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1. INTRODUCTION

Measurement of the correlated component of
response error in sample surveys is important for
three main reasons. First, if the correlation is due
to the interviewers, as we will assume throughout
this paper, a large correlation may indicate a
problem with interviewer training on that item or
with the design of the question itself. If such items
can be identified, they might be improved.

Second, the presence of the correlation inflates
the variance of the sample mean '[Ip, which is

commonly used as the estimator of the population
mean of the item responses. Let Yij be the response

of the j“' unit of interviewer i's assignment, i = 1,..,
K j=1, .., n. Writing N=2n;, n-1= Znyn, - /N,
we have

Var(fl,) - Var(3Z y; / N)

= Var(yy) [t + (n-T) /N, (1.1
where p = Cov(yi]-,yij.)/Var(yﬁ). If (n-1) is moder-

ately large, even a very small ¢ can dramatically
increase the variance of Hp.

Third, an estimate of the correlation ¢ can be
used to improve the estimate of the population
mean |, Letting y; = 'Jz‘yii / n,, then the best linear

unbiassed estimator of up based on the yi's has

optimal weights equal to the inverse of the
variances of the y;'s, which depend on ¢. In
particular, ﬁp = 36y; /3¢, with ¢; = 0 /{1 + (n; - 1)
¢l has smaller variance than the sample mean ﬁp =
Zny; /3n;

Our approach to this problem combines three
statistical methodologies: Empirical Bayes (Morris
1983), generalized linear models (GLIM) and
quasi-likelihoods (Nelder and McCullagh 1983),
and parametric bootstrap (Efron 1982a and b, Hill
1985). We are primarily concerned with four
issues. First, in Section 2 we discuss an Empirical
Bayes model for unbalanced dichotomous survey
data having positive intra-interviewer correlation.
In Section 5, we apply the model to data collected
in an experimental random digit dial (RDD)
telephone survey. OQur approach was able to handte
some of the special situations which arise in
telephone surveys, but which usually do not arise
in personal visit surveys. For example, interviewer
sample sizes are often widely discrepant in
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telephone surveys, since some interviewers work
more productive shifts than others; by contrast,
interviewer assignments are more easily planned
to have nearly equal size in personal visit surveys.

Second, in Section 3 we discuss the estimation
of the intra-interviewer corcelation coelficient
using a standard ANOVA estimator and a
maximum quasi-likelihood (MQL) estimator. For
two RDD survey items, we compared these
estimators using a parametric bootstrap, and were
surprised to find the ANOVA estimator
outperforming the MQL estimator.

Third, also in Section 3 we discuss the
estimation of the population mean up. As

suggested already, an estimate of p will allow us to
improve upon the usual estimator of up.

Fourth, in Section 4 we discuss a technique for
identifying discrepant interviewers; i.e., those who
make a large contribution to the interviewer
variance. Closer supervision of interviewers should
be possible in a centralized telephone interviewing
facility than in usual field surveys. In fact, "better
interviewer control” is often given among the
arguments in favor of telephone interviewing.
Therefore, our technique for identifying discrepant
interviewers should be of special interest to
managers of a_,'telephone survey. The Empirical
Bayes approach we have taken leads naturally to
an interviewer ranking, allowing identification of
discrepant interviewers.

2. AN EMPIRICAL BAYES MODEL FOR UNBALANCED
DICHOTOMOUS DATA WITH POSITIVE
INTRA-INTERVIEWVER CORRELATION

The random variables Yij from Section 1 will

now be defined specifically for the dichotomous
data model. Let Vij = 1 if the j*" unit of interviewer
i's assignment belongs to some category, and Yij = 0

otherwise, i=1,.,k j=1,.,n;Letp,= E[yijl i] be

the probability that interviewer i classifies a
randomly chosen unit as being in the category.
Given i, we assume that Yij and Y are indepen-

dent; hence yiilpi - Bemoulli(pi). If we let y, =
}Zyii / n,; denote the observed proportion for inter-
viewer i, then
y; | p; 24 Bin(n, p,)/ n, (2.1)
so that E(y; | p;) = p;, Var(y; I p;) = p;(1 - p;) / n,.
Now we further assume that the p;'s are

independent random variables, as they would be if
the interviewers participating in the survey were a



sample from an infinite population of interviewers.
Specifically, we assume the p;'s are a random

sample from a beta distribution having mean Ho
and variance pup(l- up), which we denote as
p; - Betal uy, pu (1 - p I,
0¢ upsl, 0<p<l.
Marginally,

