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1. INTRODUCTION 
A number of large-scale sample surveys, such as the 

Current Population Survey and the National Crime Survey in 
the United States and the Labour Force Survey in Canada, 
are designed using rotating panel structures so that subjects 
are interviewed a number of times before being dropped from 
the sample. Although such surveys are used mainly to obtain 
cross-sectional estimates, it has long been recognized that 
information from the repeated interviewing of subjects 
provides an additional longitudinal data base that could be 
exploited to give estimates of gross change over time for a 
small additional cost (see, for example, Kalachek, 1979, and 
Fienberg and Tanur, 1983 and 1984). Naturally, there are 
problems associated with the use of such data to estimate 
change. The problems include how to handle period- 
to-period non-response, response error, period-to-period 
differences in sample-based weights, and inconsistencies 
between the estimates of change over time and point-in-time 
estimates. This paper considers the problem of handling 
period-to-period non-response in using panel data to provide 
estimates of gross change over time. 

In this paper we consider the case where survey 
responses are categorical as would be the case, for example, 
for the Current Population Survey where subjects are 
classified as employed, unemployed, or not in the labor 
force, and the National Crime Survey where subiects are 
classified according to the type of crime committe~t against 
them. We further restrict the problem to the case of 
estimating gross changes or gross flows from one time 
period to another rather than over several periods. 

One possible approach to the problem of gross flow 
estimation is to use only the information from individuals 
who are respondents in both of the interview periods. In 
order to use this approach, we must assume that individuals 
who do not respond in both periods are a random sample of 
all individuals (Rubin, 1976). However, in most cases, we 
do not believe that non-response occurs at random. For 
example, Saphire (1984) gives evidence that non-response in 
the National Crime Survey is related to victimizations. Paul 
and Lawes (1982) and Fienberg and Stasny (1983) give 
evidence that non-response in the Canadian Labour Force 
Survey is related to labor force classification. 

Since there is evidence that non-response does not occur 
at random, we would like to consider models for estimating 
period-to-period gross flows that allow us to treat 
non-response as related to survey classification. In this 
paper, we develop five such models. 

The models proposed in this paper are fit using maximum 
likelihood estimation to employment status data from the 
Current Population Survey (CPS) and the Labour Force 
Survey (LFS). Thus, we describe the models in terms of 
this data. The extension of the models to categorical data 
from other panel surveys is straightforward. 

In Section 2 of this paper, we set up notation for the 
problem of estimating month-to-month gross flows in labor 
force participation when some individuals are observed in 
only one of the two months. In Section 3, we consider 
estimating gross flows using ideas developed by Chen and 
Fienberg (1974) for maximum likelihood estimation in 
contingency tables with some partially cross-classified data. 
The method allows for some flexibility in modeling the 
processes that produce the observed gross flow data. We 
consider five models that have natural interpretations for the 
gross flow problem. The data analysis is given in Section 4. 
Conclusions and some extensions are given in Section 5. 

2. A MODEL FOR THE OBSERVED 
PANEL DATA 

The CPS is based on monthly interviews with 
respondents in approximately 60,000 households. The 
survey currently uses a 4-8-4 rotation scheme in which each 
of eight rotation groups is interviewed for four months, is 
dropped from the sample for the next eight months, and is 
reincluded for the final four months. In this CPS scheme, 
the month-to-month overlap is 75% while there is a 50% 
overlap in the sample location for the same month in 
successive years. The LFS is based on monthly interviews 
with respondents in approximately 56,000 households. 
Sampled households are retained in the sample for six 
months before being rotated out of the sample. In this LFS 
scheme, the month-to-month overlap is 83%. 

Persons interviewed for the CPS or LFS in a given month 
are classified as employed, unemployed, or not in the labor 
force. Here we do not consider individuals who are members 
of the armed forces or not in the population of interest 
although such additional classifications could easily be used. 

We estimate gross flows among the three labor force 
classifications using records of individuals matched over two 
consecutive months. Typically, before this matching is 
done, the monthly data are edited and records of individuals 
who failed to respond within that month are removed from 
the data file. It is still not possible to match records from one 
month to the next for individuals who rotated into or out of 
the sample and for individuals who only responded in one of 
the two months. Thus, as a result of the matching of two 
consecutive months of data, we have a group of records for 
completely cross-classified individuals, that is individuals 
whose labor force status in both months is available, and a 
group of records for partially cross-classified individuals 
whose labor force status is reported in only one month. 

