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1 INTRODUCTION

A sample may be selected by multistage
sampling procedures and sample elements are then
weighted to estimate population totals. Such
inflation is accomplished by post-stratified
ratio-estimation that is intended to reflect
not only its size but also composition such as
age-sex-race and residential areas. These
weighted data are then used to estimate the
average, ratio, and other parameters of
interest. The main purpose of this paper is to
show how the variance estimators can reflect the
actual steps of sampling procedures and ratio
estimation.

Such variances can be approximated by
combining the two known procedures, the
lTinearization of ratio estimates (Woodruff,
1971) and generalized variance estimator for
multistage sampling (Kendall and Stuart, 1968).
By this combination, one can reflect these two
features on variance estimators.

The first procedures linearize the ratio
estimation by a Taylor series expansion and
retain the variable portion of the linear
expansion for the ratio estimations. The
variance of the ratio is then approximated by
the variance of the variable portion of
Tinearized ratios.

The second procedures include the
generalized form of the variance for aggregate
data, whichever design might be used for the
selection of the sample.

There would be two sets of summation signs
after these two procedures, the first arising
from the ratio estimations and the second from
the sampling designs. The generalized variance
can be obtained by exchanging the summation
signs, moving those for sampling in front, and
summing up those for the ratio estimation. Only
summation signs arising from sampling procedures
remain. Then, we can apply the variance formula
previously developed to this final result.

These approaches can be applied to the
variance estimations for the data collected by
the National Center for Health Statistics and
other government agencies, where they usually
utilize complex sampling designs and
estimations, and yet may not reflect both of
these features on the variance estimations.

HidirogTou and Rao (1983) and Shah (1981)
used these types of approaches for the analyses
of Canadian Health Survey Data and standard
errors program for survey data, respectively;
the former used variance formulas for equal
probability sampling with replacement, while the
latter did the equal probability without
replacement for two-stage sampling. In parctice
it is rare for multistage samplings to use such
sampling throughout. For instance, one may
select samples with replacement with probability
proportional to the size of population (pps) for
the first stage and equal probability without
replacement for the second stage.

Section 2 introduces some notations used in
the following sections. Section 3 presents
the generalized variance estimators for
aggregates from multistage sampling. In Section
4, the post-stratified ratio estimates are
linearized and only the variable portions are
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retained. We then approximate the variance of
the ratios by that of variable portion of
linearized ratios. Finally an example and some
comments are included in Section 5.

2 NOTATIONS
Suppose that the population was stratified
into L independent strata, indexed by s = 1,..
., L, and that the members of the s-th stratum
was grouped into le PSU's, indexed by i = 1,..

.,le and the i-th PSU included N251 members,

indexed by j =1, ..., NZsi' The corresponding
symbols for sample are denoted by the Tower case
n with the same subscripts as shown in Table 1.
Since the variances for aggregates from these
strata are additive, we show the variance arising
from one stratum, dropping the subscript s for
the strata in the following developments.

Table 1
Symbols for two-stage clustered sample data
when three-stage sampling was performed within
a stratum.

Population Sample
lst-stage units N1 n
2nd-stage units Noj Noj
3rd-stage units N31j n31j
lst-stage index i = 1...N1 i= l...n1
2nd-stage index j = 1...N21 J 1...n21
3rd-stage index k = 1...N31j k = 1"'”3ij
Index for cells h = 1,..q h =1...qg
N, No. Ny Nos
1 ¢'2i 1¢2i
Totals: N =73" 7% N,.. n=3"37% n,,
i 3ij i 5 2i
NyNos Ny s NaNasNas s
152131 172i¢31j
Cell Yos= D050 hiie Yha= D001 Uy
counts: h3 P55 hijk “h3 i35 hijk
NaNosN,s s NiNop:Nags -
1:21c31] 1c2ic3i3
Xng= T2 kg gm DA
h3 &4 & & hijk “h3™ ¢ &
P55 ij 3 75 hi jk
cell prop.: Yh3/N yh3/n
ratio: =

"h3 “*h3/Yn3

Xhijk and yhijk are variables for x and y

characteristics, respectively.

