IMPUTATION IN A PERIODIC SURVEY

Phillip S. Kott,

The problem of how to impute for nonresponse
in a survey conducted repeatedly over time has
sean little theoretical development. This paper
provides a model-based analysis of the updated
historical imputation strategy - an approach to
imputation dubbed the "ratio-of-identicals
method" by the Census Bureau (for example,
Huang 1984).

While in practice surveys are often
considerably more complicated than anvthing
discussed here, the analysis does bear edible
fruit. Key conceptual issues are isolated and a
practical test for evaluating alternative
imputation strategies is introduced.

Section 1 discusses the standard technique
of imputation with the respondent mean (of a
cell) both in terms of a parametric and a
quasi-random response model. Section 2 develops
the updated historical imputation methodology and
investigates its properties under these two types
of models. Section 3 proposes a times series
model under which there are potential gains from
exponentially smoothing historical values. A
test is introduced in section & for comparing
alternative mechanisms for calculating the
historical values.

An empirical example using monthly gasoline
volumes reported to the Energy Information
Administration follows.

see

1. THE STANDARD FRAMEWORK

The Problem

Consider a survey conducted among a
population of N units to estimate the total
quantity of some parameter of interest. Let
X i be the quantity, of the parameter contained
by unit i, and X= IX;.

We will assume that, in the absense of
nonresponse to the survey, X is estimated based
on a simple random sample of n<N distinct units.
We allow the possibility that n=N; in other
words, the survey may be a complete census.

We are restricting the theoretical analysis
in this and subsequent sections to a unstratified
population, but it is possible to think of the
population under study as a single stratum or
cell of a larger population. In the example
offered in Section &, this is indeed the case.

One estjmator of X is the simple expansion
estimator: g=(N/n) ¥ X;. Throughout the paper,
units are relabelled so that §Y; sums only the
Y-values of those units in the relevant class of
k units. In this case, L X| is the sum of the
parameter of interest contained by the n units in
the sample exclusively. .

Now suppose that among the n units in the
sample only ngunits respond to the survey. If
that is the case, one must impute values for the
remaining nng units.

1.1

1.2 A Simple Imputation Strategy

(L)

The simplest and most popular imputation
strategy is to proxy the missing value of each
respondents. In our frameuork, this means to use
X*= “X}/ng in place of the nonrespondent values
B "
€ ¢ .
XE’(N/»\\ZX\ hag
= ()X v T x
The estimator in the last line of (1) has the
same form as the expansion estimator with np
it as Xg. This should not cause any confusion.
1.3 A Parametric Model
last subsection is the assumption that )
nonresponding units are similar to respondents.

nonrespondent by the average value of the
in :
]

= (N nR,

= ("N 2 Xy
replacing n. As a result, ue will also denote

2 .
Implicit in the development of Xg in the

One way to formalize this similarity is by a
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parametric model
form:

in which every unit has the
X, = L (1vEs Y
where &, is a random variable with mean zero.

Equation (2) stipulates that the differences
among the X; can be treated as random noise.
(N.B. In this paper, we have abstracted away from
stratified sampling designs, where one has the
luxury of applying a different version of (2) to
each stratum.)

§t is easy to see that under the model
2}, Xg

2)

in
is an unbiased astimator:
EM(xE~X): NG - M

= O,

(The subscript "M" on the expectation operator
used to specify that the expectation is with
raspect to the model.)

If the &, are,independent and identically
distributed, then Xg is the best linear unbiased
estimator of X given only the ng responses. This
is well known. Suppose, however, a survey of
X-values is taken repeatedly over time, and some
units that have failed to respond to the current
survey did respond.to a previous survey. If
that is the case, Xg may be improved upon by
using the information contained in the
previous survey. More on this in a later section.

is

1.4 A Response Model

Many survey statisticians are uncomfortable
with the parametric model expressed in equation
(2). They would prefer to estimate X free of any
assumptions about the parameter of interest.
Assumptions can, after all, be wrong. An
assumption-free approach is possible, however,
only in the absense of nonresponse. When faced
with the spectre of nonresponse, these
statisticians are forced to use a model. The
model they use, however, is of response behavior
rather than parametric behavior.