Since we do not in general accept the assumption of 
non-random non-response, we would like to use the 
information from both completely and partially 
cross-classified individuals to estimate gross flows. 
However, we do not feel that all non-reponse violates the 
assumption of missing at random. For example, 
non-reponse due to panel rotation is designed non-response 
and, hence, should satisfy the definition of missing at 
random with respect to labor force status. Thus, in the 
following, we handle non-response due to panel rotation 
differently from non-response due to other reasons. 

The labor force classification data for individuals who 
responded in two consecutive months, t-1 and t, can be 
summarized in a 3x3 matrix. The available information for 
individuals who rotated out of the sample after the month t-1 
interview may be summarized in a rotation column while the 
available information for individuals who rotated into the 
sample before the month t interview may be summarized in a 
rotation row. Information for individuals who were non- 
respondents in one of the two months for reasons other than 
rotation may be given in row and column supplements. 
Thus, the observed gross flow data is as shown in Table 1. 

Using the method proposed by Stasny (1984), we extend 
the ideas of Chen and Fienberg (1974) for maximum 
likelihood estimation in contingency tables with partially 
cross-classified data and take the observed gross flow data to 
be the end result of a three-stage process. In the unobserved 
first stage, individuals are allocated to the nine cells of a 3×3 
matrix according to a single multinomial distribution. Let 

0~ij = probability that an individual has labor force 

classification i in month t-1 and j in month t. 
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At the second stage of the process, which is also 
unobserved, the sampling plan is determined and each 
individual may be chosen to either rotate out of the sample 
after the interview for month t-1 or rotate into the sample 
before the month t interview. Let 

nt = probability than an individual does not respond in 
month t due to panel rotation and 

nt_l = probability that an individual does not respond in 
month t-1 due to panel rotation. 

Note that we have modelled the probabilities of 
non-response for CPS both panels rotating into the sample as 
the same even though one panel is entering for the first time 
while the other is returning to the sample after eight months. 
Similarly, the probabilities of non-response are the same for 
the panel rotating out of the sample for the final time and the 
panel rotating out for a period of eight months. In view of 
the problem of rotation group bias, (e.g. see Bailar 1975, 
1979) it would be of interest to consider different probabilities 
of non-response due to rotation for each of the panels. Our 
models could easily be extended to allow for this distinction. 

Finally, in the third stage of the process, each remaining 
observation in the (i,j) cell of the gross flow matrix may 
either be a non-respondent for other reasons in month t-1 and 
lose its row classification, or be a non-respondent for other 
reasons in month t and lose its column classification. Let 

¢ij = probability that an observation in the (i,j) cell of the 
matrix loses its row classification and 

~gij = probability that an observation in the (i,j) cell of the 
matrix loses its column classification. 

We assume that the probability that an individual is a 
non-respondent in both months for any reason is zero. There 
are, in fact, individuals who are missing in both months. 
Models that allow for non-response in both months have 
been considered in Stasny (1983). 

TABLE 1: OBSERVED GROSS FLOW DATA 

Month t 

Month 

t-1 

E U N Rotation Row Supp. 

E XEE XEU XEN QE RE 

U xUE XUU xUN Qu Ru 

N xt¢ E x~aJ XNN QN RN 

Rotation BE Bu BN 
Col. Supp. C E C U C N 

where E = employed, 
U = unemployed, 
N = not in the labor force, 
xij = # of sampled individuals with labor force 

status i in month t-1 and j in month t, 
Qi = # of individuals who rotated out of the 

sample after month t- 1 and had employment 
status i in month t-1, 

Bj = # of individuals who rotated into the sample 
before month t and had employment status j 
in month t, 

R i = # of individuals who did not respond for 
other reasons in month t and had labor force 
status i in month t-1, and 

Cj = # of individuals who did not respond for 
other reasons in month t-1 and had labor 
force status j in month t. 

The data are observed after this third stage. From the 
observed data, we want to make inferences about the cell 
probabilities, {c0ij }, of the unobserved first stage of the 
allocation process. That is, our goal is to make inferences 
about the underlying cell probabilities as if there had been no 
loss of information. 

In the context of this three stage model, the probability 
that an individual with labor force classification i in month t- 1 
and j in month t is observed in the (i,j) cell of the gross flow 
matrix is (1- ¢0ij- gij)( 1- nt_l- nt)mij • Thus, the underlying 
probabilities for the observed gross flow matrix are as given 
in Table 2. 

