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I Introduction 

In survey sampling the prevailing estimation 

strategy for estimating a finite population 

parameter 8 is based upon an (approximately) 

unbiased point estimator 8 and an (approximately) 

unbiased variance estimator V(8). Then a central 

limit theorem is referred to for the assumption 

that 8 is approximately normally distributed, and 
" " I/2 

it is stated that the interval 8 + 1.96{V(8)} 

covers the true value 8 with a probability of 

approximately 95 %. Sometimes 1.96 is exchanged 

for the corresponding value taken from the Stu- 

dent's t table with an appropriate number of 

degrees of freedom. 

In an individual survey it is not, however, 

very easy to establish how accurate this approxi- 

mation is. It depends on a number of factors such 

as the type of estimator and design used, the 

underlying population sampled from, and the samp- 

le size. Consequently, there is a great need of 

increasing our knowledge of the coverage propert- 

ies of the standard procedures for calculating 

confidence intervals in different set-ups and of 

working out simple rules of thumb useful for the 

survey practitioner. 

For in sampling practice the standard approxi- 

mation fails frequently. One example is sampling 

from populations of enterprises with very skewed 

variables such as production, employment, invest- 

ment, export or import. Another example is small 

area estimation where most observations are set 

to zero. 

In this paper we study the case of the sample 

mean under simple random sampling. For this case 

Erd~s and R~nyi (1959) and Hajek (1960) developed 

conditions for the sampling distribution to con- 

verge to normality. 

Stenlund and Westlund (1975 and 1976), Barrett 

and Goldsmith (1976) and HEgglund (1978) studied 

this problem by means of Monte-Carlo experiments. 

For populations in which the principal deviat- 

ion from normality consists of a marked positive 

skewness, Cochran (1977) suggested the simple 

rule 

9 
n > 25G I , 

where n is the sample size and G 1 the usual meas- 

ure of population skewness defined below. Accord- 

ing to Cochran "this rule is designed so that a 

95 % confidence probability statement will be 

wrong not more. than 6 % of the time". 

Robinson (1978) gave an asymptotic Edgeworth- 

type expansion for the sum of a simple random 

sample without replacement from a finite populat- 

ion. The crucial quantities in this expansion are 

skewness and kurtosis. He showed that, subject to 

a condition ensuring that the population distrib- 

ution is "almost continuous", the absolute diffe- 

rence between the distribution function of the 

sample sum and the asymptotic expansion is bound- 

ed by a term containing the absolute fifth moment 

of the population distribution. 

It would, perhaps, be possible to base a rule 

of thumb on this expansion, although it would 

have to be quite complicated, as it has to take 

into account both the skewness and the kurtosis 

as well as the absolute fifth moment of the popu- 

lation distribution. It would also have to exclu- 

de the lattice cases which sometimes occur in 

practice. 

In this paper a simpler approach is used, 

inspired by Cochran's rule and H~glund (1978), 

who has derived the following remainder term 

estimate (the formula is slightly manipulated 

algebraically to serve our purpose): 

t-n~ _ < , where (i.i) 
- ) _ 

F is the distribution function of the sum of a 

sample of n units among the N population units 

(x ,x ,...,x ), ~ is the standard normal 
1 2 N 

distribution function, ~ is the population mean, 

is the population standard deviation, f = n/N, 

C is an absolute constant (Qulne (1985) shows 

that C < 145) and 
N 

I xj-  I 
G 2 = Nos . From above, we have 

N 
_ j~l (x j-B ) 3 

G 1 - No 3 • 
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We notice three things about (i.i): 

i) The deviation from normality is bounded by a 

term containing the factor G 2, the standardized 

absolute third moment. 

ii) The formula is symmetric in n and (N-n), 

indicating that the accuracy of the normal appr- 

oximation could be expected to be equally good 

for these two sample sizes. In fact, as pointed 

out by Plane and Gordon (1982), the sampling 

distributions of the sample mean of n and (N-n) 

units are mirror images of each other except for 

a scale change. For this reason N/2 is the sample 

size where the sampling distribution is closest 

to the normal. 