In a quasi-randomized response model,
noenresponse is treated as the realization of a
random variable. Each unit is assumed to have a
positive probability of responding to the survey.
Response probabilities become little more than
another layer of the random selection process in
the design-based theory of sample design and
inference.

The simple quasi-random response model we
Wwill use here assumes that each unit is equally
likely to repond to the survey. It is thgn
possible to show that the expectation of
repect to the survey design (simple random
sampling without replacement) and the response
model is X. As a result, we say that Xg¢ is
design unbiased. (Since we have defined design,
unbiasedness with respect to a response model, Xg
is said to be dasign unbiased even when n=N, and
there is no sampling design except in a trivial
sense. ) -~

The design unbiasedness of Xg is, strictly
speaking, conditional on the number of
respondents being positive (ng>0). For a more
thorough introduction to the design-based theory
of imputation complete with a proofaof the
conditional design unbiasedness of X§, the reader
is referred to 0h and Scheauren (1983).

In practice, it is rarely the case that all
units are equally likely to respond.
Statisticians are aware of this and attempt to
partition the population into response classes
containing units with equal probabilities of
nonresponse. For our purposes, it is useful to
abstract away from the need to break up the
population into response classes just as ue
abstracted away from complicated survey designs.

One last point and we will be ready to
tacklg updated historical imputation. Recall
that Xg is design unbiased under the response
model no matter how the X; are specifed. In a
similar vein, observe that Xg is model unbiased
under (2) even if the units have different
likelihoods of response (or different
probabilities of selection for that matter).

with



2. THE UPDATED HISTORICAL VALUE
2.1 The Methodology
Suppose previous X-values for a
nonrespondent i are known. One reasonable method

for imputing_X; is to "update the historical

i R
value™ of unit i .. X ..;(
- “ o~ i
. ' 2% . (3
where é; is the imputed value of 4§, and
is the historical value of k, which is

derived from k's (and perhaps some other
units') previously reported values (the
mechanism for determining X, will be
left vague for the moment).

Equation (3) says that a proxy for X, ig found
by multiplying the historical value of i, X;, by
an estimate for the ratio of i's current value to
its _historical value. MWe will call this ratio,
X,/X,, the grow rate of i. The estimate of
this rate in (3), the so called
"ratio-of-identicals,™ is simply the (weighted)
average of the growth rates of the respondents.
Using this proxy, the estimator of X is

»
Xy = (M) T X; .
= (IF i v X1
W o~ /R N -
= (M EFR(E %/ B%) .
2.2 A Parametric Model )
The imputation strategy expressed by

equations (3) and (4) can be justified using the
following two equation "random effects™ model:

(4)

KB K (1+€,%) (5)
, XiTA(LtEL), 6)
where £11 and &, have means of zero and are
resp cﬁLvely independent across units (e.g.,
ECExi'€x;N=0 for k=1 or 2, i#j). It is not
necessary for £;; and €2} to be uncorrelated.
Nor

is it necessary for the £if to be identically
distributed given a vector of ?; values. We do
assume, however, that they are identically
distributed unconditionaglly, that is, before the
values of the g, C(and thus the X;) become knoun.
Moreover, we assume that the &3 are identically
distributed and that the covariance of Ezi' and
€1, is constant over the units.

What equations (5) and (6) say in words is
that the differences among the X; have two random
sources. Source one is the differences among the
historical values. The daviation of X: from the
common mean is the random variable Mg, . Source
two is the differences among.the unit growth
rates. The deviation of X;/X; from the common
mean is A'Ey.