TABLE 2: PROBABILITIES FOR OBSERVED 
GROSS FLOW DATA 

Month t 

E U N Rotation Row Supp. 
Month E 

t-1 U{(1-d~ij-Vij)(1-nt_x-nt)c0ij } {nt¢oi+ } {~j~tij(1-~t_l-nt)Ooij } 
N 

Rotation {~t-l°~+j} 

Col. Supp. {~i¢ij(1- nt_ 1- nt)¢oij } 

If mij is the expected count in the (i,j) th cell under the 
original multinomial sampling scheme, then the likelihood 
function for the observed data is proportional to 

{I-Iil--[j[(1- ¢ij- Vij )(1- nt-1- nt)mij] xij } 

x {I-Ii[~jgtij(1- nt_ 1- nt)mij]Ri} 

× {I-Ij[Xi*ij(1-×t-l-rtt)mij]%} 

× {I-Ii[ntmi+]Qi} × {l-Ij[nt_lm+j]Bj}. 

(1) 

Obviously, we cannot obtain MLE's for all of the 29 
parameters that appear in this likelihood using only the 21 
available observed counts. In order to estimate parameters, 
we will reduce the number of parameters by considering 
models for the ~ij and gij, the probabilities of non-response 
for reasons other than panel rotation. Five such models are 
developed in the following section. 

3. MODELS FOR NON-RANDOM 
NON-RESPONSE 

The probability, ¢ij, that an individual's month t-1 identity 
is lost depends on both the month t-1 and month t labor force 
classifications. Similarly, the probability, ~ij, depends on 
the labor force classifications for both months. We can 
reduce the number of parameters that must be estimated by 
using simpler models for the probability that a given month's 
labor force classification is lost. We consider five models for 
these parameters. The first two are of the type described by 
Chen and Fienberg (1974). The models are as follows: 

A. ¢ij = It-l(j) ~ij = ~t(i) 

B. ¢ij = it-1 Wij = ~t 

C. ~Pij = ~(j) Wij = t(i) 

D. ¢ij = Xt-l(i) Wij = ~'t(j) 

E. ¢ij-- t(i) Xl/ij- ~'(j)" 
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Under model A, the probability that an individual's labor 
force classification for a given month is lost depends on the 
month and the individual's classification in the observed 
month. Under model B, the probability that an individual's 
labor force classification is lost in a given month depends 
only on the month. Under model C, the probability that an 
individual's labor force classification is lost in a given month 
depends only on the labor force classification in the observed 
month. Under model D, non-response depends on the 
month and on labor force status in the month when the 
individual does not respond. Under model E, non-response 
depends only on labor force status in the month when the 
individual does not respond. 

Intuitively, models D and E are preferable to models A 
and C respectively since the probabilities of non-response 
under D and E depend on the labor force classifications in the 
month when an individual does not respond while under 
models A and C the probabilities of non-response depend on 
the classification in the observed month. An advantage of 
models A, B, and C is that under those models the likelihood 
function of equation (1) separates into a factor involving the 
m parameters alone, a factor involving the ;~ parameters 
alone, and a factor involving the 7: parameters alone. Thus, 
the MLE's for the m, ;~, and n parameters may be obtained 
separately under models A, B, and C. Under models D and 
E, the likelihood function only separates into two factors: 
one involving the m and ;~ parameters and a second involving 
the 7: parameters. Since the MLE's for the m and ;~ 
parameters must be obtained simultaneously, models D and E 
are more difficult to fit. 

3.1 Models A, B. and C 
In general, iterative methods must be used to obtain the 

MLE's under models A, B, and C. Since these models have 
previously been fit to CPS data (see Stasny and Fienberg, 
1985) and LFS data (see Stasny 1983, 1984), the following 
discussion does not include the formulas and details for 
obtaining the MLE's under these models. Note that under 
model A, there are 4 degrees of freedom while model B has 8 
degrees of freedom and model C has 7 degrees of freedom. 

3,2 Model D 
The likelihood function for the observed data under model 

D may be written as the product of two factors: 

fDX = {HiHj(1- ~t-x- ~t )xij} x {I-Ii~tQi (1- ~t-x- ~t )Ri} 

x {I-Ijnt_xBj (1- nt-1- ~t )Cj} and 

fD2 = {HiHj[(1- Xt-x(i)- kt(j))mij ]xij} 

x { Himi+Qi [~i~,t(j)mij]Ri} 

x {Hjm+jBj [Y'@t_l(i)mij]q }. 

