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I INTRODUCTION 
A sample may be selected by multistage 

sampling procedures and sample elements are then 
weighted to estimate population totals. Such 
inf lat ion is accomplished by post-strat i f ied 
ratio-estimation that is intended to reflect 
not only its size but also composition such as 
age-sex-race and residential areas. These 
weighted data are then used to estimate the 
average, ratio, and other parameters of 
interest. The main purpose of this paper is to 
show how the variance estimators can reflect the 
actual steps of sampling procedures and ratio 
estimation. 

Such variances can be approximated by 
combining the two known procedures, the 
linearization of ratio estimates (Woodruff, 
1971) and generalized variance estimator for 
multistage sampling (Kendall and Stuart, 1968). 
By this combination, one can reflect these two 
features on variance estimators. 

The f i r s t  procedures linearize the ratio 
estimation by a Taylor series expansion and 
retain the variable portion of the linear 
expansion for the ratio estimations. The 
variance of the ratio is then approximated by 
the variance of the variable portion of 
linearized ratios. 

The second procedures include the 
generalized form of the variance for aggregate 
data, whichever design might be used for the 
selection of the sample. 

There would be two sets of summation signs 
after these two procedures, the f i r s t  arising 
from the ratio estimations and the second from 
the sampling designs. The generalized variance 
can be obtained by exchanging the summation 
signs, moving those for sampling in front, and 
summing up those for the ratio estimation. Only 
summation signs arising from sampling procedures 
remain. Then, we can apply the variance formula 
previously developed to this final result. 

These approaches can be applied to the 
variance estimations for the data collected by 
the National Center for Health Statistics and 
other government agencies, where they usually 
ut i l ize complex sampling designs and 
estimations, and yet may not reflect both of 
these features on the variance estimations. 

Hidiroglou and Rao (1983) and Shah (1981) 
used these types of approaches for the analyses 
of Canadian Health Survey Data and standard 
errors program for survey data, respectively; 
the former used variance formulas for equal 
probability sampling with replacement, while the 
lat ter did the equal probability without 
replacement for two-stage sampling. In parctice 
i t  is rare for multistage samplings to use such 
sampling throughout. For instance, one may 
select samples with replacement with probability 
proportional to the size of population (pps) for 
the f i r s t  stage and equal probability without 
replacement for the second stage. 

Section 2 introduces some notations used in 
the following sections. Section 3 presents 
the generalized variance estimators for 
aggregates from multistage sampling. In Section 
4, the post-stratif ied ratio estimates are 
linearized and only the variable portions are 

retained. We then approximate the variance of 
the ratios by that of variable portion of 
linearized ratios. Finally an example and some 
comments are included in Section 5. 

2 NOTATIONS 
Suppose that the population was strat i f ied 

into L independent strata, indexed by s = 1,.. 
., L, and that the members of the s-th stratum 
was grouped into N1s PSU's, indexed by i = 1,.. 

.,Nls and the i- th PSU included N2s i members, 

indexed by j = 1 . . . . .  N2s i .  The corresponding 
symbols for sample are denoted by the lower case 
n with the same subscripts as shown in Table 1. 
Since the variances for aggregates from these 
strata are additive, we show the variance arising 
from one stratum, dropping the subscript s for 
the strata in the following developments. 

Tab|e 1 
Symbols for two-stage clustered sample data 
when three-stage sampling was performed within 
a stratum. 

