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Summary 

A small sample test is constructed for the 
test of proportions for data obtained from 
cluster sampling schemes. The model assumes 
that the covariance matrix for the specified 
design is a function of the covariance matrix 
under multinomial sampling. A wald test 
statistic, Wald (1943) is constructed using 
the assumed covariance matrix. Brier (1980), 
Wilson (1984), and Wilson and Koehler (1984) 
made use of the covariance structure obtained 
under a Dirichlet model for cluster sampling. 
However, the models considered there are some- 
what restrictive, in that they assume equal 
sample sizes for the clusters and constant 
design effects. This paper considers a less 
restrictive model for cluster sampling schemes 
through identification of a patterned covari- 
ance matrix and obtains test statistics based 
on these schemes. The results obtained are 
compared to those found in Wilson (1984) and 
Wilson and Koehler (1984). A comparison is 
also made to Bedrick (1983) and Rao and Scott, 
(1981, 1984). Tests of hypotheses are consi- 
dered and limiting chi-squared distributions 
are obtained for the various test statistics. 
A numerical example is given based on data 
analyzed in Wilson and Koehler (1984) and test 
statistics are computed for each of the above 
mentioned procedures. The small sample test 
constructed here is related to other tech- 
niques and performs well as far as the 
numerical values obtained. 

I. Introduction 

A small sample test statistic is construc- 
ted for the test of proportions for data 
obtained from a non-multinomial sampling 
scheme• The model assumes that the covariance 
matrix of the proportions under the design has 
a special form. This special patterned covar- 
lance matrix is assumed to be a function of 
the corresponding covariance matrix for the 
proportions under multinomial sampling• In 
the construction of test statistics for pro- 
portions under cluster sampling scheme, Brier 
(1980), Wilson (1984), Wilson and Koehler 
(1984), made use of the nice covariance 
structure obtained under Dirichlet Multinomial 
Sampling. In this paper a less restrictive 
model than that used in Wilson (1984) is 
applied to the same set of data analyzed in 
that paper. Comparisons are made with the 
results obtained here and in Wilson (1984) and 
Wilson and Koehler (1984). The methods pro- 
posed by Rao and Scott (1981, 1984) require 
some information regarding the covariance 
matrix, such as the design effects or gener- 
alized design effect. Here the factors used 
to adjust the Pearson statistic for non- 
multinomial sampling are obtained from the 

summarized data. These factors are related in 
some ways to Brier's (1980) method of obtaining 
a single factor, C, for the Dirichlet Multi- 
nomial model• In that model approach, the 
covariance terms must be the same, a rather 
stringent condition in practice. In this paper 
each covariance term is allowed to have 
different design effects• 

2. Model 

Consider pbtaining^a vector^of observed 

= ~u~p p2{ "''n ~_)' ofi dimension proportions ~ io" 
I for a certain o at under some clus- 
ter sampling scheme of sample size n. Let the 
matrix of variances and covaria~ces for the I 
dimensional probability vector ~ (an estimate 
of the vector of true proportions ~) under the 
specified cluster sampling scheme be of the 
form 

-i 
- n (A- FF'), (2.1) 

'Vb 

where A is a diagonal matrix consisting of the 
elements of the vector 

(~i bll' ~2 b22 ..... ~I bll)' 

and 

' ' . . . .  I b l l  ' 

(2.2) 

and (unknown) b~i > 0 (i--I to I). Hence 
can be expressed as 

-I B ½ , a = n { (A - ~ )B ½} , (2.3) 
II 'Vb 

where 

= ½ ½ , h ½} (2 4) B ½ diag {bll , b22 ..... II - 

and 

A = diag(~ ~ ~i ) (2 5) 
i' 2' "''' " " 'b 

! 
When the b ii s are all equal this model has the 
same covarlance structure as the Dirichlet 
Multinomial model as considered for cluster 
sampling in Brier (1980) and Wilson and Koehler 
(1984) If the b 's are all equal to the 