The factor fD1 involves only the 7: parameters and is the same 
as the factor of the likelihood functions involving only the 
parameters under all five models described here. The 
parameters may be considered to be known since the panel 
rotation structure is built into the design of the sample. 
However, in both the CPS and LFS, housing units are the 
units rotating into and out of the sample. Thus, the sample 
design does not tell us exactly how many individuals will 
rotate into and out of the sample and we may want to treat the 

parameters as unknown. In that case, simple closed form 
estimates of the ~ parameters are 

~t-1 - B+/(x+++R++C++Q++B+) and (2) 
" = Q / ( x  + R + C  +Q + B )  /1~ t + + +  + + + + • 

Factor fD2 is maximized using a Lagrange multiplier to 

impose the constraint that ~iZjmij = x+++ Q++ R++ B++ C+. 

In general, the MLE's for the m and ;~ parameters must be 
found iteratively. The iterative procedure used for the data 
analysis of Section 4 is as follows: 

1. mij(o)= xij(x+++ Q++ R++ B++ C+)/x++ 

kt_l(i)(°) = C+/(x+++ R++ C+) and 

~t(j)(0) " -  R+/(x+++ R++ C+). 

2. mij(v+l)= xij + Ri{Kt(j)(V)mij(v)/Zk~.t(k)(V)mik(v)} 

+ Cj{ Kt-1 (i)(V)mij(v)/Zk;~t-l(k)(V)mkj(V)} 

+ Qi{mij(V)/mi+(v)}+ Bj{mij(V)/m+j(v) } 

kt_l(i)(v+l) = {~jCj[~,t_l(i)(V)mij(v)/Zkkt_l(k)(V)mkj(V)] } 

X {2j[Xij/(1 - Xt_l(i)(v) - Xt(j)(v))]}-I and 

~'t(j)(v+l) = £ ZiRi[Xt(j)(V)mij(v)/Zk~,t(k)(v)mik(V) ] } 

X { Y'~i[Xij/(1 - Kt_l(i)(v) - Kt(j)(v))] }-1. 

Step 2 is repeated for v - 0, 1, 2 .. . .  until the m and ;~ 
parameter estimates converge to the desired degree of 
accuracy. The initial estimates in step 1 above, and in the 
iterative procedure for model E given below, are merely 
suggested values. They may be replaced by any positive 

values satisfying ~i~jmij( 0)= x+++Q++R++B++C+ for the m 

parameters and any values between 0 and 1 for the ;~ parame- 
ters.There are 4 degrees of freedom associated with model D. 

3.3 Model E 
The likelihood function for the observed data under model 

E may be written as the product of two factors: 
fE1 = fD1 and 

fE2 = { HiI-Xj[(1- Z(i)- X(j))mij]xij } 

X {Himi+Qi [ZjX(j)mij]Ri} 

× { Hjm+jBj [~iX(i)mij]Cj }. 

Factor fE1 is maximized using equation (2). Factor fez is 
maximized using a LaGrange multiplier to impose the 

constraint that Gi~jmij = x+++Q++R++B ++C +. In general the 

MLE's for the m and X parameters must be found iteratively. 
The iterative procedure used for the data analysis of Section 4 
is as follows: 

1. mij(°) = xij(x+++ Q++ R++ B++ C+)/x++ and 

X(i)(0) = (R++ C+)/2(x+++ R++ C+). 

2. mij(v+l)= xij + Ri{Z,(j)(V)mij(v)/Ek;~(k)(v)mik (v) } 

+ Cj{ X(i)(V)mij(v)/ZkX(k)(V)mkj (v) } 

+ Qi{ mij(V)/mi+ (v) } + Bj{ mij(V)/m+j(v)} and 

X(i)(v+l) = { ~jRj [X(i)(V)mji(v)/Xk~'(k)(v)mjk (v)] 

+ ~j Cj [Z(i ) (V)mi j (v)/ZkZ(k)(v)mk j (v)] } 

X {2j[(xij  + xji)/(1 - X(i)(v) - X(j)(v))] } -1. 
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Step 2 is repeated for v = 0, 1, 2 . . . .  until the m and Z. 
parameter estimates converge to the desired degree of 
accuracy. There are 7 degrees of freedom associated with 
model E. 