The imputation strategy in (3)
first source of deviation contained in the
unknown X;, but not the second. LIt does this by
employing thg historical value, X;, in
determining Xy. On the other hand, the strategy
of imputing using the respondent mean fails to
capture either source of deviation. Intuitively,
unless there is strong dependency between the tuwo
random components, the updated historical
imputation methodology should prove to be
superior.

captures the

2.3 A Theorem
It is helpful to recast the structural

equations (5) and (6) into a reduced form:

1T Blallrgg vE Y E8) . N
It is a simple exercise (see the appendix, which
is available from the autor upon request) to
redefine 8 and &, so that
Xiz Ba(L+€i+€2), (8)

where the mean of §,;; is zero. While /3 and €21
do not have the simple intuitive interpretations
of their original counterparts, the subsequent
mathematics is streamlined with their use.

In the Appendix, the following lemma is

proven.

Lemma 1. If equation (8) holds with
EC€xi)=0, for k=1,2, all i; 9.1)
E(g;93)=E(g;)E(g];)
for gr=g(fix,E2k), i%j (9.2)
E( €x;3)= 642, for k=1,2; (9.3
EQ€yi €20 )=0040,5 (9.4)
1/ng? 20, €9.5)
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then

A
Em(Xg-X3=0, 2 (10)
Em t§ P-X)] = BN (6 2p6,0,06, W) (11D
En(Xy=X) 2 © = Aun DR g o o2
and B, [(&,-X)?] —QIA\N'Q’[‘Rd_l';(ta_..I +(,P,1,2.,,;)(;-;)]‘(13)
(N.B. As was the case with £;’ , tha £} need only

have identical variances unconditjonally.)

Equation (13) tells us that X, is not model
unbiased unless €1, and &, are uncorrelated.
Nevertheless, from (11) and (13), one,can see
that the model mean squared error of Xy is.no
mora than the model mean squared error of QE as
long as £33 and §,; are not so inversely correlated
that P <-04/7(263). Let us state this more
precisely as a theorem:

Theorem 1. If equations (6), (8), and (9) all
hold, and na<n, then N
MSE(R,)§ MSE(Rp) when p2 -61/(26,).

The theorem tells us that under the model
and assumptions (9.1)-(9.58), the updated
historical imputation methodology will be more
efficient than the respondent mean methodology
except in soms applications (but not all) where
the unit grouwth rates are inversely correlated
with the historical values. In Section 3, a
reason for such inverse correlation will be
offarred as well as a practical remedy.

A useful alternative to (13) is | |

EME(?W'*)’]':/3‘1*1"’1(“11'2/00'10'1.‘0';")(?'N ¥ (14)
[
BxMiN’.('r)i(T\'g‘;‘; .
Also of future use to us is the fact that in the
dagenerate case where all the unit historicala
values are equa§ (say to unity), 01250. and X,
collapses into E-

2.4 Design Consistency

The model expressed by equations (5) and (6)
is very simplistic. Building an imputation
strategy solely on this parametric model may
produce an unwanted systematic bias in certain
applications.

A form of protection against parametric
model misspecification is design consistency
(Isaki and Fuller, 1982), Given the quasi-random
response modal discussed in Subseciion 1.4,
design consistency requires that (X,-X)/X
converges to zero in design probability as the
sample size, n, grows arbitrarily large. HNote
that "design probability" is defined with repect
to both the sampling design and the response
model.

For any asymptotic property to be
demonstrated, certain houndary assumptions are
needed. To show that X, is design consistent,
these assumptions are sufficient as n tends
toward infinity:
plim

® ng/n=A>0,

lim £X;/N=B<g0

Lim $X;/N=C< 00,

1im§ (X, ~B)¥/N=D< 0, and
limZ (§;—0)1/N=E<00.