Popu I at i on Sample 

1st-stage units N 1 

2nd-stage units N2i 

3rd-stage units N3i j 

n 1 

n2i 

n3 i j  

1st-stage index i = I . . .N 1 i = l . . .n  1 

2nd-stage index j = 1...N2i j = 1...n2i 

3rd-stage index k = 1...N3i j k = 1...n3i j 

Index for cells h = l . . .q  h = l . . .q  

Totals" N = ~1~ 2i n ~ 
1 j N3ij n = Zll 1 2i n2i 

~1~2i~3ij ~1~2i~3i 
Cell Yh3 = Yhijk Yh3 = JYhijk 
counts-  i j j i j j 

Xh3= ~1~2i~3ij n ~2i~3 Jxhijk i j j Xhijk Xh3= ZI i 
i j j 

cell prop.- Yh3/N Yh3/n 

ratio" Rh3 =Xh3/Yh3 rh3 =Xh3/Yh3 

Xhijk and Yhijk are variables for x and y 

characteristics, respectively. 
Table 2 shows the variances of aggregates 

by the types of aggregate and sampling design. 
The some of the formulas for these variances 
are discussed in Section 3. The variances of 
the ratios in Table 1 can be linearized and thus 
fal l  in the same categories as aggregates. 

3 VARIANCE 
Sampling could be done with equal or 

unequal probability, or probability 
proportional to the size (pps), with or without 
replacement, and with symmetrical or 
asymmetrical designs. Within each stage, we may 
consider any combination of these options. 

We present a generalized variance formula 
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Tab]e 2 
Variances by types of design and aggregate 
Design Types Aggregate from 

1 stage I 2 stage 2 3 stage 6 
sampling sampling sampling 

WR 3 var(Yhl)  var(Yh2 ) var(Yh3 ) 
Unequal i 
prob. 

WO 4 var(Yhl)  var(Yh2 ) var(Yh3 ) 
i 

WR 3 var(Yhl ) var(Yh2) var(Yh3 ) 
Equal I 
prob. 4 

WO var(Yhl ) var(Yh2) var(Yh3 ) 
I 

Combi nations s vat (Yh2) vat (Yh3) 

n 

~ly h = . 2 1 2iyhi I Yhl • i '  Yh2= i j j ,  

6 Yh3 = . . Yhi j  ; 
1 j j 

3 wi th  r e p l a c e m e n t ;  
4 w i t h o u t  r e p l a c e m e n t ;  
5 c o m b i n a t i o n  of  equal  and unequal  p r o b a b i l i t y  

sampl i ngs .  

for  any estimate Oh in the h-th cel l  based on 

completely a rb i t r a r y  p robab i l i t i e s  of 
se lec t ion .  The to ta l  variance is then the sum of 
the variances for a l l  s t ra ta .  

The symbol E is used for the operator of 

expectat ion,  var for  the variance, and var for  
the unbiased estimate of var. We may wr i te  

var(~h ) = var(E(0h) ) + E(var(oh) ) (3.1) 
I >I i >I 

where "> i "  is the symbol to represent a l l  
stages of sampling a f te r  the f i r s t .  

i f  °h = Yhl defined in Table i ,  

i t s  unbiased estimate can be wr i t ten  as 

^ ° I  } 
var(O h) : var(O h) + Z 

1) x. var (Yhi) (3.2) 
1 i >1 

1) is the probability of the i-th unit where ~ • 
included among the n I PSU's. 

The expression (3.1) may be written into 
three components as 
var(~h)=varE E(~h)+E varE(~h)+E E var (oh) . (3 .3 )  

1 2 >3 I 2 >3 1 2 >3 

~2i subs t i t u t i ng  in (3 .2) ,  I f  Yhi = j = l  Y h i j '  

the unbiased est imate of (3.3) can be wr i t ten  as 

^ I ^ ,  11 
var(Oh) var( ) + ) = 7. vat (Yhi 

I i 2 

+~I 11) ~2i xi j(2)^ ( j ) (3.4) ~. var Yhi~ , 
i j >2 

2) is the p robab i l i t y  of se lect ing the where ~ . j  

j - t h  second stage uni t  in the selected i - t h  
f i r s t  stage un i t .  This extension is now obvious 
for  fu r ther  stages of sampling. 

We may summarize the above formulas in 
words: an unbiased est imator of sampling 
variance in mult is tage sampling, when the f i r s t  
stage sampling is wi thout replacement, is 
obtained as the sum of two components. The 
f i r s t  component estimates the variance as i f  
only the f i r s t - s t a g e  sampling had taken place. 
The second component is the weighted sum of the 
est imates, wi th in the selected f i r s t  stage 
un i ts ,  of the variance due to la te r  stages of 
sampling (the f i r s t  stage units being regarded 
as f i xed ) ;  the weights are the p robab i l i t i e s  of 
se lect ion of these f i r s t  stage units (Durbin, 
1953). 

