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A model for two-stage cluster sampling when sample cluster 
sizes are unknown is used to derive an optimal (model-based) es- 
timator for the population total and to determine robust sam- 
pling strategies. In an empirical study using 1970 and 1980 
census data for Los Angeles and surrounding counties, comparis- 
ons are made between the model based estimator and conven- 
tional estimators. The results favor the new estimator over those 
derived from randomization theory. In addition, the empirical 
study shows that the robust sampling strategies suggested by 
the theory can reduce biases, improve efficiency, and decrease 
the frequencies of large errors. 

1 . In troduct ion  
In previous studies the model-based approach has proved to 

be a valuable tool for studying finite population sampling. The 
theoretical results of Royall (1976), and the theoretical and em- 
pirical results of Royall and Cumberland (1981a, 1981b, 1982) 
have brought new understanding of conventional estimators and 
introduced new, bias robust variance estimators. This paper uses 
prediction theory to develop criteria for selecting good sampling 
strategies (sampling plans and estimators) for two-stage sam- 
pling when the cluster size is unknown. The traditional ap- 
proach to this problem, Randomization Theory, assumes that 
the population variables are fixed constants and that the proba- 
bility framework is determined by the sampling plan, statistical 
properties such as bias and MSE are defined in terms of averages 
over all possible samples. This averaging masks the importance 
of the sample actually observed in determining bias and MSE. 
Royall and Cumberland(1981a, 1981b, 1982) show that such 
masking can be dangerous when making inferences since bias 
and variance as well as variance estimators can depend on sam- 
ple characteristics. The prediction approach assumes that the 
population values are realizations of random variables and the 
probability framework is described by the joint distributions of 
the variables in the superpopulation model. Statistical quantities 
are defined with respect to the model and conditioned on the 
observed sample. The prediction approach allows us to study 
bias, variance, and variance estimators as functions of charac- 
teristics of the observed sample and thus to determine those 
samples that produce good estimates. Prediction theory also per- 
mits us to study estimators under conditions of model failure 
and to determine those estimators and sampling plans that are 
robust to certain types of model failure. 

2. Th~ Two-Stage  Design wlth  U n k n o w n  Clus te r  Sizes 
In the two-stage sampling framework the population is di- 

vided into N clusters, each contains M s secondary units. A sam- 
ple, s, of n clusters is taken and a subsample, 8s, of m z secondary 
units is drawn from each sampled cluster. All sampling is done 
without replacement. The situation considered here is the com- 
mon one where the M, are known only for the sampled clusters, 
but there exist related auxiliary variables, X,, that are known 
for all clusters. After observing Yzs for the sampled secondary 
units one produces :F, an estimate of the population total, 

N Mi  

T--  ~ ~Y~s" The total number of sampled secondary units is 
t ~ l j  ~---1 

m s --  y]m z while the sample means of the Yzl for each cluster 

are given by Y's.-- ~-~ Y-~- i - -  1,2 ..... n. Letting r denote the 
* Jesi m, 

clusters that are not in the sample the following examples illus- 
trate the notational convention used for summations of any 

Mi 
- -  _ _  - -  1 ~ = 

variable" X , - - E X  ,, Xs-" 1 E X , ,  (X2)s=__ E ,, y~ EY,, ,  
l e t  n tes n tes 3--1 

N 

M = ~-~ M,. The quantity f - -  n/N is the first-stage sampling 
t---1 

fraction and f, = m,/M, is the second-stage sampling fraction. 

3. Convent ional  Est lmatora for  the  Populat ion Tota l  
A sampling design used by many large surveys selects the 

clusters with probability proportional to a size measure (nps 
sampling), and the secondary units with simple random sam- 
piing (SRS). In this case a Horvitz-Thompson estimator is fre- 
quently used t._o estimate the population total: 

~,p = N_Nn ,~cs M~'s, - ~ .  For another common sampling design 

which selects both the clusters and the secondary units by sim- 
ple random sampling (SRS-._SRS), a ratio estimator is often 

chosen: % = IV ~--]~M,~-s, ~ . Traditionally 7"p and Tn have 
tZ tcs X s 

been the estimators of choice for populations where the Y~ are 
approximately proportional to the X,. When no such X, exists 
then for SRS-SRS designs the "unbiased" estimator, 7"u, can be 

used (Cochran,1978): T. _ N  v-- n ~M~'si. The Horvitz-Thompson 
tcs 

estimator, Tp, is unbiased with respect to a nps-SRS plan and Tu 
is unbiased with respect to an SRS-SRS plan. The ratio estima- 
tor, 7"n, is biased with respect to SRS-SRS, however the bias is 
negligible for large n (Cochran,1977). Although these estimators 
are developed under traditional sampling theory, they will be 
studied as estimators for the population total under prediction 
theory. 