These assumptions assure that
F=(§fX;/n“ —EX;/N) converges in design
probability to zero (its design exectation is
zero, while it design varianceg, (1l/ng - 1/N)D, is
of order n-1). Similarly, (£X;/n)/ (gi;/ng)
converges in design probability to ona. Thus,
oting from the &ast line of (4) that
=(N/n3 $ X1 03X 7 §'% ), it is clear
(&v-X)/X converges in éesign probability to zero.
The estimator év may not be the most
efficient under the parametric model in equations
(5) and (6). Huang (1985} investigates an
alternative estimator, X|™, that_ imputes_for a
missing X; with the formula X;%=X; %(X;/X;)/nﬁ
rather than with equation (3). This estimator is
model efficient if theﬁfﬁ'in (5) are identically
distributed given the X; (€:4{). Using real data
and simulating nonresponse by a simple random

process, Huang found that > appeared to be more
‘giased than X,. This is a girect consequence of
v but not %, being design consistent under

the simple random response model she simulated
(the same one we have been assuming). Design



consistency itself depends on the validity of the
response model. Ironically, the parametric model
provides some protection against the possibility
of response model failure. If both the
parametric and the response model are
misspecified, however, the imputation strategy
will be flawed. (It is thus prudent to try to
stratify the population in such a way that both
models hold or nearly hold in every cell.)

3. EXPONENTIAL SMOOTHING

The Need
Up until now, we have discussed the concepts
of an historical value and a repeated survey only
in vague terms. Let us tighten them up a bit.
Suppose surveys are conducted at equidistant time
periods denoted 0, 1, ..., T. Let Xz be the
X-value of unit i at time t, and X;¢=Xjt-g
(assuming Xi¢-1 is known). In other” words, tha
historical value for a unit at a particular time
is simply its value in the previous period.

This is a common formulation of the
historical value in practice. It has two
dramwbacks. The first is that X 4.1 might not
known. This situation is easuly handled by
"moving forward" the last reported X -value,

3.1

be

say

X\p» by the "linked-average™ grouwth rate of
respondents 51nce then; i.e i X
( jeptl X,u) (fiee' J"’"‘) .
oot %08 IR X0 ir,
where R% is the set of units respondlng in
period u. HNote that X, s<t, when X g-q4 is
unknown is defined recursively.

The other drawback of using last period's
rasponse for this period's historical value is
that a given unit's response in a particular
period may be a temporary abberation. As a
result, a higher than expected X ¢4 value will
often be followed by a lower than expected X.::
value. Mathematically, if Xjt.1> 311X‘{; » then
X, t<BtX.11 nwill often obtain, where B is the
model grouth rate from s-1 to s.

The upshot of this is a_.tendency for the
growth rate of a unit, with Xt defined as Xj{-1
(X4 knownl), to be inversely correlated with
its historical value. This is precisely the
situation warned against in Subsection 2.3!

3.2 The Model
The remedy for the possibilty of a one
period abberatron in a unit's value is to

ntia smooth the historical value, This
procedure has been developed in the time series
literature (for example, see Fuller, 1976). In
the context of imputation it takes on a someuwhat
special form as we shall see.

Consider this model:

Yyoe > <> . - N
where *l:=1,.‘.T;X“t./St)(“b"l /)Z‘t )\ﬁt%)ﬁ-i,
0<Agl; and

E (M5 7%: W=0 for iXj or siu.
If A>0 %e model builds in a probab]llty
h one period increases (or decreases) in X;g
will be reversed in the subsequent period. It
does this by hypothesizing that the disturbances
obev a first order autoregressive process.

To make matters simpler, let Xjp3allo.
assumas that the initial value, Xip, is not
jtself a one, per!od abberation. Observe that
E (X,t) A4 1'( sAG .

The flnai assumption of this time series
model is that the variance of Xigis proportional
to the square of its mean. Th|s makes

2 m.@»pﬁ £-1 tand (£ = M), (15)
where Var(&y 3= Q; (N. In this section, and
this section only, we have the luxury of allowing
the Var( £ig) to vary across the units for a
particular s.)