I f  the sampling is done with replacement at 
the f i r s t  stage, only the f i r s t  term remains in 

(3.4) ,  regarded as the l i m i t  of 7 * O. In th is  

case, i t  is simple to estimate variances in 
mul t is tage sampling with any number of stages 
when the f i r s t  stage, with replacement, uses the 
same unequal p robab i l i t i e s  at each drawing, 
whi le other stages are a r b i t r a r y ,  but car r ied 
out independently in d i f f e ren t  selected 
f i r s t - s t a g e  un i ts .  

Consider variances for various sampling 
s i t ua t i ons .  

I)  var(Yhl)  for unequal p r o b a b i l i t y  wi thout 
I 

replacement in a s ingle stage: 

Let r Pi be the p robab i l i t y  that the i - t h  

ind iv idua l  is selected at the r - th  drawing, and 

N ~I ~I Pi Pj ~I P i = i ~ = Pi ~ = ~ r s " i r ' i r r ' i i '  r~s 
Kendall and Stuart (1968 vol 3, p172) shows 

va r (Yh l ) :  ~i  ~i (1 - 'rri) YRi 
1 i=1 

+ ~Iz (~ i i ' -  ~i ~i ') Yhi Yhi' " (3.5) 
i~ i '  

n N 
From E(Z g(yi )) = Z xi g(Yi ) and 

i i 
n N 

E(Z Z g(YiYi,))=Z Z ~i i ,g(YiYi,) 
i~ i '  i~ i '  

for any function g of observations, the 
unbiased estimate of (3.5) is given by 

^ ~ ( ~  -~  ) 
var(Yhl ) = 1 L I z  i i '  i i '  (Yhi-  Yhi ')2' 
1 2 i~i '  ~ i i '  (3.6) 

For one-stage sampling, var(Yhl)= var(Yhl) in 
1 

the general formula (3.2). 
I I )  var(Yh2) for unequal probability without 

replacement in two-stage sampling: 
^ ^ n I 

var(Yh2 )= var(Yh2)+ Z1 x.~l)var(Yhi + ^ ), 
1 i 2 

where the f i rs t  term is given by (3.6) and the 
second term is the weighted sum of the variances 
for the second-stages in the selected 1st-stage 
units. 

I I I )  var(Yhl) for equal probability without 
1 
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replacement in a single stage sampling" we have 

n I (n - 1) = ~nl = F 1 and ~ii '= ~ 1 . Using 

N I N I (N I - i) 
these, we can write (3.6) as 

n nl _ -  )2 
var(Yhl) =(i - F 1) i Z (Yhi Yh (3.7) 
1 n - l i  1 

! 
where y is the mean of yi s. 

IV) var(Yhl ) for unequal probabilit )' with 
1 

replacement" We now have to allow ~ i i ,  for 

i = i ' ,  but the term ~i and ~i, in the double 

summation must s t i l l  have different suffixes. 
(3.6) s t i l l  holds for this sampling. 
V) var(Yhl) for equal probabilit), with 

1 
replacement- In this case, theory simplifies, 
i .e . ,  " i  = nPi and iTii, = n(n - 1) PiPi , 
where pi is for the probability that the i - th 

element included in the replacement sampling at 
any draw, and (3.6) under these definitions can 
be written as 

n I n I 
var(Yhl) = ~ ~ >~ Pi Pj(Yi - y j ) 2  (3.8) 

2 i j  
Since the same conditions as (3.6) hold, now 
allowing i = i ' ,  the unbiased estimate of (3.8) 
can be expressed as 

n n 
var(Yhl ) = i i~l (Yhi - Yh )2' (3.9) 
I (n I - I) i 

which differs from (3.7) only by (1 - F1), the 

factor arising from without replacement. 
The aim of sample design ( i .e.  a choice of 

the ~ i i '  and hence the ~i ) is part ial ly to reduce 

variance of an estimator as much as possible. We 
can find some compromise set of ~ i i '  which w i l l  

be effective in producing small variances for all 
the estimates we may use. Brewer(1963) gives , i ,  

and ~ i i '  values, which has desirable properties 

of small variance in (V l l l )  and ( ~ i ~ i , - r f i i , )  > 0 
shown in (3.6) when we take two sample units 
(n=2). 