iii) If we wish to have an upper limit to the 

absolute difference (called ~) of formula (I.i) 

we obtain the condition CG2//n(l-f ) < E +-~ 

n(l-f) > C 2G22/ 2 or, if we consider large popula- 

tions and set K=C2/~ 2 , n > KG . This provides a 

theoretical argument for a rule similar to Cochr- 

an's, although the population skewness is replac- 

ed by G 2. The constant K depends only on the 

maximum error allowed in the approximation. Of 

course, in constructing two-sided confidence 

intervals we are interested in the difference 

between the deviations in symmetric pairs of 

percentiles of the distribution, usually 2.5 and 

97.5, and therefore ~ is not necessarily equal to 

the difference between the nominal and actual 

coverage probability of the confidence interval. 

The above arguments provide the logical found- 

ation for the empirical investigations presented 

in this paper. Here we calculate the exact cover- 

age probabilities of confidence intervals based 

on the normal and the t-distribution for dichoto- 

mous populations, where these probabilities have 

a simple hypergeometric distribution. No other 

distributions are known, where these probabiliti- 

es are easily calculated for arbitrary sample 

sizes and degrees of skewness. Moreover, there 

are strong reasons to believe that this distribu- 

tion, because of its extreme lattice character, 

represents more or less the worst case. This was 

actually proved by Esseen (1956) in the i.i.d. 

case. The t-distribution is studied together with 

the normal because it is recommended by many 

textbook authors, although a solid theoretical 

argument based on a limit theorem is lacking. 

The structure of the type of rule of thumb that 

we investigate is therefore 

n >K 2 G2, (1.2) 

the interpretation being that if we know G 2 exac- 

tly and are prepared to allow an actual coverage 

probability of ~, we must choose a sample size 

greater than K 2 G 2. It is studied to what extent 

the K :s are stable for different degrees of 

skewness of the dichotomous population and for 

finite realizations of some continuous parametric 

distributions. Throughout we study confidence 

intervals with 95% nominal level. 

For very skewed populations G2=G I and then 

this rule coincides with Cochran's but at the 

other extreme, for symmetric populations, GI=O 

and Cochran's rule reduces to n>O and is there- 

fore obviously unsuitable. For this reason G I is 

not used in the empirical investigations below. 

On the contrary G2>I for all populations with 

equality, if and only if, the population is dich- 

otomous and symmetric as shown in Dal~n (1985). 

For reference G2=4//2~=1.6 for the normal distri- 

bution and /27/4=1.3 for the uniform distribu- 

tion. 

The dichotomous population 

For the dichotomous population studied the 

following notations are used: 

Value Number of units Number of units 

.... in the population .... i n the sample 

0 N-M n-m 

i M m 

Total N n 

The population has the following characteristics: 
2 

Population mean = ~ = P, population variance = 

= p_ p2, G I = (I-2P)/(P-P2) 0"5 and G 2 = 

(I-2P+2PZ)/(P-P2) 0"5 , where P = M/N. 

Notice that G 2 G 1 + 2 p l ' 5 / ( 1 - P )  0"5 = so that 

lim (G2-G1)=O and tha t  GI=O and G2=l when P=0.5.  
P+O 

The sample has the following characteristics: 
2 

Sample mean = X = m/n and sample variance = s = 

(m-m 2/n)/(n-I ). 

A nominal 95% confidence interval for ~ based 

on the sample outcome would now be 

X - t0.975 s/(l-f)/n < ~ < X + t0.975 s/(l-f)/n , 
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where t0.975 is either 1.96 or the corresponding 

quantity from the t-distribution with (n-l) degr- 

ees of freedom. 