4. DATA ANALYSIS 
The five models described in Section 3 were fit to CPS 

data from December, 1981 through December, 1982 and to 
LFS data from the single panel that rotated into the sample in 
August, 1979 and remained in the sample through January, 
1980. The CPS data have been weighted using sample-based 
weights. The models proposed in this paper are suitable for 
unweighted data from simple random samples of individuals 
(see Stasny and Fienberg, 1985). Although the available 
CPS data are not in exactly the correct form for our models, 
we will use the data for illustrative purposes. The LFS data 
used in this analysis is unweighted micro-data. However, 
since only a single panel is available, we do not have 
information on non-response due to panel rotation. Thus, 
we cannot estimate the rc parameters from the LFS data. 
This, in effect, reduces the degrees of freedom by 4 for each 
of the five models. Hence, models A and D will fit the LFS 
data exactly. 

As an example of the forms of the data, a single observed 
gross flow matrix from both the CPS and LFS is given in 
Appendix I. The entire CPS data set may be found in Stasny 
and Fienberg (1985) and the LFS data is given in Stasny 
(1983). 

The five models were fit to the CPS and LFS data using 
the procedures described in Section 3. For the iterative 
procedures, the criterion used for stopping the iteration was 
that the maximum difference between estimates of the m 
parameters at two consecutive steps was less than 0.5 and the 
maximum difference between estimates of the Z, parameters at 
two consecutive steps was less than 0.0005. 

The iterative procedure for obtaining the MLE's of the m 
parameters under models A, B, and C converged in 7 or 
fewer iterations in all cases. The ~. parameter estimates for 
models A and C were obtained in 6 or fewer iterations. Up 
to 16 iterations were required to obtain the MLE's of the m 
and Z, parameters under models D and E. 

The MLE's of all the n and ~. parameters and an example 
of the m parameter estimates under all five models for both 
the CPS and LFS data are given in Appendix II. The fits of 
the models, as measured by the X 2 statistic, are given in 
Table 3 and Table 4 for the CPS and LFS data respectively. 

TABLE 3: X 2 VALUES FOR FITTING THE 
WEIGHTED CPS DATA 

Model A Model B Model C Model D Model E 
Months (4d.fl) (8d.fi) (7d.fi) (4d.f.) 

12/81-1/82 81 5158 106 88 

1/82-2/82 15 5073 18 16 

2/82-3/82 6 5111 29 5 

3/82-4/82 12 5871 75 20 

4/82-5/82 44 5042 47 54 

5/82-6/82 48 5448 68 53 

6/82-7/82 24 5982 28 36 

7/82-8/82 13 5669 32 10 

8/82-9/82 63 6170 97 44 

9/82-10/82 11 5422 27 16 

10/82-11/82 23 5086 38 29 

11/82-12/82 20 4772 38 34 

(7 d.f.) 

111 

36 

39 

102 

65 

74 

54 

45 

97 

45 

50 

57 

TABLE 4: X 2 VALUES FOR FITTING THE LFS DATA 

Model A Model B Model C Model D Model E 
Months (0 d.fi) (4 d.f.) (3 d.fi) (0 d.fl) (3 d.f.) 

8/79-9/79 -- 19 337 -- 333 

9/79-10/79 -- 38 17 -- 17 

10/79-11/79 -- 49 1 -- 1 

11/79-12/79 -- 74 11 -- 10 

12/79-1/80 -- 43 19 -- 18 

Keeping in mind the fact that we have very large cell 
counts in both the CPS and LFS data, we are pleased with 
the fits of models A, C, D, and E for the CPS data as well as 
for the LFS data except in the case of the months 8/79-9/79 
data. (Models A and D, of course, fit the LFS data exactly.) 
Recall that under model B, the probability of losing a 
month's employment classification depends only on the 
month. The fact that this model provides a better fit than 
either model C or E to the 8/79-9/79 LFS data is consistent 
with the finding that, for LFS panels, non-response is high 
the first time a panel is included in the survey. In addition, 
since many people go on vacation in August, we expect more 
non-response in August than in September. 