(2.2)

the yis have beta-binomial
distributions with Var(y;) = g;l (1 - s )/n; where
gi=1+(n; - 1)p, so we write

y; - BBI My pikp(T = 1y)/nyl. (2.3)
In the generalized linear model literature (Nelder
and McCulloch, 1983), ¢ is called a dispersion
parameter, but since Oov(yﬁ, Yii‘) = pup(l - up) and
Var(yii) = (1 = py) imply Corr(yii, yij’) =pois
also the intra-interviewer correlation defined in
Section . This mode! for extra-binomial variation
was one of two explored by Williams (1982).

3. ESTIMATING THE INTERVIEWER CORRELATION
AND THE POPULATION MEAN

In this section, we describe two ways to
estimatep and up. First, we describe the maximum

quasi-likelihood estimators, then we describe the
usual ANOVA estimators. The mean-variance
relationship given in (2.3) results in the following
extended quasi-likelihood:
alpy, @) = -(172)2 dylu ) /g; - (1/72)Z loglpy),
where d;(jt) is the ith deviance component,
-2n, log(1 - up), ify;=0
di(lp) = \2n;ly; logly;/u,) + (1 - y;)
log [(1-y)/(1- u ), Ocy; <l (2.3)
-Znilog(up), fy;= L
To find maximum quasi-likelihood (MQL)
estimates of ( Hp p) we set the partial derivatives of

q to zero and solve. We obtain

w; = (n-1/§;2 and §; = (d;(1ig) -1)/(n; - 1), which
must be calculated iteratively. The following
simple algorithm can be used to calculate (ﬁp, )

(0) Fix a starting value for .
Then calculate (1)¢; =1+ (n; - 1)p

(2) ¢, =n; / p;

(3)w, = (n, - 1)? /p;2,

(4) ﬁp - 3oy, /3¢,

(5) d; = d;({l,), according to (2.3)
(6)S; = (d; - 1)/(n; - 1)

(D p-3wS, / 3w,
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(8) Repeat steps (1) - (7) until (ﬁp,

) converges.
Asymptotically, as the number of interviewers

k= oo,
iy iy Myt - mp)/Zci 0
) (2.4)
¢ b 0 2/3w,
In Section 1, we saw that the usual estimator of
E(yij) = W, is the sample mean, [Ip. The MOQL

estimator ﬁp is an alternative to ilp and has
smaller variance, since ﬁp is approximately the
best linear unbiased estimator of Hp @S observed

in Section 1.
The usual unbiassed estimator of O'p2 = Var (p))

which is obtained by equating sums of squares to
their expected values, is
G2 = (V), - V) / (0 - 5,2/k),
where i = 3n;/k, 2 = 3(n;- 7)2/(k-1), Vy= Snly; -
figl/(k-1), and V= Zny(l - y)/k@-1) (Kish
1962, p.110). Then p may be estimated by
6= 8/ y(1- ).

In Section 5, we apply these two sets of
estimators to two items on the RDD questionnaire.
We also give results of a bootstrap comparison of
the estimators.

4. IDENTIFYING DISCREPANT INTERVIEVERS

Managers of a survey need objective measures
of interviewer performance for purposes of quality
control. Response rates and production measures
are routinely tabulated for this purpose in many
surveys. In this section, we propose a procedure,
based on Empirical Bayes methods, which identifies
interviewers whose p, values are discrepant. We

cannot say that the recorded responses of these
extreme interviewers are less accurate than those
of the others, since we have no measure of bias for
any observation. However, we do know that these

interviewers contribute to the magnitude of sz

and thus to the total variance of ﬁp. The survey
manager may be able, for example by monitoring
the interviewer, to determine the cause of the
discrepancy.