(Since we are interested in how bad the appro- 

ximation could be at worst, the continuity corre- 

ction is not used. If it was, the constants K 

needed would become much lower but would be more 

difficult to generalize to other types of popula- 

tions. ) 

Now, let I be the indicator of this confiden- 
m 

ce interval statement as a function of the sample 

outcome. That is: 

for those m where the confidence interval 

I = contains 
m 

otherwise 

The actual coverase probability (ACP) is now 

defined as the probability for a sample of a 

certain size n from our population to produce a 

confidence interval statement containing ~, that 

n 

is ACP(N,M,n) = E ImP(m) , where p(m)= f~ 
m=0 

according to the hypergeometric distribution. 

Computer programs were written which computed 

these probabilities for various combations of N, 

n and P. The programming language was SIMULA, and 

the IMSL procedures MDBIN, MDHYP and MDSTI were 

used. 

In diagram i, a typical example is given of 

how the ACP varies with n up to N/2. We see that 

the ACP does not increase monotonously with n. 

Typically there are intervals of increase (short- 

er and shorter as n increases), followed by down- 

ward jumps. This is of course due to the discont- 

inuous character of the population studied. Up to 

85-90% the increase is rapid, but after that 

there are oscillations around a mean, which gets 

closer and closer to 95%. 

3 Average ACP 

ACP is a measure of the goodness of the normal 

or t-approximation. If the nominal confidence 

level is 95% we consider the approximation to be 

good if we can count on a coverage probability 

sufficiently close to 95%. 

A c . P  

D I A C R A H ~ . : A c T U A L  COVERAGE PROSABILIT~ES. 
T-APPROXtHATiOW U3ED. h/=3Oo, P=O.l. 

8s'/o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

~'0 . . . . .  + . . . . . . . . .  + -  .. . .  + - -  .-"o, 

. . . .  + - - - - - + - - - - - - . i - - - - - - e -  ..... - - ~ - - - - + - - - - ~ -  ....... - t - . - - - - - l -  . . . . . . .  t - - ->  
~o ~e ~,o ~0 ~0 (,0 :~o ~'0 ~O 1o0 //o t.~o ~o  I ~0  l ~O  

However, it is not possible in an individual 

case to promise a "guaranteed" ACP. This is part- 

ly because we do not know the population charact- 

eristics exactly but also because of the oscilla- 

tions in the ACP-level as n varies as shown in 

diagram i. A device intended to deal with the 

latter problem is the concept of an average ACP. 

Definition i:~ is an average ACP for a certain 

sample size n in a certain population if 
S 

ACP(n+j)/(s+l) > 
j=O 

for all integers s such that 0 < s < N/2-n. 

Definition 2: For a certain population the 

sample size n required for an average ACP of 

is the smallest n for which ~ is an average ACP. 

These two definitions also give a unique value 

of the constant K in (1.2) for a certain populat- 

ion, namely 

K = n /G~ z . 
g 

In table I values of these constants are present- 

ed for some combinations of N and P including the 

binomial case (N=~) and for ~=94%. Two comments 

to the calculation of this tables should be 

made: 

i) In the binomial case definition I could not 

be applied exactly, since N is infinite. 

Instead we had to choose a maximum sample 

size up to which we calculated the ACP and 

which was equated to N/2 in definition I. 

This sample size was in all cases greater 

than 100G22 • 

3 2 4  



Table i: Constants for an average ACP of 94%. 

