {0 £k
The parameters 8, g, and 7° are constants. We only consider
designs where m,>2 and if m,>M, we take m=M, We as-
sume that p, is non negative; this is not a strong restriction since



it can be shown that p, > -1/(M,-1). In much of the analyses
that follow the restrictions p, = p and ¢? = ¢ are made; the
model with these restrictions is denoted M,.

Since the population total can be written as the sum of the
observed and unobserved variables:

M;
T=33y+2Yv+N%y,

ies Jes; ses ger; fer j=1
subunits not included in the sample ¢,), we note that the prob-
lem of estimating T is equivalent to that of predicting the total

: EZ} y,; + EZy,] The best linear

s ger; ter g=]

(where r, is the set of

for the unobserved y, 's

unbiased estimator for T, T’Bw: is found by adding the ob-
served total to the BLU predictor of the unobserved total and
apply a result from prediction theory, which states that given a
k+p random vector X with mean [/ and covariance Y,

Xk U" Ekp Ekk
the best linear predictor of X, given X is

X'p = Qp + Epk E;l: (Xk—uk) .

We exploit this theorem by properly defining X. We note that
M; and r, are random, however, since we condition on the ob-
served sample, s, r, m,, and s, are fixed. We define X as the

N-+2n random vector
e fi] =[] e [
11

M,

i

=(XY,) ies, X;=(XY,) ier,

1815 =1

where

Xy = ((ZYU)) ies,

Jes;

and X,y = (M) i es.

X has covariance matrix

Vi O Vim Viw
o VvV, 0 O
Y= Viem O Vi O
Vie 0 O Vg

where V; is the n x n covariance matrix of X, ¥} ;; is then x n
covariance matrix of X; and X,;,, V, is the N-n x N-n covari-
ance matrix of X, etc. Applying the theorem gives the predic-
tors

lplal

{, = (M- X,-m
( ‘m,)‘u-}‘(ﬂ [ [(1 p)02+m p,0°

(?-/_s,.—l‘) fes

X, =pbX, ier .
Therefore, the BLU estimator for T is

T,BLU = Ezyt} + Z(Ml'mt)“ +

l(S](S.- s

m,p,0; -
YBX -, o (y —p) + B X,
ws [(1-p,)0%4+m,p,07

The unknown parameters 8 and p are estimated by the BLU es-
timators

where u, = (m/[(1-p,)0?+m p,a,z])/Zm 1-p,)0%+mp,07 . The

i€s
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BLU estimator with ?and it substituted for 8 and g ls denoted
TBLU Substituting M, for X, in the third term of TBw pro-
duces a non linear estimator, TNL,

TNL = ZE-’I., + E(M‘—m')[w‘i‘ﬁ'(l’

1es fes; 1es

w)i] + BiX,

wy = mtp‘o?/[(l—p‘)a?+m‘p,a',

f‘NL is unbiased with respect to M, and comparing MSE’s we
find

E(fsufT)z - E(f'M,—T)2 =

N [Var(M,

¢S

)-Var(BX )|[w *(Ver(y, }-Var(2))].

This sum is non-negative therefore this estimator has smaller
MSE than the BLU estimator. If p, = 0, n==1, or 7° == 0 then

TNL = TBw .

The estimator Ty, depends on u, and w, which depend on
p,0? and (1-p,)o? and are generally unknown. If p, = p and
0% = 0% then Rustagi (1978) notes that M, is equivalent to a
one way random eflects model: y,, = p + o, + €, i=12,..,n,
7=12,..,m, where pa? = Var(a,) = of and
{1-p)o* = Var(e,) = o°. In the following analysis the unweight-
ed sum of squares estimators (USS) from random effects analysis
are used to estimate po? and (1-p)o® and the resulting estimator
is denoted Ty, ;.

5. Model-Based Analysis

5.1 Bias

When expectation is taken with respect to M,, Tp and Ty
are unbiased and the model-based estimator Ty, is asymptoti-
cally unbiased. The "unbiased" estimator Ty, is biased; its bias
is:

(1) = Npu(X,-X) .