• ii 
value one then the covariance matrix is equiva- 
lent to the covariance matrix of ~ under multi- 

sampling• Since (A -,~"~' is singular nomial 

then the covariance matrix, ~ is singular• 
has rank I-I. ^ 
Let 7 denote the covariance matrix of ~ under 

m 
multinomial sampling then, 

^ 

covC~) : z 
m 

-I 
= n (A - ~') (2 6) 

II 'b'~ " 
'b 

303 



Thus the design's covariance matrix, 

: n-I{B½(A - ~')B ½} = B ½ I B ½. 
• n ,v~, m 

(2.7) 

Let o i j denote the ijth element of ~, then 

-Ib (~ - ~ i=j (2.8) oii = n ii i i 2 ) 

and 

-i b ½ ½ 
= -n ii bjj ~i ~j" i#j (2.9) °ij 

From equation 2,8 set 

bii = cii/n i(l-~i), (2 i0) 

then b.. is a ratio of the variance under the 
specif~eld design to the variance under the 
multinomial sampling. When I=2, Rao and Scott 
(1981) refer to such a ratio as the design 
effects. The matrix B is unknown but its 
elements can be estimated from (2.10) by 
estimating o-. and ~., i=l, 2,..., I. Here 
we choose tomulse theZdiagonal elements as the 
off diagonal elements would produce an equation 
with the extra unknown. 

3. Testing of Hypothesis 

3.1 Hypothesis ,~ = ~o 

It is well known that test statistics for 
goodness of fit, independence and homogeneity 
are different when the sampling scheme is not 
multinomial. We consider these hypotheses now. 

Suppose the data from a particular cluster 
sampling scheme with a relatively large number 
of clusters and sample size, n are obtained and 
the interest is in the hypothesis 

H : = . " o ~ ~o (,~lS ks own) (3•i) 

Denote the observed proportions by 

^ ^ ^ ^ 

= (Zl' ~2 ...... ~I )'" (3.2) 'b 

Then the covariance matrix, Z ° of the observed 
-I 

proportions is Z ° = n (A - ~ z') under H . 
'b '~o o o 

3.1.i Test Statistic for H : = 
o E ~" 

Consider constructing a Wald type statistic, 
Wald (1943) to test the hypothesis in (3.1), 
using the covariance matrix ~ in (2.7). Such 
a Wald test statistic is given by 

2 ^ ^-I ^ 
X(ii) = (~- ,~)' ~i (~- ,~) (3.3) 

where .x&i is a consistent estimator of 
is equzvalent to the covariance matrix ~ where 
the ith row and ith column are left off. The ^ 

ith row of (~.- To )' is also left off. 

Then, 

X 2 ^ ^ (ii) = n ( ~ -  ,~ ) '  [ A -  F F']- l(~r,u- ,~) 

(3.4) 
^ -i -½] ^ 

= n(~- ,~)' [B-½(A,~ + ,~ ,~')B (z,u- ,~) 

So X~ii) can be expressed as 

x 2 
(ii) 

I 
- i  - I  ^ 

= n Z b . .  IT . (~j - 
j=l 33 o3 

j#i 

2 
~oj) + 

I 
- I  . n [ Z 
O 1  j=l 

j#i 

^ 

h- ½ (~j ) ]2 
- jj - ~oj • 

(3•5) 

Note that when b..'s are all equal then 2 
for i = I to I a~ all equal• X(ii) 

The choice of the ith category to^be omitted 
z 

makes a difference to the value of X .... unless 
the b.. 's are all equal• An averageko1~ )the 

ii 

X 2 i-1,2...,I can be used as an approximate 
t~i~! Another procedure involves using the 
M~ore-Penrose Inverse to construct a Wald test, 
X~ given by 

X 2 ^ _ ^ 
w: (~- ~o )' ~ (~- ~o ) 

where ~ is the Moore Penrose inverse of ~, 
M~ore (197,7)• One aspect is that the mean of 

