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I. INTRODUCTION 
Measurement of the correlated component of 

response error in sample surveys is important for 
three main reasons. First, if the correlation is due 
to the interviewers, as we will assume throughout 
this paper, a large correlation may indicate a 
problem with interviewer training on that item or 
with the design of thequest ion itself. If such items 
can be identified, they might be improved. 

Second, the presence of the correlation inflates 
the variance of the sample mean ~t~p, which is 

commonly used as the estimator of the population 
mean of the item responses. Let Yij be the response 

of the jth unit of interviewer i's assignment, i = I ..... 

k; j = I ..... n i. Writing N = En i, n-=]- = Y.ni(n i - I)/N, 

we have 

Var(~p) = Var(~Y. Yij / N) 

= [Var (Yij) + (n -=7] ) Cov(Yij,Yij,)]l N 

= Var(Yij) [I + (n-TI - ) p]IN, (I . I)  

where p = Cov(Yij,Yij,)IVar(Yij). If (n---7] - ) is moder- 

ately large, even a very small ~ can dramatically 
increase the variance of ~p. 

Third, an estimate of the correlation p can be 
used to improve the estimate of the population 
mean ~tp. Letting Yi = ~Yij / ni, then the best linear 

unbiassed estimator of l~p based on the Yi'S has 

optimal weights equal to the inverse of the 
variances of the Yi'S, which depend on ~. In 

particular, Op = Y.ciY i lY.c i with c i = n i I [I + (n i - I), 

~)] has smaller variance than the sample mean ~p = 

~niY i l~n i. 

Our approach to this problem combines three 
statistical methodologies: Empirical Bayes (Morris 
1983), generalized linear models (GLIM) and 
quasi-likelihoods (Nelder and McCullagh 1983), 
and parametric bootstrap (Efron 1982a and b, Hill 
1985). We are primarily concerned with four 
issues. First, in Section 2 we discuss an Empirical 
Bayes model for unbalanced dichotomous survey 
data having positive intra-interviewer correlation. 
In Section 5, we apply the model to data collected 
in an experimental random digit dial (RDD) 
telephone survey. Our approach was able to handle 
some of the special situations which arise in 
telephone surveys, but which usually do not arise 
in personal visit surveys. For example, interviewer 
sample sizes are often widely discrepant in 

telephone surveys, since some interviewers work 
more productive shifts than others; by contrast, 
interviewer assignments are more easily planned 
to have nearly equal size in personal visit surveys. 

Second, in Section 3 we discuss the estimation 
of the intra-interviewer correlation coefficient 
using a standard ANOVA estimator and a 
maximum quasi-likelihood (MQL) estimator. For 
two RDD survey items, we compared these 
estimators using a parametric bootstrap, and were 
surprised to find the ANOVA estimator 
outperforming the MQL estimator. 

Third, also in Section 3 we discuss the 
estimation of the population mean l~p. As 

suggested already, an estimate of p will allow us to 
improve upon the usual estimator of ~p. 

Fourth, in Section 4 we discuss a technique for 
identifying discrepant interviewers; i.e., those who 
make a large contribution to the interviewer 
variance. Closer supervision of interviewers should 
be possible in a centralized telephone interviewing 
facility than in usual field surveys. In fact, "better 
interviewer control" is often given among the 
arguments in favor of telephone interviewing. 
Therefore, our technique for identifying discrepant 
interviewers should be of special interest to 
managers of a, telephone survey. The Empirical 
Bayes approach we have taken leads naturally to 
an interviewer ranking, allowing identification of 
discrepant interviewers. 
2. AN EMPIMICAL BAYES MODEL FOR UNBALANCED 
DICHOTOMOUS DATA WITH POSITIVE 
IMTMA-INTI~VIEWE'M COi~ELATION 