The traditional theory says that TU is unbiased with respect to
an SRS-SRS sampling plan and the ratio estimator is biased
{this bias is negligible for large n). In practice when the condi-
tions of the model are reasonable TU will generally have a larger
variance than T and T, (Cochran, 1977). The model-based
analysis gives insight into what is causing this large variance.

(5.1.1)

5.2 Failure of the Model - Misspecified Expectation

The model M, assumes that the regressions of cluster size
M, on the known size variable X, and cluster totals Y, condi-
tioned on the M,’s are straight lines through the origin. Royall
and Cumberland show in their empirical studies that, for the six
real populations they studied, biases can be explained by assum-
ing that the model fails and that departures from the simple
linear model can be described by a model that has an intercept
and quadratic term (Royall and Cumberland,19812,b), (Cumber-
land and Royall,1982). The model failure considered here is
denoted as TYPE I failure and describes the situation where
cluster size is not proportional to the previous size measure, but
can be described by a polynomial with an intercept and qua-
dratic term:

TYPET E(M)=f,+ B,X, + 8,X.2

In the analysis and discussion that follow TYPE I failure implies
the conditions of model M, except for the misspecification of the
expectation. It should be noted that even though these models
are crude approximations to the underlying population, they are
useful for explaining the behavior of the estimators. The biases
under TYPE I failure are :

(5.2.1)

E(Tp-T) = Nup, [(X—l)s f—1] + Nup, [f X.- ’(F)] (5.2.2)



) XX X(x?),-X,(x?)
E(T-T) = Nu8, = =1 4+ Nug, -(——)5:L

E(1) = Nus, [%,-X] + Nug, [009), - 309

, X-X,
E(Tyy,-T) = Npby b

+ NuB,

5

(Throughout this failure analysis p, = p, 02 = 0%, and E(Ty,-
T) is an asymptotic result unless p, and o are known.) The esti-
mators can be protected from bias caused by TYPE I failure if
restrictions_are placed on the sampled X's. The restrictions for

Tp are: (X3),=VX and X X,=(X?. The condition,
)?(X"l)s = X’ , is called 7n-balance and is expected under the
probability sampling distribution when a 7zps sampling plan is
used (Cumberland and Royall,1982). T, Ty, and Ty, have zero
biases when X = X, and (X?), = (X? . This condition is
called balance on the first and second moments. In general,
{(X?), = X7 is called balance on the j* moment and is expected
under the probability sampling distribution when an SRS sam-
pling plan is used. Although balanced samples have long been
recognized as useful, the traditional theory offered little support
for their use nor could it explain why poorly balanced samples
were bad (Royall and Cumberland, 1981a).

The analysis of the bias of the estimators when expectation
with respect to the model is misspecified dramatizes the impor-
tance of the sample in determining the reliability of the estima-
tors. The analysis shows that under certain types of model
failure, samples that are properly balanced can protect estima-
tors from serious errors. On the average, probability-
proportional-to-size sampling plans will be 7-balanced and sim-
ple random sampling plans will be balanced. The failure
analysis gives new insight into the success of these conventional
sampling procedures but introduces the question as to whether
an expected balanced sample is good enough. Cumberland and
Royall (1982,1981a) have shown that SRS and 7ps sampling
alone do not provide adequate protection against bias. In the six
populations they studied, departures from the appropriate bal-
ance conditions appeared in a significant percentage of the sam-
ples. Those samples which deviated the farthest from balance
produced biases which were large compared to the (MSE)I"zt
These analyses suggest that sampling techniques that force bal-
ance will protect against such errors, thus introducing the notion
of robust sampling strategies.

6. Emplirical Study

The empirical study uses real data to test the theoretical
results. The real data set allows us to investigate the robusiness
of the model-based theoretical results when the model failure is
more complex than that described in section 5.2.

