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Summary

A small sample test is constructed for the
test of proportions for data obtained from
cluster sampling schemes. The model assumes
that the covariance matrix for the specified
design is a function of the covariance matrix
under multinomial sampling. A wald test
statistic, Wald (1943) is constructed using
the assumed covariance matrix. Brier (1980),
Wilson (1984), and Wilson and Koehler (1984)
made use of the covariance structure obtained
under a Dirichlet model for cluster sampling.
However, the models considered there are some-
what restrictive, in that they assume equal
sample sizes for the clusters and constant
design effects. This paper considers a less
restrictive model for cluster sampling schemes
through identification of a patterned covari-
ance matrix and obtains test statistics based
on these schemes. The results obtained are
compared to those found in Wilson (1984) and
Wilson and Koehler (1984). A comparison 1is
also made to Bedrick (1983) and Rao and Scott,
(1981, 1984). Tests of hypotheses are consi-
dered and limiting chi-squared distributions
are obtained for the various test statistics.
A numerical example is given based on data
analyzed in Wilson and Koehler (1984) and test
statistics are computed for each of the above
mentioned procedures. The small sample test
constructed here is related to other tech-
niques and performs well as far as the
numerical values obtained.

1. Introduction

A small sample test statistic is construc-

ted for the test of proportions for data
obtained from a non-multinomial sampling
scheme. The model assumes that the covariance

matrix of the proportions under the design has
a special form. This special patterned covar-
iance matrix is assumed to be a function of
the corresponding covariance matrix for the
proportions under multinomial sampling. In
the construction of test statistics for pro-
portions under cluster sampling scheme, Brier
(1980), Wilson (1984), Wilson and Koehler
(1984), made use of the nice covariance
structure obtained under Dirichlet Multinomial
Sampling. In this paper a less restrictive
model than that used in Wilson (1984) is
applied to the same set of data analyzed in
that paper. Comparisons are made with the
results obtained here and in Wilson (1984) and
Wilson and Koehler (1984). The methods pro-
posed by Rao and Scott (1981, 1984) require
some information regarding the covariance
matrix, such as the design effects or gener-
alized design effect. Here the factors used
to adjust the Pearson statistic for non-
multinomial sampling are obtained from the
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summarized data. These factors are related in
some ways to Brier's (1980) method of obtaining
a single factor, C, for the Dirichlet Multi-
nomial model. In that model approach, the
covariance terms must be the same, a rather
stringent condition in practice. In this paper
each covariance term is allowed to have
different design effects.

2. Model

Consider obtaining.a vector.of observed
proportions o= (m., “2’ wees T_)' of dimension
I for a certain su%population unider some clus-
ter sampling scheme of sample size n. Let the
matrix of variances and covariances for the I
dimensional probability vector T (an estimate
of the vector of true proportions g) under the
specified cluster sampling scheme be of the
form

2 =nla- EED, (2.1)
where A is a diagonal matrix consisting of the
elements of the vector

(wl bll’ T, b22, cres Ty bII)’
and
PR ] Y '
B= (Tybyy aMybyy s vees Ty )t
(2.2)
and (unknown) b 1 >0 (i =1 to I). Hence
can be expressea as
- 1
2 = o l{p? @, - m')BLi} . (2.3)
Y
where
o 4 Y L
B? = diag {bll > boy s eees bII 1 (2.4)
and
A1T = diag("l, Tos wees NI). (2.5)

When the b.i's are all equal this model has the
same covariance structure as the Dirichlet
Multinomial model as considered for cluster
sampling in Brier (1980) and Wilson and Koehler
(1984). If the b,,'s are all equal to the
value one then th& covariance matrxix is equiva-
lent to the covarilance matrix of T under multi-~

nomial sampling. Since (ATr - m@') is singular

4]
then the covariance matrix, 2 is singular.
has rank I-1. R
denote the covariance matrix of § under

Let Z K
multinomial sampling then,
Cov(r) = Zm
= _l(A -ant) (2.6)
=n P ADE .

v



Thus the design's covariance matrix,

IS N ]
Q=n {B (A1T i )B?} =B r, B

(2.7)
Let gij denote the ijth element of @, then
-1 2 .
044 =10 bii(ni -y ) i=j (2.8)
and
__-L % E ‘s
o35 = -n bii bjj Ty My i#j (2.9)
From equation 2.8 set
_ -1
b, = oii/n ni(l—ﬂi), (2.10)

then b is a ratio of the variance under the
specified design to the variance under the
multinomial sampling. When I=2, Rao and Scott
(1981) refer to such a ratio as the design
effects. The matrix B is unknown but its
elements can be estimated from (2.10) by
estimating 4., and 5,, i=1, 2,..., I. Here

we choose to iUse theldiagonal elements as the
off diagonal elements would produce an equation
with the extra unknown.

