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I. INTRODUCTION 
Assume we have a finite population of N 

elements, with distinct X values associated with 
the elements. The ordered population is then 
denoted as 

X(l ) < X(2 ) < ... < X(N ). 
Let t and u be fixed integers in the range 1 <__ t 
< u _< N. Then X(t ) and X(u ) are the (t/N)th and 
(u/N)th quantiles of the population~ 

A simple random sample of size n is selected 
without replacement from the population. Denote 
the order statistics from the sample as 

X(l ) < x(2 ) < ... < X(n ). 
We wish to form a confidence interval for the 

quantile interval tX(st)~ X(u )] of the form [X(r), 
X(s )] where 1 <_ r _ n, and r <_ t. 

For example, if we have a population of size N 
= 399, we may wish to find a 95 % or greater 
confidence interval for the interquartile inter- 
val [X~I00) , X(300)] , that is, the interval in 
which the midd~le half of the population values 
falls. We can show that, based on a simple 
random sample of size n = 20, that the 2-nd and 
19-th order statistics of the sample yields a 
confidence interval with confidence coefficient 
of 95.7 %. 

This confidence interval is similar to the 
outer confidence interval for quantile intervals 
as defined by Wilks (1962, p. 332). However, 
Wilks assumes a population having a continuous 
distribution function F. The population quantile 
~p of order p (0 < p < i) i<s defined by $ = 
min{x : F(x) >__ p} . For 0 Pl < P2 < I, Pthe 
outer confidence interval for the quantile 
interval (E~ , En~ ) based on the order 
statistics x~ I~ and~is ~ ~ (I < r < s < n) is the 
random interval [X(r), X(s)].-- 

Krewski (1976) gives a closed form expression 
for the confidence coefficient of this interval, 
upper and lower bounds for the coefficent, and 
numerical examples of each. Reiss and Ruschen- 
dorf (1976) give exact formulas and a recurrence 
relation for the confidence coefficient and also 
improved bounds for it. They also discuss asymp- 
totic approximations, and numerical examples are 
given. Sathe and Lingras (1981) give sharper 
bounds than Krewski and Reiss and Ruschendorf, 
using properties of convex functions. 

Our problem differs from those above, in that 
we are assuming a finite population, and form a 
random interval for the (t/N)th and (u/N)th quan- 
tile interval. In Section 2 we state the proba- 
bility of coverage. Section 3 tabulates some 
examples, and in Table 2, compares the results 
with those of Krewski. Section 4 states exten- 
sions and special cases. The Appendix gives the 
derivation of the main result. 

2. THE CONFIDENCE COEFFICIENT 
We now state the formula for the exact con- 

fidence coefficient for outer confidence inter- 
vals for quantile intervals from finite popula- 
tions. 
Theorem 2.1___. A population consists of N elements 

with distinct X values, ordered as X(1) < ... < 

X(N ). Let x(1) < .-. < X(n ) be a simple random 

sample of size n drawn from the population with- 
out replacement. Assume 1 < t < u < N, 1 < r < s 
< n and r < t. Then 

P[x(r ) < X(t ) < X(u ) _< X(s )] 

s s-I 

(:I i = ~' ~" s * - r * / \  n-s*)/ tn ) . 
r *= r  s*=O / 

(We use the convention that Cn] = 0 if r is a 
negative integer or r > n.) k/ 

The proof of this theorem is in the Appendi>~ 

3. NUMERICAL EXAMPLES 
A Pascal quadruple precision program was 

written to compute the confidence coefficient 
P[x(r ) < X(t ) < X(u( )< X(s )] for various values 
of r, s~ t, u, ~._~h~ population size), and n 
(the sample size). 

Table 1 gives selected values for the confi- 
dence coefficient using population sizes of N = 
47, 99, 199, 399 and 799, and forming the quan- 
tile interval IX 2 ((N+I5)/4 ), X(3(N+I )/4 )] 
(essentially the -th and 75-th percentile 
interval). The tabluations are for a sample size 
of n = i0, and r and s such that s = n - r + 1 
and s = n-r. Due to symmetry, the confidence 
interval for (r,s) = (r, n- r + 2) has the same 
confidence coefficient as (r-l, n- r + i), r = 
2, ..., [(n-l)/2]. 

Table 2 is similar to Table i, except that the 
sample size is 20. The additional column labeled 
K gives the exact confidence coefficient for the 
continuous case, with n = 20, for P[x~K)~< .25 
< E.75 <--X(s)] as given inKrewski (i~/o . 

In Table 3 we list the confidence coefficients 
for samples of size n = 40, from populations of 
sizes 47, 99, 199, and 399. 

Although the tables use (essentially) 
symmetric intervals for the approximate 25-th and 
75-th quantiles, the computer program is written 
with enough generality to be used for any values 
of r, s, t, u, n, and N. 

Table 1. 

P[x(r) _< X((N+l)/4)n=10 < X(B(N+I)/4) _< X(s)] 

r s N = 47 N = 99 N = 199 N = 399 N = 799 

1 I0 .92931 .90830 .89837 .89337 .89086 
1 9 .76758 .73424 .71964 .71252 .70901 

2 9 .61948 .57827 .56098 .55271 .54866 
2 8 .36323 .33809 .32773 .32280 .32039 

3 8 .19191 .17869 .17330 .17076 .16952 
3 7 .06245 .06176 .06132 .06109 .06096 

4 7 .01575 .01678 .01715 .01731 .01739 
4 6 .00195 .00244 .00265 .00275 .00280 

5 6 .00012 .00018 .00021 .00023 .00023 
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Table 2. 