We can relabel X474t as y;; to get the
simple model:

that

This

Yig= et S nEiten, (16)
Equation (16) can be rewritten in seriglly
independent (over time) and homoskedastlc (ditto?
form as yiie DN Yopea® Uo0 M Yitez + (0 M Yieg®
R AN EEDY
In terms of the X4, thls is
\{-13{ (] "3‘( fl"x L '!*/S X\a-l Y'\,\\-QE t. (17)
The bracketed expression in (17) is the
exponentially smoothed historical value of unit

340

i, where N\ is the gmoothing parameter. MWhen X
is zero, ho smoojh\ng takes place. s \
increases, this X; becomes less a function of
Xit:1 and more a function of unit i's previous
X-valuaes.

By using a smoothed historical value in the
imputation formula in equation (4) we remove at
least part of the tendency for the growth rat®

he historical value to be inversely related
(perhaps only part, because the &t may vet be
negatively correlated with the Xig). This

educes some, if not all, of the model bias of

(see equation (12)). 1In addition, it stands

to reason that since,the model variance of Xt ir
(17) conditional on X‘t is less than that of X4
in (15) conditiongl on X\i:1, the model mean
squared error of X, is less when the smoothed
historical value is used in place of last
period's value. The exact link between the
conditional variagce of X}t and the model mean
squared error of Will be established in
Section 4.

3.3 Estimation
The smoothed historical value in recursive

form is -~
erm 1s X ¢ = (1=¥Y% -t N Byen Rty

In the context of a stationary stochastic
process for which exponentially smoothing was
developed, all the ABg, s<t-1, are unity, If that
were the case here, one could aggregate the X;
over the units in some manner, and then estima e
from a time series using an ARIMA(O0,1,1) package.
(ARIMA stands for Auto-Regressive Integrated
Moving Average. An ARIMA(0,1,1) model is simply
an integrated moving average of order one.
Equation (16) is an example.) In most survey
applications, however, the X-values are seasonal
or trending. As a result, the Ry can not be
reasonably treated as if they were all one.

Fortunately, one does not have to assume
anything about the Bs. They can be
circumnavigated by seperating the units into two
groups, G3 and G4 ; letting X4bz m X4, and
X42=51¢eX %5 and ‘running  Yq = § é through an
ARIMA(D0,1,1) package. It is a tedlous but
straight forward exercise to show that Y«
approximately obeys an ARIMA(G,1,1) model with
parameter when each X it obeys (15).

Most often in practice, one will not have
the luxury of a long enough time series to
estimate from the data with an ARIMA package.
Instead an "estimated™ M value, call it ¥, must
be determined from external sources or indirectly
using the test developed in the following
section. Armed with any estimate of A, one still
needs to est] mate the /35, 0<sg{t-1, before an
approprlate 4 can be determined.

The /3 can _be estlmated (recursively) by

/?S =z ng k3T ’ngh‘ \)5 .
The exponentlally smoothed historical value, X .,

for s>1, is determ!ned by A
) ¥ig® o0y Ajaert T3l Xl L (18)
where Xjs-1 is X 53 1f X is known and /s X0

For 's%1, X;¢ = This requires

must be known for all j.

otherwlse
that X

4. COMPARING ALTERNATIVE HISTORICAL VALUES

4.1 The Test

We now return to the model (and notation for
the £ ) based on equations (6), (8), and (9),
here the mechanism for the determination of the
L 15 un;pec1fled Let X be the vector
(? .. In this section, X, need not be an
exponent1a11y smoothed version of the X-value in
the previous period. It may be any function of
previous X-values,

Suppose that the model in (6), (8)
and_.(9) holds given either of a pair
of X vectors, §*'and % (these
vectors are the results of
alternative method? of calculating
the ). Let G:(X"=X; -¥*X;. If the
relative variance of of G: (X YV is

less than that of G- (X Yy, than the
modgl mean squared error of X, based
on X*> will be wxél be less than that
of ~X_. based on X*.

Theorem 2.