X.ii.k) i=l 2 .... I consists of 

I 
X 2 I-i -I I ^ 2 
~A=-l-n z b.. ~- (~ - ~) zm oi i ~o~ 

i=l 

for i-l, 2, .... I; 

under H , and 
O 

1: -I h-½ ^ z ~ r . [  - - 
i=l ol -ii (hi ~oi ) 

2 = nl-i 
X~B 

(3.6) 

(3.7) 
I _½ ^ 
Z b ) ]  

jj (~j - ~oj 
j=l 

I 1 - I  ^ 2 
nl -I Z ~- b.. (~ ) = 

oi lm i - ~oi 
i=l 

I - -i ^ 2 nl ib Z ~ (~ 
oi i ~oi" j 

as 
i-i 

as all b.. ÷ a constant b. Then the conjecture 
ii 

I 
2 2 --1 _ 1 ^ 2 

+ ÷ n Z b_]  ~-  (~ is that X~A X~B 11 oi i - ~oi ) " 
i=l 

When the b..'s are less than one then the 
11 -I ~ X 2 2 + 2 

test statistics value, I i=l (ii) = X~A X~B 

under the specified design is larger than the 
test statistic value obtained assuming that 
multinomial sampling is present. Such a condi- 
tion will result in a loss of power. When the 
b..'s are greater than one ~hen the test sta- 

1 L 
t~e test statistic value, X~. under the speci- 

A 
fied design is less than the test statistic 
value obtained assuming that multinomial sam- 
pling is present. Such a condition results in a 
conservative test• When all the b..'s~are 

ll .g . 
equal to one then the test statistmc x ms 
equal to the usual Pearson goodness off'it 
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statistic. This means that the clustering is 
negligible. When some b..'s are significantly 

ii~ 
less than one and some bii s greater than one 

2 
the relationship between X . and the usual 
Pearson statistics are not clearly determined. 
The b i i ' s  can be e s t i m a t e d  by t a k i n g  a r a t i o  of  
the variance under the specified design to the 
variance under multinomial sampling. This 
requires some knowledge of cell variances. 
These results agree with the findings of Rao & 
Scott (1981) for different sampling schemes. 

I 
The statistic I -I 

2 
l can be partitioned 

i:l X(ii) 

as A + B where 

I 
-i -I ^ 2 

A = n l bii io(~i - ~io ) (3.8) 
i=l 

and 

I -i b-li ^ - 2 B = nl -I [ I ~ - (~i ] 
oi i ~oi ) 

+ 

^ 

nl_l I -i b-*~ (~ i 
7 ~oi [ ii -~oi ) 

i=l 

- z b-'.~(~j - ]2 
• J J  ~o ) 

NI_I I -1 2b-½ ^ 
= Z ~oz "[- ii (~i- ~oi ) 

i=l 

l b -½ (~j ) + {Z b_~(~j )}2 
j jj - ~oj j 33- - ~oj ] 

i - ½ ^  _ 
= - 2 n d 1 - 1 (  Z ~r- b . . (~ r  i ~r°i ) )  + nd2 i  1 

oi ll 
i=l 

where 
^ 

d = Z h-½(~j ) 
•-jj - ~oj 
J 

Then d and B are close to zero if all b..'s are 
nearly equal, but may possibly be closeZ~o zero 
in other cases as well. 

^ 

Since ,rn (~- ,~) has a limiting normal 
distribution with mean vector 0 and covariance 
matrix ~ for sufficiently larg~ n,^then under 
H the limiting distribution of (~ - ,~) ' 

O' 
^ 

($- ~ ) is an approximate chi-square random 
varia~le~istributed with I-I degrees of free- 
dgm (Moore 1977). The approximate statistic 
X- may be considered as a chi-square random 
v~a~iable with (I-i) degrees of freedom. 