YI) var(Yh3 ) for equal probabi l i ty  without 
repl acement whe re 

f ~ n Yhi jk" (3.10) = 1 2i ~3ij 
Yh3 i j k 

Suppose that sampling is done with equal 
probabi l i ty  without replacement at each of three 
stages sampling in stratum. Substi tut ing such 
probabi l i t ies  as in I I I )  in the general formula 
(3.4), i t  can be shown that 

02 02 (1 - ) var(Yh3)=nl yh(1 - F1)+ F l i l  n2i Yhi F2i 

i l  F ~2i n3i j  ~ i j ( 1 .  F3i j )  ' (3.11) + F I  • 2i j 

where FI--nl/NI, F2i = n2i/N2i ' and F3i = n3i j /N3i j 
are the sampling fract ions 

02 = 1 (Yhi - -- Z1 Yhi)2 
Yhi N 1 - 1 i N 1 i 

02 : 2i(y~i - ~ 2i Y~ij ' 
Yhi N2i - 1 j J N2i j 

I ~3ij 
1 3i j(Yhijk - 

o~i J=  N3i j - 1 k N3i j k 
Yhijk )2 

Yhi 
n2i ~2i Y~ij and y, _ n3ij ~3ijy 
N2 i j ' hij N3ij k hijk" 

For symmetrical data, i .e. nln2in3i j = nln2n 3 = 
n, the unbiased estimate of (3.11) is given by 

^ s~ + n I s~ 
var(Yh3 )= n2( ~ (1 - El) ml nln2 (1 - F2) 

n I n 2 s~ 
u u (1  - F3 )  ) . ( 3 . 1 3 )  

+ NI N 2 nln2n 3 

Every terms in (3.13) after the f i r s t  is 
multiplied by the earlier stage sampling 
fractions (n I/N 1)(n2/N 2) . . . .  , o 2 is replaced by 

sample s 2. Note that, i f  (nl/N1) is negligible, 

all other terms after the f i r s t  are also 
negligible. 

VII) var(Yh2 ) for equal probability without 

replacement for two-stage sampling'The two-stage 
result is obtained by putting NI= n1=1 in (3.11) 

after appropriate changes of subscripts. 

VIII) var(Yh3) for probability proportional to 

the population size (pps) with replacement 
for the f i r s t  two stages and equal probability 
without replacement for the third stage" 

It is rare in multistage sampling to use 
equal probabil.ities sampling throughout for 
the variance becomes big. When the units vary 
considerably in size, the effect of equal 
probability sampling is to make variances very 
large. This point does not arise in the 
symmetrical case when all the units at every 
stage are of equal size. Thus we are obliged to 
seek some other sampling scheme to reduce the 
sampling variance. 

We may achieve this by varying 
probabilities at each stage. I f  overall 
probability of selection of single element in 
a multistage sampling is n/N, i t  is said to be 
self weighting as the members of sample are 
equally weighted. Then, the sample variance 
can be reduced for some estimates. A simple 
way of achieving the self-weighting pps 
sampling design is to select n I PSU's with 

probabilities p~l) at each drawing, n2i second 

stage units from each of the n I selected PSU's 
!2! and n th i rd  stage with probabi l i t ies  p j 3 i j  

!3) units with probabilities P'jk at each drawing, 

where p 1) N3i+, p . j  - - - -  and P . j k  - 

N N3i + N3i j 
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The subscript "+" means the summation over the 
respective subscript. 