The distributional assumptions given in (2.1)
and (2.2) imply by Bayes Theorem that

pilnyeta[u?= (1 - Bilyi + Bipp,
en;

1 + pn; n;

ul‘(lnul*)

»




where y = (yy, .., ¥y) and B; = (1 - p}/[1 + (n; - 1) pl.
The empirical Bayes estimate of p, is then b, = (1 -
ﬁi) y; * ﬁi ﬁp, where fii = (1 -p) /11 + (n; - 1) pl,
with ¢ and {1, determined from (2.3).

Note that P, is shrunk toward ﬁp and away
from the usual binomial estimator of p; y; The
shrinkage factors, ﬁi, differ among interviewers,

with the shrinkage being greatest for interviewers
having small n; and smallest for those having large

n;. In a sense, then, the Empirical Bayes estimates,
f’i' correct for the fact that spuriously large or
small values of y, are likely when the number of

cases handled by the ith interviewer is small. For
that reason, the ordering of interviewers based on
their y; values may not be retained for the p;

values, and thus the interviewers identified as
exireme by the two methods may differ. These
ideas are illustrated by the two examples in
Section 5.

S. EXAMPLES

The two examples in this section are from data
collected in an experimental RDD telephone survey
conducted between April and September of 1982
by the US. Bureau of the Census. About 16
interviewers participated in the experiment and
their assignments were interpenetrated within
shifts so that estimates of the interviewer
correlation could be made.

In the first example, p, is the item response
rate for a salary question on the RDD questionnaire.
Columns 2 and 3 of Table 1 show the observed
proportion of responses for that item (y;) in each
interviewer's assignment, and the assignment size
on which that statistic is based (n;). We call this
first example SAL2.

The usual estimates § and ﬁ'p are p = .0441 and

ﬁ'p = 7977. The estimates ¢ and ﬁp are obtained as
described in Section 2. They are p - .0378 and ﬁp

= 7889. Columnsxi and S5 of Table 1 give the
shrinkage factors, B, , and the empirical Bayes

estimates, 6i, of the interviewer response rates.

Figure 1 graphically illustrates the shrinkage
pattern of the Empirical Bayes estimates. The
crossover in the ordering of interviewers is clearly
shown. Interviewer 9 is identified on the basis of
the Empirical Bayes estimation procedure as
having the best item response rate, while
interviewer 4, who has the largest y, value, but the
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smallest n;, drops to sixth.

A graphical display like Figure 1 lets the survey
manager see immediately which interviewers are
giving evidence of discrepant behavior and which
are not. Without such a tool, a large number of
pairwise tests would be required to identify the
extreme interviewers. That procedure is
time-consuming and probably would require a
statistician’s judgment.

The approximate variances of ¢ and ﬁp can be
estimated from (2.4) to be

var(fly) = 1,(1- i) / 3¢; = 0005547 = (.0236)2

var(p) = 2/ 3w, - 0003494 = (0187)%

We can then obtain from (1.1) and (2.4) an
estimate of the approximate relative efficiency of
the two estimators of up,

RE(, 1) =(Zc)(1 + (a-1)p) / N
= Var(fi,)/Var(fl,) = 1232.

A similar comparison of theoretical relative
efficiencies of the two estimators of p is not
possible since Var(g) has not been determined for
the unbalanced binomial case.

In order to compare the exact behavior of the
two estimates of p, we used a parametric bootstrap.
The observed values of {I and p were used in the
prior to simulate p,*'s according to p;" - Betal. 7889,

(.0378)(.7889)(.2111)]. Then
simulated according to y;*Ip;* ~ Bin{n, p;*)/n; with

the y*'s were

the n;'s as given in Column 3 of Table 1. The Yi''s

were used to calculate {I* and §* and {i* and §*.
This procedure was repeated 1000 times and
means and standard deviations of the estimators
were calculated. The results for three different
repetitions of this bootstrap, together with the
theoretical values when available, are given in
Table 2 for SAL2.

In the second example, p; is the proportion of

households in interviewer i's assignment recorded
as having at least one member answering "Keeping
house” to the employment status question. For this
example ¢ = .0253 and ﬁp = 4324, while p = .0262
and ﬁp = 4439. Table 3 shows y, n,, ﬁi, and p, for
the 12 interviewers having responses to this
question and Figure 2 gives the shrinkage pattern.
We call this example KH3. A similar bootstrap to
that described above was run for KH3 and the
results are given in Table 4.