4. T h e  Supe rpopu la t l on  Model  
The prediction approach to finite population sampling treats 

the Yv as realizations of random variables Yv" In this applica- 
tion cluster size is unknown except for sampled clusters, there- 
fore, the Mt's are also treated as realizations of random vari- 
ables. The superpopulation model is a working model that 
describes the gross structure of many real populations. Devia- 
tions from this or any other model are to be expected and an 
important component of the prediction approach is to study 
conditions of model failure and determine strategies that are 
robust to such deviations. The superpopulation model proposed 

by Royall(1985) describes a population where cluster size is pro- 
portional to the previous size measure and cluster totals are in- 
creasing linearly conditionally with cluster size. (The Y~j are 
correlated within clusters but are independent between clusters.) 
Denoting conditional expectations, variances, and covariances by 
E*, Var*, and Coy*, the model is as follows: 

M O D E L  Mu: 

(i) E ( M , ) - -  fiX, i=1 ,2  ..... N 

(ii) Var(M,)--r2X, and Cov(M,,Ms)=O i # j  

(i i i) P,-(M, <2) = o 

(;v) E * ( Y , ) =  # j=1,2 ..... M, 

(~) Va,*(Y, , )= ~, 

{~ , a2, i--':-k,jT~l 
(vi) Cov*(Y,j,Ykt ) = i # k  

The parameters 3, #, and r 2 are constants. We only consider 
designs where m,>_2 and if m,>M, we take m,--M,o We as- 
sume that p, is non negative; this is not a strong restriction since 
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it can be shown that p, > - 1 / ( M , - 1 ) .  In much of the analyses 
that follow the restrictions p, - -  p and a 2 = a 2 are made; the 
model with these restrictions is denoted M~. 

Since the population total can be written as the sum of the 
observed and unobserved variables: 

M i 

T---- E E y i ,  + E E y , ,  + E E y , ,  (where r, is the  set of 
t es  .ies i tes  j e t  i i er  ] - ' -1  

subunits not included in the sample e,), we note that the prob- 
lem of estimating T is equivalent to that  of predicting the total 

M~ 
for the unobserved y,j 'a: Y]~-~ Y,i + ~ - ] Y , , "  The best linear 

t e s t e r  i t c r  j ~--'1 

unbiased estimator for T, T ' e w ,  is found by adding the ob- 
served total to the BLU predictor of the unobserved total and 
apply a result from prediction theory, which states that  given a 
k+p random vector X with mean U and covariance 

the best linear predictor of .Y~ given X~ is 

£ = t4 + E .  E;i  (x,-u~). 
We exploit this theorem by properly defining Ar. We note that 
M~ and r, are random, however, since we condition on the ob- 
served sample, ~, r, m,, and s, are fixed. We define X as the 

N+2n random vector 

.X.= X.~----- X,,, and X,=  [Arrcj 

where 

M i 

x ,  = ((E Y,,)) ,~ ,, x , ,  = ((EY,,)) ~, ,, 
j ~ r i  J ' - - I  

Xm = ((EY,,)) i e e, and X1v = ((Mr,)) i e e. 
J~s i 

X: has covariance matrix 

E= Iv,,,,, v,, o o 
0 V m 0 

I [v,,~ o o v~  

where V I is the n x n covariance matrix of 7)(1, VI,II I is the n x n 
covariance matrix of Art and Arm, Vtt is the N-n x N-n ¢ovario 
ance matrix of Xtx , etc. Applying the theorem gives the predic- 
tors 

X', = (M,-rn,)# + (fX,-m,)[(1-p,)a2,+rn,p,a~l 

X , = # f i X ,  i e r  . 

Therefore, the BLU estimator for T is 

T ' ,w  = E E v , ,  + E(M,-m,)u + 
*es j e s  i ,es 

m,p,a 2 
E ( ~ x , - m , )  (£,-u) + ~ u x ,  . 
, .  [(,-p,)o,~+,,,,p,,,~ 

The unknown parameters f and # are estimated by the BLU es- 
timators 

where u, = (m, / I (1-p , )a~+m,p ,a~) /Em/[(1-p , )a~+m,p ,a  ~ . The 

BLU estimator with ~ 'and /~ substituted for/9 and /z is denoted 

TBw. Substituting M, for fX,  in the third term of TBw pro- 

duces a non linear estimator, TNL, 

t~SJ~S i t~S 

w , - -  m,p,a~][(1-p,)a2t -Fm,p,o'~ . 