3.2 Test of Independence 

We now consider procedures for testing the 
hypothesis of independence. Assume that there 
dence. Assume that there are J probability 
vectors ,,~ for j = i, 2 .... J; obtained from 
each of J-Jsubpopulations where cluster sampling 
is used within each subpopulation of sample 
size n. such that 

^ ^ ^ ^ 

,% : ( ~ j ,  ~2j . . . .  ~ j ) ' ,  ( 3 .10 )  

J 
Z n. =n, 

j:l J 

and the hypothesis of interest is 

H : = ,~. ,~ (j = i, 2 .... J) (3.11) 
O 

where ~ is an unknown probability vector. 
Suppose~that there exists an estimated covari- 
ance matrix for each %, ^defined as Z.3 with 

pqth element denoted by o. . Consider a 
ratio estimator of the el~nts of the vector 

'~ = (~01' %2 .... ~01 )' 
(3.12) 

as 

^ J I I 
^ -i -I 

= l n b_ I- ~. [ Z E n bji i] 
oi j:l j 3ii zj j=l i=l J 

(3.13) 

a linear combination of the estimated probabil- 
ity vectors. Let bj hl be estimated by 

^ 

£g % %I/nj I ^ ^ 
: ~o %j (I- ~o %j ) 

j = i, 2 .... J; (3.14) 

following equation (2.8). Similar to equation 
(2.1), let 

-I 
I(Z£)j = n. [A( F' ], J £~)j - F~)j ~ (~)j 

(3.15) 

where Z. is (I-l) x (I-l) matrix obtained 
by omit~ g~J mng the £th row and %th column of the 
covariance matrix of 

Z = n_ I[Aj - F~ F'] (3 16) 
J J '~  , • 

with 

A = diag[bj , bj 
j ii ~01j 22 ~02j ..... 

bjII z0Ij ] '  (3 .17 )  

= b ½ b ½ Fj ( jll ~01j' j22 ~02j ..... 

b ½ j II ~0Ij )'" 

From Graybill (1969), an inverse of l(£i)j is 

Z( 1 = nj [A(I~) 
~)j j 

I 
-i 

+ (I- Z b . . .  
i=l 3zi ~oij ) 

i#~ 

-i 

C(£g)j C~g%)j] (3.18) 

where 

h ½ ½ )' (3 19) C,%%)j = (b ii'-j22 ..... bjIl ' " 

which is C• with the ~th category left off. 
J 

Then, a chi-square test for the hypothesis in 
(3.9) is 
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( - g ( J ) )  (3 20) (J) 
,,, ( z ~ ) ,  

where 

(, (J) J) ) ~,~, ('ul-'~' '~2-'~) ..... 

^ ^ 

c a t e g o r y  7r' l e f t  o f f ,  w i t h  t h e  ~ t h  o f  e a c h  ,,,,.. 
^ j  . , j  

a n d  E( I~ , )  i s  a n  e s t i m a t e  o f  

Z (J) = cov (~(J) - ,~(J)), (3.22) 

with the ~th row and the ~th column of each 
block diagonal left off. The covariance matrix 

E LJ)" " is a block diagonal mat~ with(~ements 
Z.. The covariance matrix Z'~" is l'-" when 
t~e ~th row2and ~th column o~meach block are 
omitted. X c~Q can be expressed, by use of 
equation (3.'fg) as 

2 I I ^ ^ 
= l n. { E (gij - go ~ ~I ^-I + 

X~D~ j=l 3 i=l i jii ~oi 

^ - 1 I - ½  ^ ^ 2 

go~[t~ I bjtt(gtj - got ) ] } " 

t#£ (3.22) 

As suggested for the 2 , Xii^s (3.5) the conjecture 

is that the average of z X~D ~ for ~=i, 2, ..., I; 
is numerically close to 

J I 
-i ^ -I ^ ^ 2 

2 = Z Z n go  ( 
X~DA j=l i=l J bjii i ~ij - ~oi ) " 