The empirical study is a survey, utilizing previous data, to
predict the total population for a rapidly growing area, the out-
lying areas of Los Angeles county, and all of Ventura and
Orange County. The data are block statistics from the 1970
and 1980 California census tapes. The number of blocks in a
census tract in 1970 is the previous size measure, and the
number in 1980 is the cluster size. The variable of interest, Yijs
is the block population in 1980. If a census tract had fewer than
twenty blocks in the 1970 census then it was combined with its
nearest neighbor. This process continued until the resulting
tract had twenty or more blocks. After this adjustment, 420
census tracts (clusters) remained. There were a total of 23,001
blocks in 1970, and by 1980 the number had grown to 29,102.
The total population of these regions for 1980 was 4,045,074.

Figures 6.1, 6.2, and 6.3 contain plots of the census data
showing that the superpopulation model is a reasonable descrip-
tion for this data. The model assumes that cluster size is increas-
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ing linearly with the previous cluster size. Figure 6.1 shows that
this assumption is reasonable, and that there may be an inter-
cept term and a slight convex curvature (TYPE I failure), how-
ever, the model failure is more complex than that described in
5.2.

8.1 Sampling Strategles

The model failure analysis of 5.2 supports previous studies
by Royall and Cumberland (1981a) and Herson (1976), which
show that under certain types of model failure appropriately
balanced sampling can protect against biases and reduce MSE.
We call such balanced first-stage sampling plans with the ap-
propriate estimators robust strategies and compare these stra-
tegies to conventional sampling.

Exact satisfaction of the balance conditions is not possible,
however, for SRS plans one can exclude samples that are badly
unbalanced by imposing the following conditions:

i%iﬁ' < 1)
Va((X2)-) | _ 62)

t, =2

where ¢, and ¢, are the SRS finite population standard devia-
tions of X, and X7 respectively. The sampling procedure r -SRS
consists of taking a simple random sample and rejecting those
samples that fail condition (6.1). The r,-SRS rejects those sam-
ples that do not satisfy conditions (6.1} and (6.2).

The nps sampling plan used in this study is the one investi-
gated by Hartley and Rao (1962) and used by Cumberland and
Royall (1982). Cumberland and Royall give a concise description
of this procedure:

"the procedure consists of a random permutation of the first-

stage units followed by a random start systematic sample of

step size X/n over the interval (0,X). Unit 1 is selected if
A3

=1
EX,SU<EX, for one of the systematic sample points U/.”
1 1

The following restrictions are wused to force n-balance:

Vn Fc—l/f Vn X-(X2¥X)

|——(-(——t)———-)- <¢ an (—st(-y—) < €, where £;
1 2

is the standard deviation of 1/X and t, is the standard deviation
of X. The values of ¢, and t, are found by using the finite popu-
lation variance formulas. For r, sampling ¢, = .15 gave a 10%
acceptance rate. Using ¢; and e, = .15 in the r, sampling pro-
cedure, yields an acceptance percentage of 5% for SRS sampling
and 3%for #ps sampling.

Basket sampling was introduced by Wallenius (1973) as a
technique for getting extremely well balanced samples while re-
taining some randomness. This technique has the advantage of
being much less expensive to implement on a computer than res-
tricted sampling, and, at least for this study population, it pro-
duces samples that are almost perfectly balanced on the first
and second moments and extremely well balanced on the third
and fourth moments.

All second-stage samples are selected by simple random sam-
pling. In a preliminary analysis constant, self-weighting, and
model-based optimal second-stage allocation procedures were
used. The second-stage allocation procedures did not yield
significantly different results for any estimator or any first-stage
sampling plan (Cohen,1984). Therefore, constant second-stage
allocation was used in the final analysis. For each sampling
scheme n = 42 and m, = 20 producing a 3% sample.

6.2 Performance Evaluation Criteria

To study bias and MSE as functions of sample characteris-
tics, the samples are arranged in order of increasing value of the
characteristic. The samples are then grouped in equal sets, so



that the first set contains samples with the smallest values of the
characteristic, the second set contains the next smallest, etc.
For each group, the average values of (T-T) ard MSE are calcu-
lated and used to plot (T—T) and (MSE)Y? against the average
of the sample characteristic. Figure 6.4 shows the plots of the
averages of (TP—T) (B), and (MSE}I’"" {V) versus the average
(X!),. The 450 samples are arranged in 10 groups of 45 sam-
ples each. Plots of the cumulative distributions of the errors are
used to determine how different sampling plans and different es-
timators affect the error distributions. Figure 6.7 contains the
cumulative error disttibutions for Ty, illustrating the
differences between errors generated by SRS and Basket first-
stage sampling plans.