The random variables Yij from Section I will 

now be defined specifically for the dichotomous 
data model. Let Yij = I if the jth unit of interviewer 
i's assignment belongs to some category, and Yij = 0 

otherwise, i = I ..... k- j = I ..... n i. Let Pi = E[Yijl i] be 

the probability that interviewer i classifies a 
randomly chosen unit as being in the category. 
Given i, we assume that Yij and Yij' are indepen- 

dent; hence YijlPi - Bernoulli(Pi). If we let Yi = 

~Yij / ni denote the observed proportion for inter- 

viewer i, then 

y i l P i  ind Bin(ni ' Pi)l ni ' (2.1) 

so that E(Yi[ pi ) = Pi, Var(Yi [ Pi ) = Pi (I - pi ) / n i. 

Now we further assume that the Pi 'S are 

independent random variables, as they would be if 
the interviewers participating in the survey were a 
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sample from an infinite population of interviewers. 
Specifically, we assume the Pi'S are a random 

sample from a beta distribution having mean ~tp 

and variance ettp(l-  tip), which we denote as 

Pi-Beta[  Ltp,{)pp(1 - Ltp.)], (2.2) 

0 ~ Ltp~l, 0 ~ 0 ~1. 

Marginally, the Y i 'S  have beta-binomial 

distributions with Var(y i) = (~iPp(l = Ltp)/n i where  

Pi ffi 1 + (n i - 1 )0, so we write 

Yi" BB[ I.tp, 0ilZp( 1 - I.tp)/ni]. (2.3) 

In the generalized linear model literature (Nelder 
and McCulloch, 1983), p is called a dispersion 
parameter,  but since Cov(Yij, Yij,) = 0tip(1 - tip) and 

Var(Yij) = tip(l - lap) imply Corr(Yij, Yij,) = p, to is 

also the intra-interviewer correlation defined in 
Section I. This model for extra-binomial variation 
was one of two explored by Williams (1982). 
3. ESTIMATING TI~ INTERVIEVER CORRELATION 
AND THE POPULATION MEAN 

In this section, we describe two ways to 
estimate [~ and lap. First, we describe the maximum 

quasi-likelihood estimators, then we describe the 
usual ANOVA estimators. The mean-variance 
relationship given in (2.3) results in the following 
extended quasi-likelihood: 

q(Jap, Q) = -(I/2)7 di(Jap)/~) i - (I/2)7 log(~)i) , 

where di(Ja p) is the i th deviance component, 

-2n i log( 1 - lap), if Yi = 0 

di(J.t p) = 2ni{Y i Iog(yi/~t p) + (I - yi )" 

log [( I -Yi)l( l - j.tp)]}, 0< Yi < I (2.3) 

-2nilog(j.tp), if Yi = I. 

To find maximum quasi-likelihood (MQL) 
estimates of (~tp, ~))we set the partial derivatives of 

q to zero and solve. We obtain 

j.tp = 7ciY i / Y.ci, c i = ni/~i and @ = 7wiSi/Y.w i, 

w i = (n i- I)2/~i 2 and S i = (di(~t p) - l ) l (n  i - I), which 

must be calculated iteratively. The following 
simple algorithm can be used to calculate (Op, {~): 

(0) Fix a starting value for (~. 
Then calculate ( 1 ) (~i = 1 + (n i - I )(~ 

(2) c i = n i / ~i 

(3) w i = (n i - 1 )2/@i 2, 

(4) ~p = 7ciY i I7.ci, 

(5) d i = di(~tp), according to (2.3} 

(6) S i - (d i - l)/(n i - I) 

(7) t~ = XwiSi / Xwi 

(8) Repeat steps ( 1 ) - (7) until (~tp, 

0) converges. 
Asymptotically, as the number  of interviewers 

k'q) OO 

0! 1 _ ( 2 . 4 )  

D ) 0 2/E 

In Section I, we saw that the usual estimator of 
E(Yij) = lZp is the sample mean, Ep. The MQL 

estimator ~p is an alternative to ~p and has 

smaller variance, since ~tp is approximately the 

best linear unbiased estimator of lZp, as observed 

in Section I. 
The usual unbiassed estimator of c~p 2 = Var (pi) , 

which is obtained by equating sums of squares to 
their expected values, is 

2 = (V b _ Vw ) / (rl - Sn21kfi), 

where ~ = 7ni/k, Sn2= 7(n i- fi)2/(k-I ), Vb= Y.ni(Y i - 

~p)2/(k- I ), and Vw= 7niYi(l - Yi)Ik(fi- 1 ) (Kish 

1962, p.l I0). Then p may be estimated by 
= ~p21J~p(l- ~p). 