(3.24) 
2 

The statistic X- is similar in form to sta- 
tistics develop~Ainn~ Wilson (1984) and Wilson 
and Koehler (1984) except that the weights used 
here apply to the contribution from each cell 
individually instead of affecting an average of 
those cell contributions for each cluster. It 
also differs from Rao and Scott (1981) and 
Bedrick (1983) in the way the weights are used. 
In their work the weights are obtained as 
design effects and are used as an overall 
divisor in the construction of the Sest 
statistic. The chi-squared test, X- . can be 

RDz 
averaged over the I positive deletions to 
obtain an approximate statistic symmetric in 
the observations. An average of X~D ~, ~ = 
i, . . . I; is 

2 J I 
X~)= E E 

j=l i=i 

- I  ^ - I  ^ ^ 2 
b . .  g . (g nj 31i oi ij - ~oi ) 

I I J 
( I - 1 ) I  - I  Z { I l ^-1 n_ -½ ^ ^ 

t=l t=l j=l gO£ 3[bj %E (~EJ - go£) 

I ^ 

- F b -½ ~t )]2} 
t=l jtt ( j - got " 

(3.25) 

Another form of a chi-square test statistic 
based on the Moore-P~ose inverse for the 
covariance matrix, E'-" is 

2 ~(J) ;(J) ~(J)- ;(J) ~(J) 
X D = ( - ) ' [  ] ( - ) ' b  ' t O  ' b  'LO ' 

(3 .26)  

~ e  [ i ( J ) ]  - i s  the Moore-Penrose inverse of 

3 3 Limiting Distribution of X 2 
" ~D 

By the Multivariate Central Limit Theorem, 

n~. ($. - 7.)has a limiting noraml distribu- 
tio~ f~ sufficiently large n.. Since 

J 
^ ^ 

(~j - ,~)) is a linear^ combination (for 

bji i fixed) of the 'uJ~"s' then by Cramer (1946) 

(,~j- ,~3 ) also has a limiting normal dis- 

H , n~. (~.- ~)has a mean bution. Under 
O 

vector 0 and covarian~e ~trix given by 
uU 

'~ ~(J) ,~(J) is a linear combination . But Zj ,u 

of ~(J). Therefore, the statistic ~ is 
dist~ributed asymptotically as a chi-square 
random variable with (I-I) (J-l) degrees of 
freedom (Moore 1977). If b... is unknown and a 
consistent estimator is avaiSa~ble then the 
asymptotic distribution of X~ is also 

i 

asymptotically chi-square. 

3.4 Estimating b..'s. 
11 

Consider sampling the same number of 
observations from each cluster then from 
equation 2.8 a consistent estimator of bjiiis 

^ ^ 

bjii = °jii/nj I ~ij (I - gij ) (3.27) 
^ 

where ojiiis the ith diagonal element of 

^ ^ ^ ^ 

t = l  

(3 .28)  
^ 

where ~ , is the estimated probability vector 
of the~J th cluster of the j th subpopulation 
and So is the number of clusters in the j th 
sub po~ula t ion. 

A second possible estimate of the vector of 
b...'s following the procedure of Wilson (1984) 
a~lequivalent to Brier (1980) in estimating 
the cluster effect for each subpopulation 
category is 

- ~ n ( ) 2^-1 bU (s j_1 )_ l  s .  ^ ^ 
jii t-I J gitj - gij gi3 " 

(3.29) 
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'b 

An average of b~ i is equivalent to the factor 
C if the DiricNlet Multinomial model with its 
constant design effects is assumed for cluster- 
ing (Wilson and Koehler 1984). 

4. Numerical Example 

Brier (1980) considered data pertaining to 
the manner in which people in Minnesota per- 
ceive the quality of their housing and their 
community housing. The variable of interest in 
this survey is the opinions of families about 
their homes (personal satisfaction). There 
were 85 families questioned in the metropolitan 
area and 90 questioned in the outlying area. 