Except for the 8/79-9/79 LFS data, the fits of models A, 
C, D, and E are fairly good, given the large cell counts. 
Under these four models, the probability of non-response is 
related to the employment classification either in the observed 
month (under models A and C) or the unobserved month (D 
and E). For both the CPS and LFS data, the fits of models A 
and D are similar and the fits of models C and E are similar. 
We may prefer to use a model with fewer parameters and 
hence would select either model C or E. However, the fits of 
models C and E are similar and it is not clear which of the 
two models should be prefered on that basis. 

The choice of either model C or E does make a difference 
in the values of the parameter estimates obtained from the 
model. For example, the estimated expected cell counts in 
the unemployed to unemployed cell of the unobserved first 
stage are always larger under model E than under model C. 
In addition, except for two cases where the counts are equal, 
the estimated expected cell counts in any of the cells 
involving the unemployment classification are higher under 

A l 

model E. Also under model E, the Z.(u ) s, the estimated 
probabilities that an unemployed person is a non-respondent 
for reasons other than panel rotation, are higher than the 
corresponding estimates under model C. 

It is not clear which of the models C or E is preferable 
based on the parameter estimates or the fit of the models. 
Intuitively, we feel that model E is more realistic since under 
that model non-response is related to employment status in 
the month when the non-response occurs. However, 
information other than that in the CPS and LFS data used 
here is needed to support that belief. 

5. EXTENSIONS AND CONCLUSIONS 
In this paper we have developed five models for 

estimating gross flows from categorical panel data having 
non-random non-response. The models were fit using 
maximum likelihood estimation to labor force status data 
from the CPS and LFS. The models under which the 
probability of non-response is related to labor force status in 
either the observed or unobserved month provided an 
adequate fit to the data. 

Intuitively, the model under which non-response is related 
to labor force status in the month when the individual is 
observed would be the prefered model. However, the model 
under which non-response is related to employment status in 
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the unobserved month provides a similar fit to the data. The 
fact that this model fits the data as well as the model we 
would intuitively prefer suggests that employment status in 
the observed month may serve as a surrogate for employment 
status in the unobserved month. Additional information is 
needed, however, in order to choose between the two 
models. 

In this paper, we have only considered estimating gross 
flows using two time periods. An important extension of 
these models would be to the case where more time periods 
could be used to estimate flows. Some extensions of the 
Chen-Fienberg type of models to higher-dimensional 
contingency tables are given in Chen (1972) and Chen and 
Fienberg (1976). If such models were used for estimating 
gross flows, it would be possible to include individuals who 
were non-respondents in more than a single time period. 
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Appendix I. Examples of CPS and LFS Data 

A. Example of Weighted CPS Data (Given in thousands) 

January 1982 

E 
December E 65445 

1981 U 1870 
N 2202 

Row 
U N Rotation Supp. 

1089 1 6 9 1  24457 4976 
3658 1277 2279 733 
1273 40803 15123 3059 

Rotation 24569 2631 15634 

Col. Supp. 5135 797 3262 

B. Example of Observed LFS Data. 

August 
1979 

September 1979 
Row 

E U N Supp. 
E 9223 128 662 473 
U 221 322 151 59 
N 256 164 5941 292 

Col. Supp. 997 69 677 

Appendix II. Parameter Estimates 

5016 

A. Estimated Probabilities of Non-Response Due, 
to Rotation - CPS Data. 

Months ~:t-1 7~t 
12/81- 1/82 .193 .189 

1/82- 2/82 .192 .192 
2/82- 3/82 .192 .191 
3/82 - 4/82 .192 .191 
4/82- 5/82 .192 .192 
5/82 - 6/82 .191 .191 
6/82- 7/82 .191 .190 
7/82- 8/82 .191 .191 
8/82- 9/82 .191 .191 
9/82 - 10/82 .192 .192 

10/82 - 11/82 .192 .192 
11/82 - 12/82 .192 .192 
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B. Estimated Espected Cell Counts After Unobserved First Stage - CPS Data (Given in thousands) 

Models A, B, C Model D Model E 
E U N E U N E U N 

12/81- E 121612 2232 3167 121415 2234 3145 121453 2244 3162 
1/82 U 3447 7431 2372 3532 7672 2419 3490 7648 2404 

N 4023 2561 75118 4034 2576 74935 4016 2566 74980 

C. Estimated Expected Cell Counts After Unobserved First Stage - LFS Data 

Models A, B, C Model D Model E 
E U N E U N E U N 

8/79 - E 10606 148 760 10598 158 759 10590 148 760 
9/79 U 263 386 179 256 401 174 275 402 188 

N 294 190 6809 293 202 6793 293 189 6790 

D. Estimated Probabilities of Non-Response - CPS Data 

Model A Model B Model C 

Months ~I(E) ~t-l(U)~I(N)~t(E) ~U) ~t(N) it-1 ~t ~(E) ~(U) ~(N) 
12/81- 1/82 .064 .108 .065 .064 .089 .060 .067 .064 .064 .098 .063 