TNL is unbiased with respect to Mu and comparing MSE's we 
find 

E ( T B w - ~  2 -  E(TNL-T) 2 =  

E Iv~,( M,)-v~,( Zx, )I I~,=(Va,(VO-v~,( p ) )I • 

This sum is non-negative therefore this estimator has smaller 
MSE than the BLU estimator. If p, - -  0, n - - l ,  or r 2 = 0 then 

: ~ =  T ~ .  
The estimator TNL depends on u, and w, which depend on 

p,a 2, and (1-p,)a, 2 and are generally unknown. If p , - - p  and 
a~ = a 2 then Rustagi (1978)notes that  M~ is equivalent to a 
one way random effects model: y,: = # + a, + %, i=l,2, .o. ,n,  

2 and j - - l , 2  ..... m,, where pa 2 - -  Var(a,) "- ac, 
2 In the following analysis the unweight- (1-p)cr 2 - -  V a r ( % ) =  a C. 

ed sum of squares estimators (USS) from random effects analysis 
are used to estimate pa 2 and (1-p)a 2 and the resulting estimator 

^ 

is denoted TNL 1. 

5. M o d e l - B a s e d  A n a l y s i s  

5.1 B l u  
When expectation is taken with respect to M=, ~'p and :Fn 

are unbiased and the model-based estimator TNL 1 iS asymptoti- 
cally unbiased. The "unbiased" estimator :Fu is biased" its bias 
is: 

E(:F,f-T) = Nf lp (_~s -~  ) . (5.1.1) 

The traditional theory says that :~u is unbiased with respect to 
an SRS-SRS sampling plan and the ratio estimator is biased 
(this bias is negligible for large n): In practice when the condi- 
tions of the model are reasonable T U will generally have a larger 
v~ri~nce th~. ~. ~,d ~ (Cochlea, 1977). The mod¢l-b~ed 
analysis gives insight into what is causing this large variance. 

5.2 F a l l u r e  o f  t h e  M o d e l  - Mls spec l f l ed  E x p e c t a t i o n  
The model M~ assumes that the regressions of cluster size 

M s on the known size variable X, and cluster totals Y~ condi- 
tioned on the M,'s are straight lines through the origin. Royall 
and Cumberland show in their empirical studies that, for the six 
real populations they studied, biases can be explained by assum- 
ing that the model fails and that departures from the simple 
linear model can be described by a model that has an intercept 
and quadratic term (Royall and Cumberland,1981a,b), (Cumber- 
land and Royall,1982). The model failure considered here is 
denoted as TYPE I failure and describes the situation where 
cluster size is not proportional to the previous size measure, but 
can be described by a polynomial with an intercept and qua- 
dratic term: 

TYPE I E ( M , ) - -  f0 + /51 X, + f2X, 2- (5.2.1) 

In the analysis and discussion that  follow TYPE I failure implies 
the conditions of model M= except for the misspecification of the 
expectation. It should be noted that even though these models 
are crude approximations to the underlying population, they are 
useful for explaining the behavior of the estimators. The biases 
under TYPE I failure are : 
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x-, E(TR-T) = N##° I + N##2 

~- o ~, and E(TNL: (Throughout this failure analysis p, : p, a, - -  
T) is an asymptotic result unless p, and a~ are known.) The esti- 
mators can be protected from bias caused by TYPE I failure if 
restrictions are placed on the sampled X's.____The restrictions for 

~'p ar_._e: (X-~)s : 1/X and X X  s = (X:). The condition, 
m 

X ( X J - 1 ) s -  X ~ , is called n-balance and is expected under the 
probability sampling distribution when a nps sampling plan is 
used (Cumberland and Royall,1982). ~" ,~_~T, and :~NL1 have zero 

biases when X : X s and (.k~)s = (X2) . This condition is 
called balance on the first and second moments. In general, 

(XJ)s - -  X j is called balance on the 3 ~h moment and is expected 
under the probability sampling distribution when an SRS sam- 
pling plan is used. Although balanced samples have long been 
recognized as useful, the traditional theory offered little support 
for their use nor could it explain why poorly balanced samples 
were bad (Royall and Cumberland, 1981a). 