Pps sampling design provides the necessary 
condition to reduce the sample variance as seen 
by, i f  n I n2i n3i j = n I n 2 n 3 = n, 

(2) p~3) n 
(n I p}Z)) (n2i Pi j  ) (n3i j  j k )  - N 

which is the overal l  select ion p robab i l i t y  for  
each elementary un i t .  

For the to ta l  Yh3 of (3.10) from pps sampling 

with replacement for the f i r s t  two stages and the 
equal p robab i l i t y  sampling without replacement 
for the th i rd  stage, i t  can be shown that 

nl 1 N3i+(T i _ T)2 va ( h3)= 
n I N1 N2i 

+ m  Z n2i Z N3ij(T i _ Ti)2 
N i j J 

+ m  n n aRi (1 ) (3 .14)  N i= l  2i j=Z 3 i j  N3ij j - F 3 i j  

where Ti j= n 3 i j u i j ,  uiJ = E(mij) ; Ti ~2i Ti . j J '  

= __1_I 3 i j  Yh i j k ;  T = n I Z I (m3 i+ )  Ti where 
mij n3 i jk  i N 

N2i 
} i  = ~2i. (N3i j )  T i j '  m3i+ = Z. N3i j '  

J N3i + j = l  

and o2 = i ~3ij (Yhijk u i j  )2 h i j  - • 
N3i j - 1 k=l 

One may f ind an unbiased estimate of 
(3.14) and that the resul t  is consistent with 
the previous discussions on with-replacement 
sampling at the f i r s t - s t a g e .  

IX) var(Yh2) for pps with replacement for  

the f i r s t - s t a g e  and equal p robab i l i t y  without 
replacement for  the second-stage: The two-stage 
resul t  is obtained from (3.14) by set t ing 
n I = Nz= I and making appropriate changes in 
notat ion.  

S im i la r l y  we can f ind the variance of 
ra t io  and covariance of ra t ios .  
4 LINEARIZATION 

Ratio estimates can be linearized by a 
Taylor series expansion under summation. Then 
the variance of the variable portion of this 
expansion is the same as the variance of the 
original rat io.  Denote any ratio of variables 
u I . . . . .  u k, by a function f (u l ,u  2 . . . . .  Uk). 

It has been known that 
k 

varCf (u l . . .Uk )  ) ~ varCZ " u i @f(U1""Uk)) (4.1) 
1 

@U i 
where E(ui) = U i i = I . . . . .  k, and the symbol 

" : "  means that both sides of the symbol 
approximately equal. 
EXAMPLE I Let x and y be the random variables 
with expected values X and Y, respect ive ly .  
Consider the ra t io  x /y .  The variance of the 
ra t io  is approximated by that of the var iable 
port ion of the l inear  expansion of the ra t i o :  

var( x ) , var( x - R y ) ,  (4.2) 
Y Y 

where R =X/Y. 

EXAMPLE 2 Ratio X' = (x/y)~( is often used for 
est imation purposes where x and y are variables 
while ? is the known number. 

var( x ~) ~ var( ! (x - R y)) .  (4.3) 
Y Y 

Using these two procedures given in Section 
3 and Section 4, we can find variance for a 
complex ratio estimate. We wil l  demonstrate i t  
using an actual example in Section 5. 

5 AN EXAMPLE AND SUMMARY 
Current Population Survey(CPS) estimated 

X of population characteristic x as follows" 
(Technical report 40, Bureau of the Census, 
p 155). 

C XacNS Z 
A XaSR + ~ c 

= Z c : l  z c Ya' (5 .1 )  X' 

a C YacNS Z 
YaSR + Z c 

c:1 z c 

where the subscript c = I . . . . .  C (C = 48 ce l ls  
of color-residence) for the collapsed 
nonsel f - represent ing strata (NS) ar is ing from 
the f i r s t  ra t io  adjustment, and a = i . . . . .  A (A 
= 60 ce l ls  of age-sex-race categories) from the 
second ra t io  adjustment. We express (5.1) as 

A 
Z Xa Ya' (5.2) X' = 
a y, 

a 
! ! where x a and Ya are so defined in (5.1) 

The terms XaS R, YaSR' XacNS' YacNS' Zc' 

and Y a in (5.1) are given below. Z c , 
= the weighted sample to ta l ,  from ultimate XaSR 

sampling units (USU) in self-representing 
(SR) primary sampling units (PSUs), of 
population with the desired characteristic 
x in the a-th age-sex-race category. The 
weights are the inverse of the probabil i ty 
of selecting the USUs. In practice, the 
weights, represented by Wsi j , also 

included special weighting and the 
noninterview adjustment factors. 