In each community, five homes were randomly 
selected and the families were questioned about 
two items: satisfaction with the housing in 
the neighborhood as a whole (unsatisfied, 
satisfied, very satisfied) and satisficatlon 
with their own home. The groups of five homes 
are the clusters. There are a total of 35 
clusters, 17 in the metropolitan Minneapolis- 
St. Paul area 18 in the outlying region (non 
metropolitan area). 

The hypothesis of interest is in the 
distribution of the responses for the two areas 
given as 

Hop: ~j = ,~ (unknown) j = I, 2; 

for personal satisfaction categories. 
The two subpopulations correspond to the 

non-metropolitan (non-metro) area and the 
metropolitan (metro) area, so J = 2. Let 
subscript i denote the non-metropolitan 
subpopulation area and subscript 2 denote 
the metropolitan subpopulation area. Then, the 
observed vectors of proportions are 

^ 

~I = (.5222, .4222, .0556)' 

for the non-metropolitan area and 
^ 

~2 = (.3529, .5059, .1412) ' 

for the metropolitan area. A test statistic, 
for testing H , was computed in Wilson and 
Koehler (1984~ p based on the Dirichlet 
Multinomial model. They constructed the 
statistic 

2 3 ^ ^ ^ ^ 

2 = 7. N C -I l (~ij - ~io )2 -I 
XDMI j=l J j i=l ~io 

th 
where N. is the total sample for the j 

^ ^ ^ ^ 

subpopulation 7. = (~., ~ ...... ~ .)' 
is th~hobserved~vecto~3Qf ~oportion~ 3 for 
the j-'" subpopulation, C= is a consistent 
estimator for the clustering effect, C=, in the 
covariance matrix for the Dirichlet-Mu~tinomial 
distribution, 

^ 2 ^ 2 
: N c? I^ 

^~i 
~io j-1 J J ~ij [~=t ~ N~C~] 

i - 1,2,3; 

One possible estimator for C. following the 
method of Brier (1980) is 3 

CjB 

where 

-- (i-1)-1 (sj-1)-I ~j ~ m. 
t=l i=I 3 

^ ^ 2 ^-I 
(~itj - ~ij ) ~ij ' 

^ ^ ^ ^ 

~jt = (~ljt' ~2jt ..... ~Ijt )'' 

is the vector of proportions for the tth 
cluster of the j th subpopulation. I is the 
number of categories, s. is the number of 
clusters, and m. is thJsize of the clusters 
in the j tj subp~pulation. The values for 

C. , j = 1,2 for personal satisfaction are C. B 
=3~.619 (nonmetro area) and C2B = 1.632 (metlro 
area). 

The estimated proportion vector from (3.13) 
is 

^ 

= (.4427, .4642, .103)'. 
'b O 

and the estimated vector of b's for the metro- 
politan area from (3.27) is 

^ 

b I -(0.9975, 1.0526, 1.1882)'. 

A second estimate of the vector of b's from 
(3.29) is 

'~i = (2.0878, 1.8219, 1.2581)'. 

'b 

An average of the elements of b I is equal to 
C _. Similarly for the non-metropolitan area 
t~e vector of b s are 

^ 

b 2 = (1.5250, .8953, .8438)' from (3.27) 

and 

'~2 = (2.3568, 1.8120, 0.9824)', from (3.29), 

which also has elements with average equal to 

C2B" 
^ 

The covariance matrices E. and E^ for the 
1 z 

vectors ~I and ~2 under the specified design 

can be estimated using b or ~ in expression 
(3.4). Here we use b to construct the various 
statistics. A constant reminder of this is 
given by attaching the '~ sign to the computed 
statistic. The vectors F. and F 2 (3.17) which 
are used to compute E 1 an~ E 2 are estimated 
respectively by 

tb 

F 1 = (0.3560, 0.3400, 0.3237)' 

and 

' b  

F 2 - (0.2879, 0.3687, 0.3841)'. 