-- 2 < X(3(N+I)/4) _< X(s )] P[x(r) < X((N+l)/4)n= 0 

r s N = 47 N = 99 N = 199 N = 399 N = 799 K 

1 20 .99933 .99725 .99567 .99472 .99420 .99366 
1 19 .99434 .98477 .97900 .97584 .97421 .97253 

2 19 .98935 .97230 .96238 .95704 .95429 .95148 
2 18 .95869 .92158 .90339 .89420 .88960 .88499 

3 18 .92813 .87156 .84558 .83281 .82649 .82023 
3 17 .82667 .75149 .72073 .70621 .69916 .69224 

4 17 .72926 .63975 .60593 .59045 .58303 .57581 
4 16 .53922 .46637 .44032 .42859 .42301 .41760 

5 16 .38310 .32743 .30846 .30006 .29608 .29225 
5 15 .20500 .18543 .17816 .17483 .17323 .17167 

6 15 .10040 .09753 .09601 .09524 .09485 .09445 
6 14 .03365 .03931 .04094 .04159 .04188 .04251 

7 14 .00979 .01408 .01563 .01632 .01664 .01695 
7 13 .00178 .00367 .00452 .00492 .00512 .00531 

4. EXTENSIONS AND SPECIAL CASES 
4.1 Non-distinct Population Values 

It can be shown that the confidence coeffi- 
cient we stated in Section 2 is a lower bound to 
the confidence coefficient for the outer confi- 
dence interval for quantile intervals if the 
population values are not distinct. 
4.2 Systematic Sampling 

If instead of simple random sampling without 
replacement we do systematic sampling (eg., 
choose every tenth item in the population), and 
assume that the population is in random order, 
Theorem 2.1 still holds. 
4.3 Symmetric Confidence Intervals 

The formulas for symmetric outer confidence 
intervals for symmetric quantile intervals are 
simpler, but depend on whether the population 
sizes are even or odd. 
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Table 3. 

e[x(r ) < X((N+I)/4)=4<0X(B(N+I)/4 ) < X(s ) ] 

r s N = 47 N = 99 N - 199 N = 399 

1 40 1.00000 .99999 .99999 .99999 
1 39 1.00000 .99999 .99996 .99992 

2 39 1.00000 .99999 .99992 .99984 
2 38 1.00000 .99993 .99962 .99930 

3 38 1.00000 .99987 .99931 .99875 
3 37 1.00000 .99938 .99763 .99617 

4 37 1.00000 .99889 .99596 .99359 
4 36 1.00000 .99628 .98951 .98479 

5 36 1.00000 .99368 .98307 .97600 
5 35 .99999 .98357 .96437 .95299 

6 35 .99998 .97347 .94572 .93009 
6 34 .99946 .94402 .90322 .88232 

7 34 .99895 .91472 .86128 .83538 
7 33 .99145 .84900 .78452 .75545 

8 33 .98396 .7 8493 .71091 .6 7936 
8 32 .93245 .67335 .60150 .57233 

9 32 .88093 .57074 .50275 .47635 
9 31 .69950 .43269 .38336 .36448 

I0 31 .53578 .31978 .28586 .27304 
10 30 .26629 .20400 .19045 .18493 

ii 30 .11947 .12486 .12262 .12136 
II 29 .02316 .06401 .06932 .07100 

12 29 .00390 .03099 .03741 .03980 
12 28 .00000 .01227 .01747 .01965 

13 28 .00000 .00452 .00769 .00919 
13 27 .00000 .00133 .00289 .00374 

APPENDIX 
Proof of Theorem 2.1: 
P[x(r ) < X(t ) < X(u ) < X(s)] 

= P[X(r ) <__ X(t )) - P(x(r ) <__ X(t),~X(s ) < X(~21p~" 

Since 
P[x(r ) < X(t)[~X(s ) < X(u-l)] 

< X<u X<r)< 

we have, using (2.1) and (2.2), 
P[x(r ) <__ X(t) < X(u ) <_ X(s )] 

= P[x(r ) <__ X(t )] 

• {i -e[x(s ) <__ X(u_l)iX(r) <__ X(t)]}. (2.3) 

Now, P[x(r ) _< X(t)] 

min(t,n) 
= ~ P[exactly r* are _< X(t)] 

r*=r 
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min(t n) / ) 

as given in Sedransk and Me 7er (1978). 
Also, 
P[X(s) ! X(u-l)IX(r) < X(t)] 

(2.4) 

rain(t, s) 

= ~ P[X(s ) < X(u_l)lexactly r* are ~ X(t )] 

r*=r 
min(t,s) min(n,u-l) 

= ~ [ e[exactly s* are < X(u_ l)i 

r*=r s*=s 

exactly r* are < X(t)] 

u-I 

' (2.5) 
Evaluating (2.3) using formulas (2.4) and 

(2.5), we h~ve 
P[x(r ) < X(t ) < X(u ) < X(s )1 

rain(t, s) 

~ (:,)(:::,//(~) 
c~=r ! 

min(n,u-l) 

I i )/( )il S*=~lax(C *, S 

/<) 
S9%=S / 

=I 

s-I 

(:,) ~ 
s*=O 

, n-~,; (,,) 

r*=r se=O 
(2.6) 
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