YaSR = same as for x aSR, but for the total 

popul at i on. 
XacNS = same as XaS R, but for the c-th 

race-residence category for the nonself- 
representing (NS) population. 

Y acNS = same as for Xac, but for the total 

popu I at i on. 
z c = estimated total 1980 Census NSR population 

in the c-th collapsed race-residence 
category, based on 1980 census population 
of the NSR sample PSUs, weighted and 
summed over all NS strata. 

Zcsij = 1 i f  the (s i j ) - th  person in NSR-sample 

PSU belongs to the c-th color-residence 
category, 0 otherwise. 

Z c = the 1980 census population in NS strata 
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in the c - th ,  col lapsed race-residence 
category; 

Ya = independent populat ion to ta l  for  the U.S. 

in the a-th age-sex-race category for the 
current  CPS month. 

For the variance of X' ,  f i r s t  we l i nea r i ze  
X' under the summation sign summing over a and 
then consider only the var iable port ion of 
l i near  expansion as shown. Secondly we exchange 
the summation signs moving those for sampling in 
f ront  and sum up those for  ra t io  est imat ions.  
Th i rd ly  variance of the resu l t ing  aggregate can be 
found by the formula developed previously in 
Section 3. 

These steps are i l l u s t r a t e d  as fo l lows" 
Step I L inear ize (5.2) and take the var iable 

por t ion .  The variance of the ra t io  
estimate is approximated by that of 
I inear ized por t ion .  

A 
~(a ' 

var(X' )= varCZ Ya ( Xa Ya )) (5.3) 
~ a 
Y a 

Form (5 .1) ,  (5.3) can be rewr i t ten  as 
A C 

var(X ' )  : var( ~ YaC(Xas R + ~ XacNS Z c) 
a c 

z C 
" C 

- X--~a (YaSR + Z YacNS Zc) ) ) .  
~ c 

y Zc 
a 

where y a = a , X a = E(x ' )  and Y = E ( ' ) .  m a ' a Ya 

a 
Co l lec t ing  the terms of SR-strata and NS 

stage sampling units (TSUs) in the i - t h  SSU. 
n~ is the number of the sampled NS-PSUs. 

Step 2 Using above de f i n i t i ons  on XaS R, YaSR' 

XacNS' YacNS' and z c with the t r i p l e  summations, 
we move the summations ar is ing  from sampling in 
f ront  of those summations of ra t io  est imat ion 
for  age-sex-colors and race-residences. Summing 
up over a and c for age-sex-color  and race- 
residences, only the summations from sampling 
remain. (5.4) can be wr i t ten  as 

L I ns2 ns3i 
var(X'):var(Z .~ Z ( B+sij + C+sij) 

s 1 j 

n~ ~s2 ~s3i C' + D' +Z C~ - 
s i j ++sij ++slj ++sij D++sij ) )' 

(5.5) 

which can be expressed as 

var(X'):var(Z1 s2 s3it + ~ s2 s3it, )(5 6) 
s i j s i j  s i j s i j  " 

I with tsi j and tsi j are so defined. The six terms 
in (5.5) are- 

(I) Z YaXaSR = Z I s2 s3i~ B = zl s2 s3i 
a s i j a asij s i j B+sij' 

st ra ta  separate ly,  and l i nea r i z i ng  the ra t io  )(a 
estimate under the summation over c for  the second Casij = m  Ya Wsij YasSRij; 
t ime, we then obtain T{ a 