6.3 Results

Traditional sampling theory assures us that TP and TU are
unbiased, and TR is approximately unbiased under their ap-
propriate sampling procedures. The errors, averaged over all
450 replications (Table 6.1} support this theory. However, the
error curves show that this net effect is deceiving, a result of
negative biases on one side of a population balance point and
positive biases on the other side. The error curve for TP (Figure

6.4) shows that negative biases when (X7, is less than *-;_7—_ are

is greater than —1_—
X

balanced by positive biases when (X!}

$

This result is what the model-based theory predicts when the
underlying model has a positive intercept term as in TYPE I
failure (5.2.2). The error curve for T, (Figure 6.5} demonstrates
the extreme biases of this estimator, an estimator that tradition-
al theory calls the unbiased (SRS-SRS) estimator. Prediction
theory maintains that 7}, will be biased under M, unless the
sample is balanced and equation (5.1.1) indicates that this bias
will show a linear dependency on X, with negative biases when
X is less than X and positive biases when X, is greater than X.
This is exactly what the error curve reveals. The error curves
for TNLI and TR show the same agreement with the theoretical
results.

The meodel-based theory predicts that restricted sampling
{r;-7ps and r-SRS) will eliminate much of the remaining bias
due to the intercept_term and that the biases will be functions of
X, (Tpr,-7ps) and (X?), (Tg, Ty, Tyrir-SRS). The error curves
for all estimators show the appropriate trends, giving further
support to the TYPE I failure model for the census data. The
plot of (Tp-T), versus X, for r-mps sampling, Figure 6.6, illus-
trates this agreement. As the theory predicts for TYPE I failure
with 8, positive, the biases are negative for X less than (X?yX
and positive for fs greater than (X"’)/j(—

The error curves demonstrate that inferences about the reli-
ability of these estimators based on probability sampling theory,
which says that the bias is zero no matter what sample is ob-
served, can have serious errors. The analysis also demonstrates
the robustness of the model-based theory. Even on a real popu-
lation where the underlying structure is difficult (if not impossi-
ble) to model mathematically, the model-based theory remains
valid and useful.

We have seen the advantage of using the restricted sampling
plans in eliminating bias. One might also ask if these restricted
sampling plans reduce MSE and decrease the probability of ob-
serving large errors. Figure 6.7 compares the cumulative distri-
butions of TNM—T for SRS, restricted SRS and Basket sampling.
The comparison shows a slight reduction in the probability of
errors greater than 450,000 and less than -450,000 for ry-SRS
sampling (not shown since this curve is almost indistinguishable
from the SRS curve )} and a larger reduction for Basket sam-
pling. With SRS sampling, 17.4% of the errors will be greater
than 450,000 or less than -450,000. The comparable percentage
for Basket sampling is 7%. Comparable curves for TR, TP and TU
show similar improvements in the error distributions for ap-
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propriately balanced samples. Comparing MSE’s (Table 6.1)
tells the same story. The relative efficiencies of Basket to SRS
sampling (the ratio of SRS MSE to Basket MSE) range from 1.2
to 1.9, for r-SRS to SRS the ranges are 1.0 to 1.3, and for ry-
7ps to 7mps the relative efficiency is 1.2. The analysis demon-
strates that balanced samples can reduce bias, improve
efficiency, and decrease the probability of observing large errors.