The statistics constructed in section 3 are 
used in the analysis of these data. 2 The 
average chi-square test statistic X~ is 3 1837 

~D 
a~ given in (3.25). The conjecture statistic 
X~ in (3.24) has the va~ue 3.1871. Using the 
MDbre-Penrose inverse, X~ as used in SAS in 
(3.26) results in a valu~ of 3.1521. The usual 
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Pearson statistic has the value of 6.807. Rao 
and Scott (1981) made use of the eigen values 
of the product of the inverse of covariance 
matrix under multinomial sampling and the 
covariance matrix under the specified design. 
They presente~ the statistic X~/ k where 
X = trace (E- E)/l-l.^ This statistic has a 
value of 4.3~06 with X = 2.3628. Tables in 
Johnston and Kotz (1968) allows us to find the 
distribution of the Pearson Statistic, since 
the weights can be obtained from the calculated 
eigen values. The weights are 0.39, 0.21, 0.21 
and 0.19. The Pearson statistic, X using 
these weights has a p-value less then .025. 
Assuming that X is distributed as a chi-square 
random variable with 2 degrees of freedom gives 
a p-value of approximately .007. The Wald test 
statistic Table 5.1 has a p-value less than 
.05. 

5. DISCUSSION 
A numerical comparison can be made between 

the results here and those obtained in Wilson 
and Koehler (1984). These data were analyzed 
in Wilson (1984) and Wilson and Koehler (1984). 
A summary of the test statistics values 
obtained are given in the following table. 

Table 5.1 

Method 
Test 

Statistic Source 

i. Dirichlet multinomial 4. 1881 
model with normality 
assumptions and an 
assumed diagonal 
covariance matrix. 

Wilson 
(1984) 

2. Dirichlet Multinomial 4.2079 
model with normality 
assumptions. 

3. A Wald test with no 
assumptions on the 
covariance structure. 

4.16 

Wilson 
(1984) 

Wilson & 
Koehler 
(1984) 

4. Model given in section 3.1521 
2. 

Section 3 
(3.26) 

5. Approximate statistic 3.1871 
to the model given in 
section 2. 

Section 3 
(3.22) 

6. Pearson Statistic 6.807 Wilson & 
Koehler 
(1984) 

7. Eigen values 4.3806 Rao & 
(Rao & Scott) Scott 

Similar results were obtained with other data 
sets when examined by these different methods. 
The indication is that the model given in this 
paper works fairly well in comparison to the 
Wald method. The statistic X~ A (conjecture) 
which well approximates the ~gl~ techniques of 
method 4 in Table 5.1 requires only a knowledge 
of the variances under the particular design. 
It is not as restrictive as methods i and 2 and 

~ as complicated in constructing as method 3. 
advantage of the approximate statistics 

developed in this paper over the Dirichlet 
Multinomial technique of Wilson and Koehler 
(1984) and Brier (1980) is the fact that the 
statistics do not require constant design 
effects on the clusters within a particular 
subpopulation. Also these statistics can 
easily accommodate unequal cluster sample 
sizes. Further, this statistic does not 
require large amount of data as in the case 
with method 3. 

The statistics constructed in section 3 
differ from the techniques of Rao and Scott 
(1981) in the way in which the weights are 
obtained in their contribution to the formation 
of the test statistics. Also the techniques 
used to obtain these weights do not require any 
matrix inversion as in the case with the 
statistics obtained in obtaining the eigen 
values. Bedrick (1983) makes use of marginal 
design effects and cell design effects but the 
contribution of these design effect on the test 
statistics differs from the procedure adapted 
in this paper. 

Work is being done by this author to get 
some guidance as to when some of these 
techniques should be employed. Rao and Thomas 
(1984) conducted a Monte Carlo study for the 
case of the goodness of fit problem, which has 
contributed to such guidance. However, this 
author is conducting a study to investigate the 
test of independence and to have some way of 
testing the fit of the model. 
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