Proving this theorem is a simple matter.
Observe that the relative variance of G;(X) is
simply 03‘ (see (5) and (8)). From (8), we see
that the“relative variance of X} is C1*+2p0,u,+

6,2, Since this gelative variance is invariant
to fhe choice of g, the model mean squared error
of Xy expressed (I4) can be seen to be a linear

function of Glz
QED. -~ 2
Given a vector z,nfa can be estim?ted by
kvt P VD Ry 2
M(E):?OQ'[IXJ/ZXJ]X'__)/(\“l)(:.'_).(l)‘(lg)
Under the assumptions in (%), M(X} is "R
(approximately) unbiased.

Equation (19) provides a powerful
test for choosing bj%ueen alternative

- the relative variance of G](X).

indirect

calculations of the X. While not restricted to
historical values of the form in equation (18),
this test can nonetheless be usad to evaluate
different values of smoothing parameter.as will
be seen shortly.

An interesting corollary to Theorem 2
follouws.
Corollary 2.1 Suppose the model in (6),.(8) and
(9) holds given a vector X. If
in (92.4) is non-gero, then there
exists a vector XX such that the
model holds, and X, based on X*
has lgss model mean squared error
than v based on X

The proof of this corollary involves
calculating the Xso that gy = YfLM =
mE€1:(1+p6,/01 ). This can always be done in
principle. "In practice, valugs fora, g, T4,
and 0, are nﬁeded before the X,® can be computed.

Pl el
QIS athe LTt mtyipe ey - s that
4.2 An Example
The Energy Information Administration (EIA)}
collects monthly State-level sales volumes and
revenues for a variety of petroleum products and
uses in its EIA-782 survey (see any issue of The

Marketing Monthly). In this

subsection, our attention is focused on the
imputation of March 1985 volumes for survey
nonrespondents in the nine gasoline product/use
categories. The products are leaded, unleaded,
and premium gascline sold through company ouwned
outlets, to other end users, or for resale. This
three by three matrix constitutes the nine
product/uses, which will be called simply
products from now on.

Reporting units in each of the §0_States and
the District of Columbia have been divided by EIA
into 10 cells for imputation purposes. Many of
the product/State/cells (called from now on
cells) are empty. Some have only a few members
and must be collapsed into other cells when all
the members fail to respond in a givan month.

While collapsing poses an_interestung
question in its oun right, it is beyond the scope
of this endevor. The empirical analysis_
discussed here was restricted to units with
positive responses in each of the four months
between December 1984 and March 1985 and to cells
containing at least tuwo such units.

Each of the remaining cells was t(eated as a
population. Seven methods of calculating March
1985 historical values were investigated. The
first method set all the historical yalues equal
to unity (this results in imputing with the
respondent mean in each cell). The secgnd mgthod
used reported February volumes as the hxstorlcal
values. The remaining five methods expongt1ally
smoothed the February volumas with smoothing
parameters of .1, .2, .3, .%, and .5
respectively. Historical values were truncated
at the December 1934 term. If t is March 1984,

then ~ A UG
X O 09 i Byl ™ Xiga® B By Hiaes,
for A=.1, . 5

The test statistic in equation (19) has been
computed for each of tha saven methods of
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detemining historical values. For a cell k, we
call these test statistics MEy, MLy, MSly,
MS2x, MS3k, MSGy, and MS5g respec%ively.

Let Xgy, be the estimated total volume for
cell k in March based on using the,first
imputation strategy, and let X x, Xgq¢ » etc. be

defined c§nformally. If the model mean squared
error of is less than that of % x» we expect
MEx-MLy to be positive. As a res li, when
MEx-MLg is positive, we say that Xy is more
likely the better estimator.

In Table 1 the number of cells in which MEg
-MLg, is positive and nonpositive is displayed for
each of the nine products. The difference
between the two is signficant when it is greater
the twice the square root of their sum (the null
hypothesis is the binomial distribution with
p=.5; significance is at the .05 level).

For all the products, MEg-MLg is positive
significantly more often than not. From this we
can conclude that for the problem at hand,
updated historical imputation using last month's
response as the historical value is likely to be
better than imputation with the respondent mean
in a significant majority of cells.