1/82-2/82 .063 .097 .057 .061 .095 .059 .063 .062 .062 .086 .058 
2/82-3/82 .064 .087 .061 .069 .099 .063 .064 .068 .066 .093 .062 
3/82-4/82 .073 .108 .072 .067 .113 .061 .075 .068 .070 .110 .066 
4/82-5/82 .066 .089 .062 .064 .089 .062 .066 .065 .065 .089 .062 
5/82-6/82 .069 .107 .063 .070 .087 .065 .069 .069 .069 .097 .064 
6/82-7/82 .076 .106 .066 .077 .102 .069 .074 .076 .077 .104 .067 
7/82-8/82 .074 .102 .067 .072 .099 .060 .073 .069 .073 .100 .063 
8/82-9/82 .079 .108 .075 .076 .111 .066 .080 .075 .078 .110 .070 
9/82-10/82 .070 .102 .063 .069 .088 .060 .070 .067 .070 .095 .061 

10/82-11/82 .066 .093 .058 .064 .084 .055 .065 .062 .065 .089 .056 
11/82-12/82 .059 .091 .057 .061 .077 .054 .061 .060 .060 .084 .055 

Months 
12/81 - 1/82 

1/82- 2/82 
2/82- 3/82 
3/82 - 4/82 
4/82- 5/82 
5/82 - 6/82 
6/82- 7/82 
7/82- 8/82 
8/82- 9/82 

Model D Model E 

~-I(E) ~t-l(U)~t-l(N) ~t(E) ~t(U) it(N) ~(E) ~(U) ~(N) 
.063 .122 .064 .063 .111 .059 .063 .107 .063 
.062 .113 .055 .060 .114 .057 .062 .101 .057 
.063 .097 .060 .068 .115 .061 .066 .096 .061 
.072 .124 .070 .066 .134 .058 .070 .116 .066 
.066 .101 .060 .064 .101 .061 .065 .093 .061 
.068 .124 .061 .070 .101 .064 .069 .103 .063 
.075 .124 .063 .077 .115 .067 .077 .109 .066 
.073 .120 .065 .071 .112 .058 .072 .104 .063 
.079 .122 .073 .075 .137 .063 .077 .117 .070 

9/82- 10/82 .070 .118 .061 .069 .099 .058 .070 .098 .061 
10/82- 11/82 .066 .103 .057 .063 .096 .053 .065 .093 .056 
11/82- 12/82 .058 .103 .055 .061 .085 .052 .060 .088 .055 

E. Esimated Probabilities of Non-Response - LFS Data 

Model A Model B Model C 

Months it-l(E) ~t-l(U)~I(N) ~t(E) ~t(U) ~t(~ ~t-1 ~ ~(E) ~(U) ~(N) 
8/79-9/79 .089 .095 .087 .041 .071 .040 .089 .042 .065 .083 .064 
9/79-10/79 .049 .079 .044 .042 .063 .054 .048 .048 .046 .071 .049 

10/79-11/79 .038 .069 .034 .036 .071 .036 .038 .037 .037 .070 .035 
11/79-12/79 .027 .069 .028 .035 .062 .030 .029 .034 .031 .066 .029 
12/79-1/80 .024 .055 .023 .032 .049 .030 .025 .032 .028 .052 .027 

Model D Model E 

Months ~t-l(E) ~I(U)i~l(N) ~t(E) 2t(U) ~t(N) ~(E) ~(U) ~(N) 
8/79-9/79 .089 .095 .087 .040 .103 .038 .065 .105 .062 
9/79-10/79 .049 .108 .042 .041 .073 .055 .045 .090 .048 

10/79-11/79 .037 .092 .033 .035 .093 .035 .036 .092 .034 
11/79-12/79 .026 .100 .026 .034 .077 .029 .030 .089 .028 
12/79-1/80 .023 .078 .022 .032 .059 .030 .027 .068 .026 
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