3. Testing of Hypothesis

3.1 Hypothesis ; =
Y avie]

It is well known that test statistics for
goodness of fit, independence and homogeneity
are different when the sampling scheme is not
multinomial. We consider these hypotheses now.

Suppose the data from a particular cluster
sampling scheme with a relatively large number
of clusters and sample size, n are obtained and
the interest is in the hypothesis

H : A A (Eols known) (3.1)
Denote the observed proportions by
T = (“1’ Tos o o o o s nI)'. (3.2)

Then the covariance matrix, 5 of the observed

. -1
proportions is 3§ =n (A - g 7') under H .
o T o o
Vo) 00
3.1,1 Test Statistic for H : 71 = ¢ .
o o
Consider constructing a Wald type statistic,
Wald (1943) to test the hypothesis in (3.1),

using the covariance matrix o in (2.7). Such
a Wald test statistic is given by
Ko=) R (- ) (3.3)
(ii) T % ‘T :

where is a consistent estimator of ﬁi" Qi.
. M . N i i
is equivalent to the covariance matrix ¢ where
the ith row and ith column are left off. The
ith row of (g - QD)' is also left off.

=

Then,

2. , S T

Fan T )" o P G )
(3.4)

sn(p - o) B g BT (5= )
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2
So X(ii) can be expressed as

1 R
X2, . =1 % b1 -1 (v, - 2
(ii) je1 44 03 o]
it (3.5)
1 L -
n_% nlZ b, (m, - .)]2-
oi ol 3] J o]
4=
j#i

Note that when b,.'s are all equal then X%ii)
fori=1¢tol ald all equal.

The choice of the ith category to,be omitted
makes a difference to the value of X(i') unless
the bii's are all equal, An average 5’ the
Xz.. i=1,2...,1 can be used as an approximate
téé%z Another procedure involves using the
Mgore-Penrose Inverse to construct a Wald test,

Xw given by
2 - y o=t
L-@-n)' e q@-n)

where @ is the Moore Penrose inverse of ,
Maore (1977). One aspect is that the mean of

X(ii) i=1, 2, ...I consists of
I
2 I-1 -1 -1," 2
Xon =T 0 F by oMy~ o)
i=1
for i=1, 2, ..., I} (3.6)
under Ho’ and
I
2 -1 -1 -l
Kgp =01 = I moy [byy (my = moy)
i=1
I =1
EobII(m - )12 (3.7)
j=1 3373 j
I ~
nI_1 I w—l T% (n, - m z_
jop Of if oi
I ~
nI~1 b2 n_% (m, -7 )2 as
i1 oi i oi
as all bii + a constant b. Then the conjecture
I
. 2 2 -1 _-1,- 2
is that XQA + XQB > niil bii Woi(ﬂi "oi) .
When the b,.'s are less than one then the

ii
A -1 2 g2 2
test statistics value, T iglx(ii) = XQA + XQB
under the specified design is larger than the
test statistic value obtained assuming that
multinomial sampling is present. Such a condi-
tion will result in a loss of power. When the
b,.'s are greater than one then the test sta-
the test statistic value, X under the speci-
fied design is less than the test statistic
value obtained assuming that multinomial sam-
pling is present. Such a condition results in a
conservative test. When all the b, 's are
equal to one then the test statisti® XQ is
equal to the usual Pearson goodness of %it



statistic. This means that the clustering is
negligible., When some b, 's are significantly
less than one and some bii's greater than one

the relationship between X2 and the usual
Pearson statistics are not ¢learly determined.
The b,.'s can be estimated by taking a ratio of
the variance under the specified design to the
variance under multinomial sampling. This
requires some knowledge of cell variances.
These results agree with the findings of Rao &
Scott (1981) for different sampling schemes.