Table 2 shows the variances of aggregates
by the types of aggregate and sampling design.
The some of the formulas for these variances
are discussed in Section 3. The variances of
the ratjos in Table 1 can be linearized and thus
fall in the same categories as aggregates.

3 VARIANCE

Sampling could be done with equal or
unequal probability, or probability )
proportional to the size (pps), with or without
replacement, and with symmetrical or
asymmetrical designs. Within each stage, we may
consider any combination of these options,

We present a generalized variance formula



. Table 2
Variances by types of design and aggregate

Design Types Aggregate from

1 stage! 2 stage? 3 stage®
sampling sampling sampling
WR 3 var{y,.,) var(y.,) var(y

Unequal 1 hl h2 ( h3)
rob.

P WO 4 Vir(yhl) var(yp,) var(yps)

WR ¥ var(y,.) wvar(y,,) var(y,.)

Equal 1 hl h2 h3
rob.

P Wo * Vir(yhl) var(y,,) var{y,)

. . 5
Combinations var(yhz) var(yh3)

-

n nn,;
sl 2 _ vly2i .
SRRITE Yho= 1L Yhiss
i i
NiNg:iNqs .
_¢lo2ic3ij .
Y3k L Yhigs
1] ]
with replacement;
without replacement;
combination of equal and unequal probability
samplings.

(<3}

for any estimate 8, in the h-th cell based on

completely arbitrary probabilities of
selection. The total variance is then the sum of
the variances for all strata.

The symbol E is used for the operator of

expectation, var for the variance, and var for
the unbiased estimate of var. We may write

var(éh) = ¥ar(§§§h)) + E(vaggéh)) (3.1)

where ">1" is the symbol to represent all
stages of sampling after the first.

if éh =y, defined in Table 1,
its unbiased estimate can be written as

A A PN n]. (1) ~
var(eh) = v?r(eh) + % ™ vig(yhi) (3.2)

where ngl) is the probability of the i-th unit
included among the n; PSU's.
The expression (3.1) may be written into
three components as
var (8, )=varE E(8,)+E varE (8, )+E E var(8y).(3.3)
12533 1 233 12533

Nes
If Yhi= 221 Yhiio substituting in (3.2),
5 Thid

the unbiased estimate of (3.3) can be written as

v;r(é )= vgr(é ) o+ El n(l)var(y )
h h : i hi
1 i 2
n Nos
1 (1) %2 _(2) 2
+)° w7y mis var(Yes ) (3.4)
i i 3 ij 52 hij

where wgﬁ) is the probability of selecting the

j-th second stage unit in the selected i-th
first stage unit. This extension is now obvious
for further stages of sampling.
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We may summarize the above formulas in
words: an unbiased estimator of sampling
variance in multistage sampling, when the first
stage sampling is without replacement, is
obtained as the sum of two components. The
first component estimates the variance as if
only the first-stage sampling had taken place.
The second component is the weighted sum of the
estimates, within the selected first stage
units, of the variance due to later stages of
sampling (the first stage units being regarded
as fixed); the weights are the probabilities of
selection of these first stage units (Durbin,
1953).

If the sampling is done with replacement at
the first stage, only the first term remains in

(3.4), regarded as the limit of ngl)» 0. In this

case, it is simple to estimate variances in
multistage sampling with any number of stages
when the first stage, with replacement, uses the
same unequal probabilities at each drawing,
while other stages are arbitrary, but carried
out independently in different selected
first-stage units.

Consider variances for various sampling
situations.
I) var(yhl) for unequal probability without
1

replacement in a single stage:
Let rpi be the probability that the i-th
individual is selected at the r-th drawing, and

?1 gl gli
P, =1, n. = P, Moy = P. P..
i r 1 r,r‘ 1 11 r£5 ri1sj

Kendall and Stuart (1968 vol 3, pl72) shows

N
1

Var(yh1)=2 T (1 -my) .ern'

! i=1
N

1
1L (mggemymgn) Ypg Ypge - (305)
iz

n N
E(Z 2 g()'i.y]'n)):Z Z "1i'g(yiy1")
iz i#i!
for any function g of observations, the
unbiased estimate of (3.5) is given by

1™ (mams = woo0)

o 11 11
ar(ng) ==

(y 3 _.y ‘l)z,
2 i hi = “hi

i (3.6)
For one-stage sampling, var(y,;)= var(yy;) in
1

the general formula (3.2).
1) var(yhz) for unequal probability without

replacement in two-stage sampling:
r(ypg)= V(s I 1 {Dvar (g )

varifpg)= varfpg)* & T verhis!s
where the first term is given by (3.6) and the
second term is the weighted sum of the variances
for the second-stages in the selected 1lst-stage
units.