The analysis of the bias of the estimators when expectation 
with respect to the model is misspecified dramatizes the impor- 
tance of the sample in determining the reliability of the estima- 
tors. The an~.lysis shows that  under certain types of model 
failure, samples that are properly balanced can protect estima- 
tors from serious errors. On the average, probability- 
proportional-to-size sampling plans will be n-balanced and sim- 
ple random sampling plans will be balanced. The failure 
analysis gives new insight into the success of these conventional 
sampling procedures but introduces the question as to whet.her 
an expected balanced sample is good enough. Cumberland and 
Royall (1982,1981a) have shown that  SRS and rips sampling 

alone do not provide adequate protection against bias. In the six 
populations they studied, departures from the appropriate bal- 
ance conditions appeared in a significant percentage of the sam- 
ples. Those samples which deviated the farthest from balance 
produced biases which were large compared to the (MSE) v2. 
These analyses suggest that  sampling techniques that force bal- 
ance will protect against such errors, thus introducing the notion 
of robust sampling strategies. 

6. Empir ica l  S tudy  
The empirical study uses real data to test the theoretical 

results. The real data set allows us to investigate the robustness 
of the model-based theoretical results when the model failure is 
more complex than that  described in section 5.2. 

The empirical study is a survey, utilizing previous data, to 
predict the total population for a rapidly growing area, the out- 
lying areas of Los Angeles county, and all of Ventura and 
Orange County. The data are block statistics from the 1970 
and 1980 California census tapes. The number of blocks in a 
census tract in 1970 is the previous size measure, and the 
number in 1980 is the cluster size. The variable of interest, y,~, 
is the block population in 1980. If a census tract had fewer than 
twenty blocks in the 1970 census then it was combined with its 
nearest neighbor. This process continued until the resulting 
tract had twenty or more blocks. After this adjustmenL 420 
census tracts (clusters) remained. There were a total of 23,001 
blocks in 1970, and by 1980 the number had grown to 29,102. 
The total population of these regions for 1980 was 4,045,074. 

Figures 6.1, 6.2, and 6.3 contain plots of the census data 
showing that the superpopulation model is a reasonable descrip- 
tion for this data. The model assumes that cluster size is increas- 

ing linearly with the previous cluster size. Figure 6.1 shows that 
this assumption is reasonable, and that there may be an inter- 
¢ept term and a slight convex curvature (TYPE I failure), how- 
ever, the model failure is more complex than that described in 
5.2. 

6.1 S ampl ing  Strategies  
The model failure analysis of 5.2 supports previous studies 

by Royall and Cumberland (1981a) and Herson (1976), which 
show that  under certain types of model failure appropriately 
balanced sampling can protect against biases and reduce MSE. 
We call such balanced first-stage sampling plans with the ap- 
propriate estimators robust strategies and compare these stra- 
tegies to conventional sampling. 

Exact satisfaction of the balance conditions is not possible, 
however, for SRS plans one can exclude samples that  are badly 
unbalanced by imposing the following conditions: 

tx 

_< ,: (6.2) 

where t 1 and t 2 are the SRS finite population standard devia- 
tions of X, and Xy respectively. The sampling procedure r :SRS  
consists of taking a simple random sample and rejecting those 
samples that fail condition (6.1). The r2-SRS rejects those sam- 
ples that do not satisfy conditions (6.1) and (6.2). 

The rips sampling plan used in this study is the one investi- 
gated by Hartley and Rao (1962) and used by Cumberland and 
Royall (1982). Cumberland and Royall give a concise description 
of this procedure: 

"the procedure consists of a random permutation of the first- 
stage units followed by a random start systematic sample of 
step size X/n over the interval (0~). Unit i is selected if 
t - 1  t 

~)(~<U<~)-']X, for one of the systematic s~mple points U." 
1 1 

The following restrictions are used to force n-balance: 

~/~ (( x % -  1/X:) ,/~ (~-(x:--~) 
_ e 1 and < e2, where t 1 

t I t 2 

m the standard deviation of 1/X and t:  is the standard deviation 
of X. The values of t 1 and t2 are found by using the finite popuo 
lation variance formulas. For r 1 sampling e 1 ----- .15 gave a 10% 
acceptance rate. Using q and e 2 - -  .15 in the r2 sampling pro- 
cedure, yields an acceptance percentage of 5% for SRS sampling 
and 3%for nps sampling. 

Basket sampling was introduced by Wallenius (1973) as a 
technique for getting extremely well balanced samples while re~ 
taining some randomness. This technique has the advantage of 
being much less expensive to implement on a computer than res- 
tricted sampling, and, at least for this study population, it pro- 
duces samples that  are almost perfectly balanced on the first 
and second moments and extremely well balanced on the third 
and fourth moments. 