Also displayed in Table 1 is the number of
times MSly-Mly is positive and nonpositive. The
differences here are also significant for all

nine products. Thus some ammount of historical
smoothing appears to yield better estimates for
every product in a significant majority of cells.

The last column of Table 1 reports which
smoothing parameter appears most likely according
to this simple count test. The parameter .3 is
deemed best if M52y -MS3x is postive more often
than nonpostive, but MS3 -MSHy is not.

What is the gain from exponential smoothing?
In equation (14) we see that the additional model
mean squared grror due to nonresponse is a
multiple of 0,% For cell k, (1-(MSm/ML)) x
100% is a measure of the gain from @xponentially
smoothing February's reported value with a
parameter of .m. is literally the percent
reduction in the nonresponse component of model
mean squared error derived from this smoothing.

The test statistics for each method of
determining historical values uwere aggregated
across the cells so that the average gains could
be displaved in a concise form. For example, the

MLy were aggregated to_ Zy_(h\‘-ﬁ Miw

S e ———
T (ng=

where n is the number ofKSe;ésghent units in

cell k (after editing). It is interesting to

note that ML is an estimator for the appropriate

under the rather hercic assumption that 621 =62Q

for all cells. ~

The measures of average gain relative to Xy
for the nine products are displayed in Table 2
Negatives reflect averaga losses (increases in
model mean squared error) rather than gains.
losses from using respondent mean
also displayed.

After reviewing the two tables, one may
conclude that for the retail categories using a
smoothing parameter .4 would not be imprudent.
This parameter offers gains of roughly 20%
relative to updated historical imputation without
smoothing.

For wholasale product, a smoothing parameter
of .2 is better. The average gains are swmall,
trivial for unleaded. A parameter of .3 works
slightly better for premium, but the gain is
still only 7.2%.

For all products, the best average gain
tends to suggest a slightly higher smoothing
parameter than the count test. This may be
because the best value for varies from cell to
cell with a median slightly smaller than its
mean.

The results in the two tables do not appear
to be sensitive to the month studied or to the
size of the ny. When only cells with ng>6 were
analyzed (roughly halving their numbaer), the
results uwere not qualitatively affected. Nor did
an analysis based on August 1984 data yield
significantly different results.

The
imputation are



Table 1. Cell Counts

Number of cells

Number of cells

Which is the most

Product in which MEK_ML\( is in which MLK-MSIk is likely smoothing
positive (nonpositive) positive (nonpositive) parameter?

Sales Through (Leaded 268 (18) 175 (111) .G

Company Owned <,Un1eaded 269 (13) 177 (105) .3

Outlets ’]\Premium 187 (20D 125 (82) .4

/‘

Sales to { Leaded 239 (38 193 (36) .G

Other End < Unleaded 207 (43) 173 (77) .4

Users ; Premium 100 (23) 85 (38) .3

s

Sales “l Leaded 311 (31D 192 (150) .2

for 7 Unleaded 306 (27) 194 (139) .2

Resale . Premium 233 (24) 168 (89) .G

Table 2. What is the Gain from Smoothing?
Average Percent Reduction of Increase
in Model MSE Due to Nonresponse
A
Relative to XI-K
A A A S ’ A

Product Xfik xf?.k X3y Xguyy Xsgi Xew
Sales Through “ Leaded 7.9 13.9 17.8 19.6 18.6 -2519
Company Ouwned © Unleaded 8.8 15.5 20.0 22.3 22.2 -1683
OQutlets "NPremium 8.6 15.6 20.9 24.6 26.6 -1057
Sales to ; Leaded 8.3 14.7 19.2 22.0 22.8 ~453
Other End /x Unleaded 8.1 14.4 19.2 22.5 26.1 -435
Users LPremium 7.2 12.9 16.9 19.2 19.64 -398
Sales * lLeaded 2.3 3.8 4.4 4.0 2.4 -536
for 9 Unleaded 0.5 0.1 -1.3 -3.7 ~7.6 -585
Resale k Premium 3.8 6.2 7.2 6.6 6.2 -738
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