I11) var(yhl) for equal probability without

1




replacement in a single stage sampling: we have

™= M- Fi and my .= " (ny - 1) Using
Ny N (N - 1)
these, we can write (3.6) as

n

- N 1 -
Var(yhl) =(1 - F]_) ) (Yhi= Yp)
1 np- L1

where y is the mean of y;s.

(3.7)

1v) var(yhl) for unequal probability with
1 b

replacement: We now have to allow Mg for

i =1i', but the term ™ and T in the double

summation must still have different suffixes.
(3.6) still holds for this sampling.
V) var(yhl) for equal probability with
1
replacement: In this case, theory simplifies,
i.e., Tyo= NPy and o = n{n - 1) PPy

where Pj is for the probability that the i-th

element included in the replacement sampling at

any draw, and (3.6) under these definitions can

be written as
"

l'll )
sLyp Py, - y.)?, 3.
Py Pty - yy) (3.8)

Since the same conditions as (3.6) hold, now

var(yhl) =

allowing i = i', the unbiased estimate of (3.8)
can be expressed as
- " N -
Vaf‘(yhl) = >J (‘yh1 = yh)29 (3-9)
1 (nl - 1) i

which differs from (3.7) only by (1 - Fl), the

factor arising from without replacement.
The aim of sample design ( i.e. a choice of
the Ty and hence the ni) is partially to reduce

variance of an estimator as much as possible. We

can find some compromise set of T which will

be effective in producing small variances for all
the estimates we may use. Brewer(1963) gives L

and w.., values, which has desirable properties

ii
of small variance in (VIII) and (n,n.,- Yy >0

Mast
it i1
shown in (3.6) when we take two sample units
(n=2).

VI) var(yh3) for equal probability without
replacement where

81 P21 034j 3.10
Yh3 % § E Yhijke (3:10)

Syppose that sampling is done with equal
probability without replacement at each of three
stages sampling in stratum. Substituting such
probabilities as in III) in the general formula
(3.4), it can be shown that

o a2 1 2
var(yy,s) nlcyh(l - Fp)+ F1§ HZicyhi(l - Fy)

cr e N 2
14 Fai 17 0345 ok (1 - Fgip)s (3.11)

where Fyany/Nps Fai= npi/Najs and Fay= ngy /N

. 3ij
are the sampling fractions
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2 21 N 2
o, = (y - z Yy ) s
Yhi N, -1 Moy § TN
1 1
1 N, 1 N,.
2 2
% I Wiy =17 W)
hi Noo - 1 NZi J
o .= : g3ij(y _— - §31J Ypiae)?
hij N -1k hijk % hijk
3ij 3ij
Nys N n N, -
ARRYA o _3ij ¢3i]
Ypi ==L Yhige ond ¥y T
2i 9 3ij
For symmetrical data, i.e. "1"2i”31j = nqnong =
n, the unbiased estimate of (3.11) is given by
R \ sﬁ s M s%
varypgd= n*( 5= (1= Fp) " g (1= Fp)
n. n 1 2 1 12
1’2 3 ) (3.13)
+ = —— - . .
N1 N2 ninong 3

Every terms in (3.13) after the first is
multiplied by the earlier stage sampling
fractions (n /N )(ny/Ny)e.e., o is replaced by
Note that, if (n,/N;) is negligible,

all other terms after the first are also
negligible.

sample s2.

VII) var(yhz) for equal probability without

replacement for two-stage sampling:The two-stage

result 1s obtained by putting N1= n1=1 in (3.11)

after appropriate changes of subscripts.