Three results seem apparent from this
simulation: ﬁp is better than ﬁp as an estimator of



Table 1. Data for SAL2

A A

Interviewer i VA n; B; P;
1 861 43 372 834
2 732 41 .383 754
3 679 28 476 731
4 929 14 645 838
5 884 249 093 875
6 872 39 394 839
7 692 26 495 740
8 695 95 211 715
9 922 116 180 898
10 882 93 215 862
11 653 124 170 676
12 722 79 244 738
13 775 129 165 777
14 869 122 173 855
15 729 155 141 737
16 738 61 294 753

Figure 1 Shrinkage Pattera for SAL2
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Tabie 2. Bootstrap for SAL2 based on 1000 repetitions

A
2. gy = 7889

Bootstrap  E(ji} E() SD()  SKj)  RE-Var(fi)sVar(fi)

1 7886 7889 0231 0258 1.247

2 .78%0 7894 0238 0265 1.240

3 7892 7895 0239 0260 1.183
Theory 7889 7889 0236 0262 1232

b. §ops = 0378

Bootstrap  E(p) ER) SD(R) SD{@)  RE-Var()/Var(g)

1 0391 0376 0192 0191 990

2 .0386 0372 0194 0196 1.021%

3 0394 .0382 0201 .0203 1.020
Theory 0378 0378 0187 - -

Ho ¢ is better than ¢ as an estimate of ¢, and the

bootstrap variance of § is larger than the
asymptotic variance given in Section 3. The first
result follows our intuition, but the second and
third results were both surprises. We offer several
possible expianations for these results: (1) the
asymptotic variance for § should be increased to
account for substantial statistical curvature; (2)
(related to (1)) since the quasi-likelihood for p is
that of a curved exponential family, a more
appropriate measure of variability is the
conditional variance, with conditioning on the
appropriate ancillary statistic; (3) § may improve
with larger values of k; (4) the KH3 example may
be atypical; (5) estimates of ¢ based on deviance
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Table 3. Data for KH3

Interviewer i Yi n; Si Si
1 609 23 618 507
2 600 25 .598 507
3 417 24 607 433
4 500 10 789 456
5 381 134 217 394
6 583 12 .756 478
7 438 16 699 442
8 340 53 412 383
9 489 90 292 476

10 476 21 639 456
11 167 30 553 320
12 .500 50 426 476

Figure 2 Shrinkage Pattern for KH3
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Table 4. Bootstrap for KH3 based on 1000 repetitions

a. iy - 4439

Bootstrap  E({i) B SD(}1) SD(i) RE=Var({i}/Var(ji)

1 4446 4443 0346 0374 1.168

2 4442 4448 0353 0382 1.171

3 4424 4434 0352 0385 1.196
Theory 4439 4439 0346 0379 1.200

b. aobs =.0262

Bootstrap  E(p) E@) SDR) SD(F)  RE-Var(g)/Var(p)

1 0295 0272 0260 0231 789

2 0290 0276 0265 0233 773

3 0272 0258 .0260 0234 810
Theory 0262 0262 0228 - -

may not be as well-behaved as estimates based on
sums of squares. Whatever the explanation, for
now, we recommend using  to estimate e and ﬂp,
with § replacing @ to estimate Wy

Further investigation is needed to determine a
good method for accomodating in the model fixed
effects, in addition o the random effect caused by
the interviewer. For example, respondents reached
at different times of the day tend to differ in their
responses to some items. Therefore, interviewers
working different shifts may differ with respect to
their mean responses, but the source of the
variability is due to a fixed effect (shift) rather
than to the interviewer himself. Other effects
which might affecl responses are interviewer



experience or case priority level. These kinds of

4. Kish, Leslie (1962) "Studies of Interviewer
differences among interviewers or case types

Variance for Attitudinal Variables,” Journal of
should not be reflected in the interviewer variance. the American Statistical Association. S7. 92 -
Williams (1982) suggests two models, each of 'I"G————__m
which allows [ixed effecis in addition to the 5. McCullagh, P. and Nelder, J.A. (1983) Generalized
random effect causing the extra-binomial variation. Linear Models, Chapman and Hall, NY.
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