A 
X For the second term, 

var(X ' )  = var I !i Ya(XaSR - a  YaSR) A C n~ ns2ns3iA C 

a Ya (3) Z ~ YaXac = Z Z Z. Z ~ Bacsij 
I 

A C ~ a c s I j a c 
X 

Basi j  = Ya Wsij XasSRij; 
~ 

AX L n  n A L n  n 
(2) ~ a yaYas R zZzs2 zs3i~ Casi j zZzs2zs3i m = = C+si j ,  

ay  s 1 j a s i  j 
a 

+ }i ¥a Z Zc (XacNS- a YacNS 
a c ~ 

c a 

+ ~(a Yac z c - Xac Zc) ) 

7 7 a c c 

(5.4) 

where Zc = E(z c) ,  Yac = E(YacNS), ~(ac = E(XacNS), 

XaSR = ~ w x a Ya = ~I 2s 3Siwsi jYas i j  ' ~ ~ 
s i j s i j  s i j '  SR s i j A C 
~'n ~ X a (5) ~ Z Ya Yac z 

XacNS= 112s 3Siwsij  Xacs i j '  a c ~ ~ 
s i j Ya Zc 

n~ns2 ns3i n~ns2nh3i n~ns2 ns3i 
YacNS=~ ! [ WsiJYacsi j '  Zc = ~ ~ ~ Wsi jZcs i j "  = ~ Z Z D' 

J s I ++si j  ' 
LI is the number of SR-PSU's, n2s the number of s i j 

number of second-stage sampling units (SSUs) in 
the s-th SR-PSU, and n3si,  the number of t h i r d -  

n~ ns2ns3 i 
' = 

= Z Z Z. B++si j ,  Bacsi j YaWsijXacNSsij 
s l j 

(4) ~ Z Ya Yac = ~ Cacsij 
a c  Tiac s l  j a c  

n~n s2 n s3i X 

= ~ Z Z C++si j '  Cacsij = Ya a WsijYacNSsij; 
S 1 J ~ 

Yac 

n~ ns2 ns3 i A C 
c : Z Z  Z ZZD acsij s i j ac  

Dcsij=Ya a Yac WsijZcsij; 

Va Zc 
 ins 7 (6) Z Z Ya Yac z c = Z 2 s3iz Z Dacsi j 

ac  ~ s i j ac  
c 
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_-~1~S2 ~s3i D++sij ' Dacsij=Y a __Yac WsijZcsi j., 
s I j 

c 

Step 3 Variance of X'. The f i r s t  term is due to 
the SR-PSUs and the second term for NS-PSUs. 
we can calculate the i r  variances separately and 
sum the two. 

Since for the nonself-represent ing s t ra ta ,  the 
samples were selected by pps design for the f i r s t  
two stages with replacement, and the last  stage 
with equal p robab i l i t y  without replacement, we may 
use (3.16) for the variance estimation of 
nonself-represent ing s t ra ta ,  while the data from 
sel f - represent ing strata arise from only two 
stages as shown in (3.17). The variance of X' is 

var(Zl s2 s3i t )+ var( ~ s2 s3i t, ) 
s i j s i j  s i j s i j  

2 2 say 
= OsS R + OsN S, • 

The f i rs t  term is the sum of the L l 
self-representing PSUs, while the second is 
that of the n~ nonself-representing PSUs. 

One may want to have the variance of the 
ratio X'/Y', where X' is already linearized as 
shown above and Y' is some other ratio estimate 
using (5.1) and var(X'/Y') can be obtained 
similarly. 

We may use delta method repeatedly for the 
var(X'). From this example, the f i rs t  
application can be done for the age-sex-race 

categories, the second application for the 
color-residence cells, and f inal ly the third 
application for the three-stage design. Here, 
there is no other assumption made except for 
the usual ones arising from Taylor series 
approximation. 

It appears that the procedures presented in 
this paper may be one of the better methods of 
variance estimation in the sense that we 
can indeed reflect the sampling and estimation 
procedures on the sample variance. The behavior of 
this method could be further investigated by way of 
an empirical method. 

This method may be used for discrete variables 
as well as for continuous ones. 
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