VIII) var(yh3) for probability proportional to

the population size (pps) with replacement

for the first two stages and equal probability

without replacement for the third stage:

It is rare in multistage sampling to use
equal probabilities sampling throughout for
the variance becomes big. When the units vary
considerably in size, the effect of equal
probability sampling is to make variances very
large. This point does not arise in the
symmetrical case when all the units at every
stage are of equal size. Thus we are obliged to
seek some other sampling scheme to reduce the
sampling variance.

We may achieve this by varying
probabilities at each stage. If overall
probability of selection of single element in
a multistage sampling is n/N, it is said to be
self weighting as the members of sample are
equally weighted. Then, the sample variance
can be reduced for some estimates. A simple
way of achieving the self-weighting pps
sampling design is to select nm PSU's with
probabilities pgl) at each drawing, Noj second
stage units from each of the n selected PSU's

with probabilities pggz and n31j third stage

units with probabilities p(3) at each drawing,

1jk

Nas Nas s
where p§1)= _éli, p(?) = 34 ang p§3) =1
i N ij Naq ijk Ny
i+ 1]



The subscript "+" means the summation over the
respective subscript.

Pps sampling design provides the necessary
condition to reduce the sample variance as seen
by, if UPRUPY n3ij =n Ny ng =,

(1) (2) (3)y - _n
which is the overall selection probability for
each elementary unit.
For the total Yp3 of (3.10) from pps sampling

with replacement for the first two stages and the
equal probability sampling without replacement
for the third stage, it can be shown that

N -
var(y, )= gt N, (T, - T)2
h3 N ; Ji+d
n, N Nos
171 21 -
+ . P P .2
N % N2i % N313(T13 T1)
n, N N,
-1 ¢l 2i 2
= T N 17 Ny Noss ofi (1 - Fool) (3.14)
N i=1 2i j=1 3ij "3ij “hij 3ij
N, :
= = . o 72 .
where Tij" N3350 Hi5° E(mij)’ T, = % Tij’
_ 1 D3ij - MoN T
i ;—— E Ynijks T=n % ( N31+) T; where
3ij
Noi Nos N,
- 2i 3i 21
=1 (N o Tigr Majy =1 Naygs
J 3i+ J=1
Ngs s
2 1 3ij 2
and oy 5 17 Ohygem wig)s
N31j -1 k=1

One may find an unbiased estimate of
(3.14) and that the result is consistent with
the previous discussions on with-replacement
sampling at the first-stage.

IX) var(yhz) for pps with replacement for

the first-stage and equal probability without
replacement for the second-stage: The two-stage
result is obtained from (3.14) by setting
n, = N =1 and making appropriate changes in
notation.

Similarly we can find the variance of
ratio and covariance of ratios.

4 LINEARIZATION
Ratio estimates can be linearized by a
Taylor series expansion under summation. Then
the variance of the variable portion of this
expansion is the same as the variance of the
original ratio. Denote any ratio of variables
eer s U, by @ function f(up,us,.ees,uy).

u
1)
It has been known that

af(Ul...Uk)) (4.1)

k
var( f(up...u.)) ~ var(] u;
! 3,

where E(ui) =U;i=1, ..., k, and the symbol

"=" means that both sides of the symbol
approximately equal.

EXAMPLE 1 Let x and y be the random variables
with expected values X and Y, respectively.
Consider the ratio x/y. The variance of the
ratio is approximated by that of the variable
portion of the linear expansion of the ratio:
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var( X) ~ var( X =Ry,
Y

(4.2)

Y
where R =X/Y.
EXAMPLE 2 Ratio X' = (x/y)Y is often used for
estimation purposes where x and y are variables
while ¥ is the known number.

var( 5-?) ~ var( i (x - Ry)).
y Y

Using these two procedures given in Section
3 and Section 4, we can find variance for a
comp]ex ratio estimate. We will demonstrate it
using an actual example in Section 5.

5 AN EXAMPLE AND SUMMARY
Current Population Survey(CPS) estimated
X of population characteristic x as follows:
(Technical report 40, Bureau of the Census,
p 155).