In Section 5, we apply these two sets of 
estimators to two items on the RDD questionnaire. 
We also give results of a bootstrap comparison of 
the estimators. 
4. IDENTIFYING DISCREPANT INTF~VIEVERS 

Managers of a survey need objective measures 
of interviewer performance for purposes of quality 
control. Response rates and production measures 
are routinely tabulated for this purpose in many 
surveys. In this section, we propose a procedure, 
based on Empirical Bayes methods, which identifies 

interviewers whose Pi values are discrepant. We 

cannot say that the recorded responses of these 
extreme interviewers are less accurate than those 
of the others, since we have no measure of bias for 
any observation. However, we do know that these 
interviewers contribute to the magnitude of (~p~ 

and thus to the total variance of j~p. The survey 

manager may be able, for example by monitoring 
the interviewer, to determine the cause of the 
discrepancy. 

The distributional assumptions given in (2.1) 
and (2.2) imply by Bayes Theorem that 

pil~---Beta [ l i = ( l  -Bi)y i  +Bi~tp, 

~)ni Vi l-ui') 

I. ~)n i n i 
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where y = (Yl .... , yk ) and B i = (I -{))/[I + (n i - I)~)1. 

The empirical Bayes estimate of Pi is then ~i = (I - 

Bi ) Yi + l~i l~p, where Bi = (I - ( s ) / [ I  + (n i - I) to], 

with p and tip determined from (2.3). 

Note that Pi is shrunk toward ~p and away 

from the usual binomial estimator of Pi' Yi" The 

shrinkage factors, Eti, differ among interviewers, 

with the shrinkage being greatest for interviewers 
having small n i and smallest for those having large 

n i. In a sense, then, the Empirical Bayes estimates, 

f)i, correct for the fact that spuriously large or 

small values of Yi are likely when the number of 

cases handled by the i th interviewer is small. For 
that reason, the ordering of interviewers based on 
their Yi values may not be retained for the ~)i 

values, and thus the interviewers identified as 
extreme by the two methods may differ. These 
ideas are illustrated by the two examples in 
Section 5. 
5. EXAMPLES 

The two examples in this section are from data 
collected in an experimental RDD telephone survey 
conducted between April and September of 1982 
by the U.S. Bureau of the Census. About 16 
interviewers participated in the experiment and 
their assignments were interpenetrated within 
shifts so that estimates of the interviewer 
correlation could be made. 

In the first example, Pi is the item response 

rate for a salary question on the RDD questionnaire. 
Columns 2 and 3 of Table 1 show the observed 
proportion of responses for that item (yi) in each 

interviewer's assignment, and the assignment size 
on which that statistic is based (ni). We call this 

first example SAL2. 
The usual estimates ~'and ).t"p are p = .0441 and 

).t~,. = .7977. The estimates ~ and ~p are obtained as 

described in Section 2. They are 0 = .0378 and ~tp 

= .7889. Columns 4 and 5 of Table I give the 
A 

shrinkage factors, B i , and the empirical Bayes 

estimates, Pi, of the interviewer response rates. 

Figure I graphically illustrates the shrinkage 
pattern of the Empirical Bayes estimates. The 
crossover in the ordering of interviewers is clearly 
shown. Interviewer 9 is identified on the basis of 
the Empirical Bayes estimation procedure as 
having the best item response rate, while 
interviewer 4, who has the largest Yi value, but the 

smallest n i, drops to sixth. 