Normal approximation t approximation 

P N = N = 

500 i000 2000 5000 = 500 i000 2000 5000 

0.01 - (5.1) - 18.6 22.5 - (5.1) - 18.6 22.5 

0.02 (5.2) - 16.4 20.0 23.3 (5.2) - 16.4 19.9 23.2 

0.03 (8.2) (16.2) 18.6 22.1 24.0 (8.2) 13.9 18.6 22.1 21.3 

0.04 (11.3) 17.3 20.7 22.7 23.1 (11.3) 16.0 19.6 20.0 23.1 

0.05 (14.4) 16.9 20.1 23.4 23.8 (14.4) 16.9 19.0 19.4 23.8 

0.I 19.4 24.8 25.3 23.8 25.8 19.4 20.1 20.5 22.4 22.5 

0.15 24.1 23.2 26.9 25.3 27.6 18.6 17.2 19.3 21.4 19.8 

0.2 31.8 28.4 30.8 30.8 26.3 17.0 19.4 15.2 22.1 17.6 

0.25 25.9 24.0 31.7 36.5 36.5 ii.0 13.9 19.2 14.4 16.8 

0.3 30.6 28.7 36.8 33.7 31.8 8.7 11.9 11.9 15.0 15.0 

0.35 29.1 35.2 30.6 26.8 43.7 13.0 I0.0 I0.0 i0.0 i0.0 

0.4 43.5 30.2 28.4 28.4 30.2 6.2 6.2 6.2 6.2 6.2 

0.45 26.2 26.2 36.9 36.9 34.9 5.8 5.8 5.8 5.8 5.8 

0 . 5 36 37 29 34 34 14 9 9 9 9 

ii) In those cases where N/2-n < 50 we have put 

brackets around the value of the constant. 

This is because those values may be consi- 

dered to be accidental from a global point 

of view. (The number 50 is, of course, to a 

certain extent arbltrary.) 

Table I and corresponding tables for other 

a-levels not published here are summarized by the 

following table, showing the range of the const- 

ants for each level. 

Normal t 

85 1.6 - 5.3 1.6 - 4.4 

90 1.9 - 8.4 1.9 - 5.1 

93 7.9 -19.5 4.9 -12.1 

94 16.4 -43.7 5.8 -23.8 

94.5 25.2 -81.5 5.8 -46.5 

We notice that, for the higher a-levels and less 

skew populations, the t-approximation gives much 

smaller constants. This provides an empirical 

argument for the use of this approximation 

instead of the normal one. 

Almost continuous populations 

The K-values obtained in the dichotomous case 

were also tried on populations of an "almost 

continuous" type. The K-values chosen were 3, 5, 

II, 20 and 40, corresponding roughly to the five 

a-levels of the summary table above. 

It is to be expected that the convergence rate 

be more rapid for such populations than for the 

dichotomous population with its pronounced latti- 

ce character. If this is correct the a-levels 

should generally be exceeded if we choose the 

above K-values. 

The populations used were based on fixed perc- 

entiles of the beta, lognormal, power function 

and Weibull distributions. For each of these four 

distributions, six different finite populations 

were generated with different degrees of skewness 

by taking the percentiles from 0.001 to 0.999 

with intervals of 0.002, making the population 

size 500. The reference used for these distribut- 

ions was Patel et al (1976). 

For each population five different sample 

sizes were chosen so that they corresponded as 

closely as possible to the K-values above. This 

means that n was chosen so that n >__ KG 2 > n-I for 

values of K of 3, 5, ii, 20 and 40 respectively. 

For every sample size i000 simple random samp- 

les without replacement were made. For each samp- 

le the population mean was estimated and a confi- 

dence interval based on the sample standard devi- 

ation and the t-distribution was calculated. The 

number of cases when this interval covered the 

true population mean was counted. This figure 

divided by I000 became our estimated actual cove- 

rage probability (EACP). EACP is of course stoch- 

astic in this case with a standard error of 0.7% 

to 1.1% when the ACP ranges from 95% to 85%. 

In table 2 the outcome of these Monte-Carlo 

trials is presented in terms of the EACP for a 

certain combination of population and sample 

size for the lognormal case. This table and corr- 

esponding tables for the other populations show, 

as expected, that in almost all the cases the 

a-levels obtained from the studies of the dichot- 

omous population are exceeded, for ~ = 85 and 

90% by large margins. The convergence rate up to 

90-92% seems in general to be rapid. Only in 5 

cases out of 90 are the presupposed levels not 

obtained (those cases are indicated with an aste- 

risk). The EACPs are in these cases 0.1-0.4% 

below the expected level. One case is for ~=93% 

(0.I below), three cases are for ~ =94% (0.1-0.3 

below) and one case is for ~ = 94.5 (0.4 below). 

The deviations may very well be entirely due to 

the stochastic effect of the Monte-Carlo trials. 
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Table 2 :  EACPs for I000 random samples from populations 

based on the losnormal distribution. 