(4.3)

C X
A X * ) acNS ZC )
X' =3 el z, V., (5.1)
a C y
acNs Z
Yoep t L —— ¢
asR =1 2,

where the subscript ¢ = 1, ..., C (C = 48 cells
of color-residence) for the collapsed
nonself-representing strata (NS) arising from
the first ratio adjustment, and a = i, ...,A (A
= 60 cells of age-sex-race categories) from the
second ratio adjustment. We express (5.1) as

Ay &
X*= 7 "a Yy (5.2)
a ‘
Ya
where x, and y, are so defined in (5.1)

The terms Xjqp» YasR> XacNs® YacNs® “c’
Z.s and }a in (5.1) are given below.
= the weighted sample total, from ultimate

sampling units (USU) in self-representing
(SR) primary sampling units (PSUs), of
population with the desired characteristic
x in the a-th age-sex-race category. The
weights are the inverse of the probability
of selecting the USUs. In practice, the
weights, represented by wsij , also

included special weighting and the
noninterview adjustment factors.
Yasp = Same as for X36R? but for the total

Xasr

population. th
XgcNs™ SAMe as Xjgps but for the c-

race-residence category fqr the nonself-
representing (NS) population.

Yacns™ same as for x, ., but for the total

population.
estimated total 1980 Census NSR population

in the c-th collapsed race-residence
category, based on 1980 census population
of the NSR sample PSUs, weighted and
summed over all NS strata.

1 if the (sij)-th person in NSR-sample

y4 =
C

chij=
PSU belongs to the c-th color-residence
category, 0 otherwise.

Z_ = the 1980 census population in NS strata

C



in the c-th, collapsed race-residence
category;
Ya = independent population total for the U.S.

in the a-th age-sex-race category for the
current CPS month.
. For the variance of X', first we linearize
X' under the summation sign summing over a and
then consider only the variable portion of
Tinear expansion as shown. Secondly we exchange
the summation signs moving those for sampling in
frqnt and sum up those for ratio estimations.
Thirdly variance of the resulting aggregate can be
found by the formula developed previously in
Section 3.
These steps are illustrated as follows:
Step 1 Linearize (5.2) and take the variable
portion. The variance of the ratio
estimate is approximated by that of
linearized portion.
\ - v X
var{X')=~ var(% v, (x; - a

), (5.3)

- Ya
Ya

Form (5.1), (5.3) can be rewritten as

A C
] ~ . X
var(X') = var( % Ya((XaSR+ E acNS Zc)

where Y5 2, X =

Ya

Collecting the terms of SR-strata and NS
strata separately, and linearizing the ratio
estimate upder the summation over c¢ for the second
time, we then obtain

A

A X
var(X') ~ var{ § Ya(XaSR -_a yaSR)
a ~
Y
a
ALy X
Yolvg b Ze o (Xgeng T 22 Yaens
a C '?
ZC a
X X
+_a Jac z, - Cac zc) ) (5.4)
YaZc ZC
where Z_ = E(zc), Yac™ E(yacNS)’ Kac™ E(xacNg)’
[T P D L
_ 10250351 1025035
X = W ..X .. =
ask é § § sijasij’ Yasr g % § wsijyasij’
nin,.n
1 2s¢ 35
X =YTTT T WL XL,
acNS s sij “acsij
N1Ns2Ms 3 niNs2Mh3;
Yy = W_ .. s . =
acNs é D) sijYacsij® Zc g ; % YsijZesije

L1 is the number of SR-PSU's, UP the number of

number of second-stage sampling units (SSUs) in
the s-th SR-PSU, and N3gq> the number of third-
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stage sampling units (TSUs) in the i-th SSU.
ni is the number of the sampled NS-PSUs.

Step 2 Using above definitions on Xasr> Yasr®
X3cNs? Yacnse and z. with the triple summations,

we move the summations arising from sampling in
front of those summations of ratioc estimation
for age-sex-colors and race-residences. Summing
up over a and ¢ for age-sex-color and race-
residences, only the summations from sampling

remain. (5.4) can be written as
Ly s Ms3i

var(X')svar(] . ¥ (B s +C,_..)
L % 4 +sij +51j

Ny N_o N_qs
1 ¢s2 ¢s3i, . . .
* E % % (B++sij - C++sij * D++sij' D++sij))’
(5.5)

which can be expressed as

Ly n N ns nin N a:
var(x)=var(11 157 1536 L gt 102 15V )(5.6)
s 1 j s i J
with tsij and tsij are so defined. The six terms