All second-silage samples are selected by simple random sam- 
pling. In a preliminary analysis constant, selfoweighting, and 
model-based optimal second-stage allocation procedures were 
used. The second-stage allocation procedures did not yield 
significantly different results for any estimator or any first-stage 
sampling plan (Cohen,1984). Therefore, constant second-stage 
allocation was used in the final analysis. For each sampling 
scheme n = 42 and m, - -  20 producing a 3/~ sample. 

6.2 Per formance  Eva luat ion  Criter ia  
To study bia~s and MSE as functions of sample characteris- 

tics, the samples are arranged in order of increasing value of the 
characteristic. The samples are then grouped in equal sets, so 

406 



that the first set contains samples with the smallest values of the 
characteristic, the second set contains the next smallest, etc. 
For each group, the average values of (T-T) and MSE are calcu- 

lated and used to plot (7"-T) and ( M S E )  1/:~ against the average 
of the sample characteristic. Figure 6.4 shows the plots of the 
aver___ages of (_q'p-T) (B), and ( U S E )  v2 (V)versus the average 

(X-1)s. The 450 samples are arranged in 10 groups of 45 sam- 
ples each. Plots of the cumulative distributions of the errors are 
used to determine how different sampling plans and different es- 
timators affect the error distributions. Figure 6.7 contains the 

^ 

cumulative error distributions for TNL 1 illustrating the 
differences between errors generated by SRS and Basket first- 
stage sampling plans. 

6.3 Resu l t s  
Traditional sampling theory assures us that 7'p and 7"u are 

unbiased, and 7"R is approximately unbiased under their ap- 
propriate sampling procedures. The errors, averaged over all 
450 replications (Table 6.1) support this theory. However, the 
error curves show that this net effect is deceiving, a result of 
negative biases on one side of a population balance point and 
positive biases on the other side. The error curve for Tp (Figure 

1 
6.4) shows that negative biases when (X-1)s is less than - =  are 

X 
- ' - - -  1 

balanced by positive biases when (X-1)s is greater than ~ .  
X 

This result is what the model-based theory predicts when the 
underlying model has a positive intercept term as in TYPE I 
failure (5.2.2). The error curve for 7"u (Figure 6.5)demonstrates 
the extreme biases of this estimator, an estimator that tradition- 
al theory calls the unbiased (SRS-SRS)estimator. Prediction 
theory maintains that ~r U will be biased under M~ unless the 
sample is balanced and equation (5.1.1) indicates that this bias 
will show a linea_r dependency on X s with n_.egative biases when 
X s is less than X and positive biases when X s is greater than X. 
This is exactly what the error curve reveals. The error curves 
for TNL1 and 7"n show the same agreement with the theoretical 
results. 

The model-based theory predicts that restricted sampling 
(rl-r, ps and rl-SRS ) will eliminate much of the remaining bia~s 
due to the intercept ter___m and that the biases will be functions of 

X"-~ (~'p;r,-Trps) and (A~), (TR,7"u,TNL1;rx-SRS). The error curves 
for all estimators show the appropriate trends, giving further 
support to the TYPE I failure model for the census data. The 
plot of (Tp-T}, versus X~ for rl-rps sampling, Figure 6.6, illus- 

trates this agreement. As the theory predicts for TYPE I fail_..__ure 

with /5 2 positive, the biases are nega...._ tive for X s less than (X2)/X 

and positive for X s greater than (X~}/X. 
The error curves demonstrate that inferences about the reli- 

ability of these estimators based on probability sampling theory, 
which says that the bias is zero no matter what sample is ob- 
served, can have serious errors. The analysis also demonstrates 
the robustness of the model-based theory. Even on a real popu- 
lation where the underlying structure is difficult (if not impossi- 

ble} to model mathematically, the model-based theory remains 
valid and useful. 