Figure 6.8 contains the error distributions for TR, TNle and
TU for SRS sampling and ’.f‘,, for 7ps sampling. These curves
show that Ty, performs best. The frequency of errors greater
than 550,000 and less than -550,000 is 24% for Ty, 25% for Ty,
17% for Ty and 9% for Ty, Ty, 2lso has the smallest MSE
and the relative efficiencies of the other estimators to it are 0.51
for T, 0.56 for Ty, and 0.74 for Tg. The relative efficiency of T
to TR is 0.69. In Figure 6.9, we compare the error distributions
for these estimators under their optimal sampling procedures.
TR and TU are equivalent when the samples are balanced and
their error distributions are indistinguishable. Ty, ; has no errors
greater than 750,000 or less than -450,000, while 11% of TRs
and 22% of Tp's errors fall outside these bounds. The relative
efficiencies of T and Tp to Ty, are 0.51 and 0.36 respectively.
The relative efficiency of TP to TR is 0.70. The superior perfor-
mance of Ty, to T on the census data may be due to the erratic
growth of the small clusters. First-stage nps designs in conjunc-~
tion with the estimator Tp are commonly used in large surveys.
This analysis cautions that TP can have serious biases and sug-
gests that n-balance will help protect TP against such model
failures. Although Ty, is the optimal estimator under the su-
perpopulation model, it is difficult to see why it out performs TR
on the census data. The census data fails many of the mode} as-
sumptions, including the assumptlon that all Y,’s have the
same mean. Just why Ty, remains robust to the census
population’s deviations from the model and how it will perform
on other real populations are areas for further investigation.

7. Summary

This analysis shows that the behavior of the estimators
depends on characteristics of the underlying population and the
prediction model approach is an appropriate way to study this
dependency. The prediction model was used to derive a best es-
timator for the population total under a basic model for the
two-stage design problem with unknown cluster sizes. In the em-
pirical study this estimator performed better than the tradition-
al estimators and deserves further study as an alternative esti-
mator for the population total.

The model-based theory indicated that estimators, unbiased
under the probability sampling distribution, could have impor-
tant biases that depended on observable characteristics of the
sample. The theoretical analysis showed that the traditional
"unbiased" estimator can have severe biases for samples that are
badly unbalanced and is not appropriate for populations
described by the basic model. These results support traditional
practices, but give additional insight into why this estimator
performs poorly. The other traditional estimators considered,
the ratio estimator with a two-stage simple random sampling
plan and the Horvitz-Thompson estimator with a probability-
proportional-to-size first-stage plan and a simple randem sam-
pling second-stage plan, are unbiased under the basic model.
However, the theory indicates that they can have biases under
certain types of model failure. The empirical study showed that
these estimators were biased for samples that were badly bal-
anced. For the traditional random sampling plans, twenty per-
cent or more of the samples produced estimates with severe
biases.

The empirical study confirmed the theoretical findings for a
real population that was only very roughly described by the
model indicating that, rather than looking for increasingly com-
plex models to try to describe the population exactly, samples
and estimators should be chosen with robustness in mind.
Robust strategies will yield good estimates for a variety of



Herson,J. (1976), "An Investigation of Relative Efficiencey of
Least Sq Prediction to Conventional Pro-
bability Sampling Plans,” JASA, 71, 700-703

different populations. Robust strategies include plans that res-
trict the sample so that it has the necessary characteristics to
produce reliable estimators. The theoretical results suggested
and the empirical study confirmed that techniques for restricting
the first-stage samples so that they were well balanced reduced
biases, improved efficiency, and decreased the frequencies of
large errors.
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vious eluster slse ( numbar of blocks In 1970 census).

Census Averages
(thousands )
First-Stage | :
Eatimator ; Error | (MSEM
Sampling Plan | !
i I
mps P22 | 480
I
7o 7,-mps | -25.2 430
remps | 35 4l
SRS 128 . 398
»SES | -2l 370
Te - :
I resRs 2a4 , 397
] I |
[ Basket | 193 o62
! ! ;
SRS ©o20 457
| TSRS 291 37l
7y .
¢SRS ERU- 14
Basket 193 362
SRS 02 343
rSRS 318 a3
Tt L
25RS ' 178 347
;
1’ } Basket | 38| =259
H |

Table .6.1 The results avernged over 450 repiications.
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pling, estimator To. The symbol | marks the balaace point.

409

Tos o ae o8 8w 7w
owort 10000

Figure 6.8 Error distribution for Ty, Ty, and Ty with SRS sampliing and for T with

*pe sampling.
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Figure 8.0 Error distribution for Ty, Ty;,. and T, with Basket campitag and for T,

with ryexpe sacapling.