A graphical display like Figure I lets the survey 
manager see immediately which interviewers are 
giving evidence of discrepant behavior and which 
are not. Without such a tool, a large number of 
pairwise tests would be required to identify the 
extreme interviewers. That procedure is 
time-consuming and probably would require a 
statistician's judgment. 

The approximate variances of 0 and ~I) can be 

estimated from (2.4) to be 
var(~tp) = l~p(l- ~p) / ~ci= .0005547 = (.0236) 2 

var(0) = 2 / T.w i = .0003494 = (.0187) 2. 

We can then obtain from (I.I) and (2.4) an 
estimate of the approximate relative efficiency of 
the two estimators of lip, 

RE(~p.~p) =(~ci)(l + (~'-I) ~) / N 

= Var(~p)IVar(~p) = 1.232. 

A similar comparison of theoretical relative 
efficiencies of the two estimators of p is not 
possible since Var(~) has not been determined for 
the unbalanced binomial case. 

In order to compare the exact behavior of the 
two estimates of p, we used a parametric bootstrap. 
The observed values of ~t and p were used in the 
prior to simulate pi*'s according to Pi* - Beta[.7889, 

(.0378)(.7889)(.211 I)]. Then the yi*'s were 

simulated according to yi*lPi* - Bin(n i, pi*)/ni with 

the ni's as given in Column 3 of Table I. The yi*'s 

were used to calculate ~t" and ~* and ~* and ~*. 
This procedure was repeated 1000 times and 
means and standard deviations of the estimators 
were calculated. The results for three different 
repetitions of this bootstrap, together with the 
theoretical values when available, are given in 
Table 2 for S AL2. 

In the second example, Pi is the proportion of 

households in interviewer i's assignment recorded 
as having at least one member answering "Keeping 
house" to the employment status question. For this 
example ~ = .0253 and ~p = .4324, while (~ = .0262 

and ~tp = .4439. Table 3 shows Yi, ni, l~i, and Pi for 

the 12 interviewers having responses to this 
question and Figure 2 gives the shrinkage pattern. 
We call this example KH3. A similar bootstrap to 
that described above was run for KH3 and the 
results are given in Table 4. 

Three results seem apparent from this 
simulation: ~tp is better than ~p as an estimator of 
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Interviewer i 

Table I. Data for SAL2 

Yi ni Bi Pi Interviewer i 

Table 3. Data for KH3 

A 

Yi ni Bi Pi 

1 .861 43 .372 .834 I .609 23 .618 ,507 

2 .732 41 .383 .754 2 .600 25 .598 .507 
3 .679 28 .476 .731 3 .417 24 .607 .433 
4 .929 14 .645 .838 4 .500 I0 .789 .456 
5 .884 249 .093 .875 5 .381 134 .217 .394 
6 .872 39 .394 .839 6 .583 12 .756 .478 
7 .692 26 .495 .740 7 .438 16 .699 .442 
8 .695 95 .211 .715 8 .340 53 .412 .383 
9 .922 116 .180 .898 9 .489 90 .292 .476 
I0 .882 93 .215 .862 I0 .476 21 .639 .456 
II .653 124 .170 .676 II .167 30 .553 .320 
12 .722 79 .244 .738 12 .500 50 .426 .476 
13 .775 129 .165 .777 
14 .869 122 .173 .855 
15 ,729 155 .141 .737 
16 .738 61 .294 .753 

Figure I Shrinkage PetLern f i r  SAL2 

I! . 
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i 
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! 
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Table 2. Bootstrap for SAL2 based on 1000 repetitions 

A 

a. Pobs = .7889 
Boo~ap E(~) ~) S~) SD(~) RE-Var(~)/Var(~) 