We have seen the advantage of using the restricted sampling 
plans in eliminating bias. One might also ask if these restricted 
sampling plans reduce MSE and decrease the probability of ob~ 
serving large errors. Figure 6.7 compares the cumulative distri- 
butions of "PNLX-T for SRS, restricted SRS and Basket sampling. 
The comparison shows a slight reduction in the probability of 
errors greater than 450,000 and less than ~.450,000 for ru-SRS 
sampling (not shown since this curve is almost indistinguishable 
from the SRS curve ) and a larger reduction for Basket sam- 
piing. With SRS sampling, 17.4% of the errors will be greater 
than 450,000 or less than -450,000. The comparable percentage 
for Basket sampling is 7%. Comparable curves for Tn, Tp and T v 
show similar improvements in the error distributions for ap- 

propriately balanced samples. Comparing MSE's (Table 6.1) 
tells the same story. The relative efficiencies of Basket to SRS 
sampling (the ratio of SRS MSE to Basket MSE) range from 1.2 
to 1.9, for r2-SRS to SRS the ranges are 1.0 to 1.3, and for r 2- 
lrps to rps the relative efficiency is 1.2. The analysis demon- 
strates that balanced samples can reduce bias, improve 
efficiency, and decrease the probability of observing large errors. 

Figure 6.8 contains the error distributions for 7"R, TNLI' and 
Tu for SRS sampling and 7"p for rps sampling. These curves 

^ 

show that TNL 1 performs best. The frequency of errors greater 
than 550,000 and less than -550,000 is 24% for 7"v, 25% for 7"p, 
17% for Tn and 9% for TNLI" TNL1 also has the smallest MSE 
and the relative efficiencies of the other estimators to it are 0.51 
for 7"v, 0.56 for ~rp, and 0.74 for 7"n. The relative efficiency of Tp 
to 7"n is 0.69. In Figure 6.9, we compare the error distributions 
for these estimators under their optimal sampling procedures. 
~r n and 7"v are equivalent when the samples are balanced and 

^ 

their error distributions are indistinguishable. TNL t has no errors 
greater than 750,000 or less than -450,000, while 11% of 7"R's 
and 22% of 7"p'S errors fall outside these bounds. The relative 
efficiencies of 7~ and Tv to 7"2VL1 are 0.51 and 0.36 respectively. 
The relative efficiency of Tp to Tn is 0.70. The superior perfor- 
mance of 7"n to "Pp on the census data may be due to the erratic 
growth of the small clusters. First-stage nps designs in conjunc- 
tion with the estimator 7"p are commonly used in large surveys. 
This analysis cautions that 7"p can have serious biases and sug- 
gests that n-balance will help protect 7"p against such model 

^ 

failures. Although TNL 1 is the optimal estimator under the su- 
perpopulation model, it is difficult to see why it out performs J'R 
on the census data. The census data fails many of the model as- 
sumptions, including the assumption that all )~j's have the 

. .  

same mean. Just why TNL 1 remains robust to the census 
population's deviations from the model and how it will perform 
on other real populations are areas for further investigation. 

7. S u m m a r y  
This analysis shows that the behavior of the estimators 

depends on characteristics of the underlying population and the 
prediction model approach is an appropriate way to study this 
dependency. The prediction model was used to derive a best es- 
timator for the population total under a basic model for the 
two-stage design problem with unknown cluster sizes. In the em- 
pirical study this estimator performed better than the tradition- 
al estimators and deserves further study as an alternative esti- 
mator for the population total. 

The model-based theory indicated that estimators, unbiased 
under the probability sampling distribution, could have impor- 
tant biases that depended on observable characteristics of the 
sample. The theoretical analysis showed that the traditional 
"unbiased" estimator can have severe biases for samples that are 
badly unbalanced and is not appropriate for populations 
described by the basic model. These results support traditional 
practices, but give additional insight into why this estimator 
performs poorly. The other traditional estimators considered, 
the ratio estimator with a two-stage simple random sampling 
plan and the Horvitz-Thompson estimator with a probability- 
proportional-to-size first-stage plan and a simple random sam- 
piing second-stage plan, are unbiased under the basic model. 
However, the theory indicates that they can have biases under 
certain types of model failure. The empirical study showed that 
these estimators were biased for samples that were badly bal- 
anced. For the traditional random sampling plans, twenty per- 
cent or more of the samples produced estimates with severe 
biases. 

The empirical study confirmed the theoretical findings for a 
real population that was only very roughly described by the 
model indicating that, rather than looking for increasingly com- 
plex models to try to describe the population exactly, samples 
and estimators should be chosen with robustness in mind. 
Robust strategies will yield good estimates for a variety of 

407 



different populat ions .  Robus t  strategies include plans that  res- 
trict the sample so that  it has the necessary characteristics to 
produce reliable est imators.  The  theoretical  results suggested 
and the empirical s tudy confirmed that  techniques  for restricting 
the first-stage samples  so that  they were well balanced reduced 
biases, improved efficiency, and decreased the frequencies of 
large errors. 
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