K a-le- G2=1.597 G2=1.982 G2-2.943 G2-3.883 G2ffi4-695 G2=6.331 

v e l ( Z )  n n n n n. n 

3 85 95.9 8 92.7 12 92.1 26 89.6 46 90.6 67 89.5 121 

5 90 94.7 13 93.6 20 91.4 44 92.8 76 91.8 111 91.7 201 

11 93 95.9 28 95.6 44 94.4 96 95.2 166 94.5 243 

20 94 94.8 51 95.5 79 93.9*  174 

40 94.5 95.4 102 96.2 158 

5 Conclusions 

Our empirical investigations into the problem 

of how large the sample size must be to allow a 

standard 95% confidence interval to be calculated 

for a simple random sample from a finite populat- 

ion support the following tentative conclusions: 

i) When the difference is of any significance, 

the confidence interval should be based on 

the Student's t distribution with (n-l) 

degrees of freedom, making the convergence 

rate more rapid. 

ii) A rule of thumb of the Cochran type (1.2) is 

useful to the practicing statistician, if he 

has a reasonably good knowledge of G 2. A 

choice of K = 20 should in most cases allow 

him to count on an ACP of 94% for a nominal 

95% confidence interval. For "almost conti- 

nuous" populations, a K greater than 3 

should be enough for an ACP of around 90%. 

For some symmetric populations, i.e. those 

close to uniform, even more liberal limits 

will do. 

The rule of thumb could be used a priori 

to assist a decision on sample size. If our 

knowledge of G 2 is insufficient before the 

survey, the rule could be used to evaluate 

the quality of a standard confidence interv- 

al based on the sample data after the sample 

is drawn. 

6 Some comments for the practical application 

The practical application of a rule of thumb 

like (1.2) raises a number of questions, two of 

which are commented on below. 

I G 2 is not known. In practice no population 

parameters are known exactly and G 2 is no 

exception. Estimating G 2 from the sample is 

not easy. No unbiased estimator is known and 

the corresponding sample quantity 

n n 

g2 = /~ i~-olxi-Xl 3 /{i~-o(Xi -~)2}3/2 --< 

(n2-2n+2)/n/n---~ < ~n and therefore 

underestimates G 2 with probability one as 
2 

soon as n < G2, as shown in Dal6n (1985). 

Moreover, if the population consists of 

two subsets A and B where B contains a few 

large-value units with a small probability 

of showing up in a sample of size n, and G 2 

calculated over AuB is much greater than G 2 

calculated over A, then in most sample outc- 
! 

omes we would in a sense estimate G 2 rather 

than G 2 and our rule of thumb based on g2 

instead of G 2 would become seriously mislea- 

ding. 

It is therefore necessary to know more 

about G 2 than what can be inferred from a 

sample. If, for example, we know that the 

range of population values is not much grea- 

ter than the range of sample values we would 

be on safer ground using g2 or a similar 

estimator. 

II Stratified samples. In the presence of a 

skewed population, estimation by the sample 

mean under simple random sampling is certai- 

nly not the best strategy available. In such 

situations the prevailing strategy at centr- 

al statistical offices is stratified random 

sampling using the weighted mean with the 

stratum sizes as weights. However, due to 

the lack of a sufficiently good auxiliary 

variable we sometimes end up with very 

skewed subpopulations in many strata. It 

then becomes an issue when the normal 

approximation is reasonable in stratified 

samples. 

Some empirical studies of this problem have 

been done, but due to the many dimensions 

involved (number of strata, stratum sizes, 

sample sizes, variances and degrees of skew- 

ness in each stratum), results are difficult 

to present in a systematic way. There are 

indications that a rule like 

n > K ~ wiG ~ where summation is over 

strata, G2i is G 2 in stratum i and w. are 
i 
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properly chosen weights such that E w i - i, 

would work satisfactorily. If a Neyman allo- 

cation is used, wi= Nioi/~ Nio i seems to 2 

work in many cases. (N i is the size and ~i 

the variance of stratum i.) 
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