I .7886 .7889 .0231 .0258 1.247 
2 .7890 .7894 .0238 .0265 1.240 
3 .7892 .7895 ,0239 ,0260 1.183 

Theory .7889 ,7889 ,0236 ,0262 1.232 

b.~ -.0378 

Bootstrap ~) E~) S~) SD(~ RE-Var(~/Var(Q) 
I .0391 .0376 ,0192 ,0191 .990 
2 .0386 .0372 ,0194 .0196 1.021 
3 .0394 .0382 ,0201 .0203 1.020 

Theory .0378 .0378 ,0187 - 

pp, ~ is better than ~ as an estimate of 0, and the 

bootstrap variance of ~ is larger than the 
asymptotic variance given in Section 3. The first 
result follows our intuition, but the second and 
third results were both surprises. We offer several 
possible explanations for these results: (I) the 
asymptotic variance for ~ should be increased to 
account for substantial statistical curvature; (2) 
(related to(1))  since the quasi-likelihood for 0 is 
that of a curved exponential family, a more 
appropriate measure of variability is the 
conditional variance, with conditioning on the 
appropriate ancillary statistic; (3) ~ may improve 
with larger values of k; (4) the KH3 example may 
be atypical; (5) estimates of 0 based on deviance 

F i g u r e  2 Shrinkage Pattern for I ( l t 5  

I) ~ 3 7 m l  %u. ~ I n  
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Table 4. Bootstrap for KH3 based on 1000 repetitions 

a. Pobs=.4439 

Boo~ap  E(~) Ep) S~p) S~p) RE=Var(~)/Var(~) 
I .4446 .4443 .0346 .0374 1.168 
2 .4442 .4448 .0353 .0382 1.171 
3 .4424 .4434 .0352 .0385 1,196 

Theory .4439 .4439 .0346 .0379 1.200 

b. ~bs=.0262 

Bootstrap E(~) ~) S~) S~) RE=Var(~IVar(~) 
I .0295 .0272 .0260 .0231 .789 
2 .0290 .0276 .0265 .0233 .773 
3 .0272 .0258 .0260 .0234 .810 

Theory .0262 .0262 .0228 - 

may not be as well-behaved as estimates based on 
sums of squares. Whatever the explanation, for 
now, we recommend using ~ to estimate e and ~p, 

with ~ replacing ~, to estimate pp. 

Further investigation is needed to determine a 
good method for accomodating in the model fixed 
effects, in addition to the random effect caused by 
the interviewer. For example, respondents reached 
at different times of the day tend to differ in their 
responses to some items. Therefore, interviewers 
working different shifts may differ with respect to 
their mean responses, but the source of the 
variability is due to a fixed effect (shift) rather 
than to the interviewer himself. Other effects 
which might affect responses are interviewer 
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experience or case priority level. These kinds of 
differences among interviewers or case types 
should not be reflected in the interviewer variance. 
Williams (1982) suggests two models, each of 
which allows fixed effects in addition to the 
random effect causing the extra-binomial variation. 

REFERENC~ 
I. Efron, B. (1982a)"The Jackknife, the Bootstrap, 

and Other Resampling Plans," SIAM ~.CB..MS, 38. 
2. Efron, B. (1982b)"Maximum Likelihood and 

D~cision Theory," Annals of Statistics, 7, I - 26. 
3. Hill, J.R. (1985)"Statistics: An Empirical Bayes 

Approach," Technical Report #21, Center for 
Statistical Sciences, The University of Texas at 
Austin. 

4. Kish, Leslie (1962)"Studies of Interviewer 
Variance for Attitudinal Variables," Journal of 
the American Statistical Association, 57, 92 - 
115. 

5. McCullagh, P. and Nelder, J.A. (1983) Generalized 
Linear Models, Chapman and Hall, NY. 

6. Morris, C.N. (I 983) "Parametric Empirical Bayes 
Inference Theory and Applications (with 
discussion)", Journal of the American Statistical 
Association 78, 47 - 65. 

7. Williams, D.A. (1982)"Extra-binomial variation 
in Logistic Linear Models," Applied Statistics, 
31 ,144-  148. 

348 