in (5.5) are:
A L.n N.q:A L.n n
1¢52 ¢s3i 1 ¢s2 ¢s3i
(1) F vaXar= L 0 1 1 Busim 1T 17017 B yss
3 @ asR ¢ & 3 a asli ¢ g 451
Basij ™ Ya Wsij XasSRij
A i Ln n A Ln n
a 1vs2 ¢s3i 1les2cs3i
(2) ] =¥ ¥ar= 2 L "L Cugii= L L LT Cogian
i a“aSR s 3 i a asij ¢ 3 3 +s1j
Y
a~
Casij = =2 Ya "sij Yassrij’
Ya
For the second term,
AC Ny n52n531A C
(3) 3 2 va%3e=2 1 1 1 I Biesis
5 ¢ @ac ¢ % i & ¢ acsij
i NsaNs3i
= é % % ++sij> DPacsij- Ya%sijXacNssij
AC ~ NN o N_~:;A C
X 1752 s3i ,
(BT iy, a y,o=011 1 11 Clcis
aca~_ac s 73 acacsu
ac N
M1"s2"s3i X

=11 % wsij’ Cacsij™ Ya -2 YsijYacNssij

Yac
AC VN nyn n .. AC
Y 1 's2 "s3i
(5) Yy, 'a ‘ac z_ _ '
g E a—=——"c= 11 1 11D;
Y 7 s i J
a ‘¢
Ms2Ms34 Y
= z % § D++sij’ csij Ya tg__gg YsijZcsije
Ya Zc
AC N nin_,n_,.AC
1 ¢s2 ¢s3i
(6) 1 1 vy acz, =1 1771770 ) Dygis
ac @ 5 ¢ s i j ac acsy
c



- categories, the second application for the

N1 Dsp D3 0 Y color-residence cells, and finally the third
=] z Z D++sij’ acsij'Ya ac wSlJ cs1J application for the three-stage design. Here,
s i J 7 there is no other assumption made except for
¢ the usual ones arising from Taylor series
Step 3 Variance of X'. The first term is due to approximation. .
the gR—PSUs and the second term for NS-PSUs. It appears that the procedures presented in

this paper may be one of the better methods of

we lcula heir variances separately and - X - -
can ca te t para Y variance estimation in the sense that we

sum the two.

; . ling and estimation
Since for the nonself-representing strata, the can indeed reflect the sampling ;
samples were selected by pps zesign fog the first procedures on the sample variance. The behavior of
two stages with replacement, and the last stage this method could be further investigated by way of

an empirical method.

with equal probability without replacement, we may This method may be used for discrete variables

use (3.16) for the variance estimation of

nonself-representing strata, while the data from as well as for continuous ones.
self-representing strata arise from only two REFERENCES
stages as shown in (3.17). The variance of X' is Durbin, J.(1953). Some results in sampling
theory when the units are selected with
' unequal probabilities. Journal of the Royal
var(z z 2531 t; )+ var(Z 252 2531 s1j) Statistical Society, B, 15, 262.
] ) i Hidiroglou, M. A. and Rao, J.N.K. (1983).
) ) Chi-Square Tests for the Analysis of Three
ossr T OgNg> SV Way Contingency Tab]gs from the Canada
The first term is thehs$m OE the le ggﬁlgg Survey. Statistics Canada, Ottawa,
self-representing PSUs, while the second is Shah. B Q (1981). SESUDAAN: Standa
. : , B.V. . : rd Errors
that of the n nonself-representing PSUs. Program for Computing of Standardized Rates
One may want to have the variance of the from Sample Survey Data. Unpublished
ratio X'/Y', where X' is already linearized as document, RTI.
shown above and Y' is some other ratio estimate Kendall M. G. and Stuart A. S. (1968). The
using (5.1) and var(X'/Y') can be obtained Advanced theory of Statistics, Vol. 3. Hafner
similarly. Publishing Company, New York.
We may use delta method repeatedly for the Woodruff, Ralph S..(1971). Simple Method for
var(X'). From this example, the first Approximating Variance of a Complicated
application can be done for the age-sex-race Estimate. Journal of the American Statistical

Association, Volume 66, June, pp4ll-414,
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