I

The statistic I_l ) X2 ., can be partitioned
=1 (D)
as A + B where
I
-1 -1 - 2
A=an .Z bii ﬂio(“i - "io) (3.8)
i=1
and
N | 2
Benl "0 2 my=byy (mygmm )l
I Lo~
nl 1 T % [b, 2w, - 7_.)
, oi iit'i oi
i=1
L
- b, Xm - )]2
. J1 ] o
J
I L o
S SR S0t 0 AN TR S
. ol ii i oi
i=1
on X 2
TobLi(m, —w. )+ {Zp(n, -7 D}
13 J 0] 3 J1° ] o]
L L - -
= -2ndI 1( £ ok b 2w, - 7)) + nd?1 1,
ol "ii* i oi
i=1
where
]/ A
d=ZIb. (w, -
3 J( J OJ)

Then d and B are close to zero if all b,.'s are
nearly equal, but may possibly be close to zero
in other cases as well.

Since Vo (Q - 7) has a limiting normal
distribution with mean vector Q) and covariance
matrix @ for sufficiently large n, .then under
Ho, the limiting distribution of (m - HO)'

Q (r - m) is an approximate chi-square random
variable distributed with I-1 degrees of free-
dgm (Moore 1977). The approximate statistic

X7, may be considered as a chi-square random
variable with (I-1) degrees of freedom.

3,2 Test of Independence

We now consider procedures for testing the
hypothesis of independence. Assume that there
dence. Assume that there are J probability
vectors ¥, for j =1, 2, ... J; obtained from
each of J- subpopulations where cluster sampling
is used within each subpopulation of sample

size nj such that

305

A A
E] (le’ ﬁZJ, e e s ﬂIj) R (3.10)
J
LI n, =n,
j=1
and the hypothesis of interest is
H: m =1 (G=1,2, .. .J) (3.11)

o KT

where 7 is an unknown probability vector.
Suppose that there exists an estimated covari-
ance matrix for each Hﬂ’ defined as Zj with

pqth element denoted by o, . Consider a
ratio estimator of the eldRdnts of the vector

- 1
KO = (ﬂbl, Mg * + ﬂbI) (3.12)
as
R J . I I
(= Doapiim (I I oabilT
of L) FILEI L 4o 1
(3.13)

a linear combination of the estimated probabil-
ity vectors., Let bjll be estimated by

~ ~ 1~ ~

biae T %™y Togs oy
j=1, 2,. .. J;

)
(3.14)

following equation (2.8). Similar to equation

(2.1), let
-1
z = . PR . ' « 1
G =% Pans T R Vang!
(3.15)
where I is (I-1) x (I~1) matrix obtained

by omitéfﬁ%Jthe 2th row and fth column of the
covariance matrix of

-1
I, =n, [A, - F, F'], 3.16
3" [J " F\a] ¢ )
with
Aj = dlag[bjll "Olj’ bj22 1ij’ e e e s
birr Torgle (3.17)
L 4
Fyo= G®g11 o130 Py22 T2y 0 ¢
1
2 ]
birr Torg)
From Graybill (1969), an inverse of Z(lbj is
I
~1 -1 -1 -1
by . =n,[A L+ (1l - T b.o,om,.
(28] nJ[ (] ( j=1 Jit 013)
i# 8
o . CLo 3.18
(i S G.18)
where
B b? b2 ', (3.19)
Qani = ®yir0 Pyaae - ¢ o Pyt G-

which is Cj with the #th category left off.

Then, a chi-square test for the hypothesis in
(3.9) is



2 _ ~(J (I o J),-1
by = @ - 3 ))(mz) RISTIIR.
a - i(J))(zl)’ (3.20)
where
~(J3) >(J) o Sy
@™ =Ty D= Ml B oe + -+ -
i&_l - ﬁg)', (3.21)

with the 2th category of each g& - H; left off,

and X is an estimate of

J
(29

J ~(J ~(J
1P = eov (D - g, (3.22)
with the 2th row and the 2th column of each
block diagonal left off. The covariance matrix

E(J) is a block diagonal matf3¥ with<5 ements
Z.. The covariance matrix X 3 is % when
the &th row.and 2th column o% each block are

omitted. X can be expressed, by use of
equation (3??&) as
I I
2 p ~ =1 "=1
X = I n,{x (mn,, % Lo ML *
QDL j=1 j i=1 ij oi” "jii oi
1#£2
I
~-1 PR ° 2
ox[tﬁl biee(Mey = Tod 173
t#2 (3.22)

As suggested for the Xi 's (3.5) the conjecture

i
is that the average of X2

2 for %=1, 2, ..., I}
is numerically close to
J 1
2 -1 -1, N2
X = I L n,b,,. 7 _ " ( LD
§IDA j=1 i=1 3§ "jii oi ij ol

(3.24)

The statistic X2 A is similar in form to sta-
tistics develong in Wilson (1984) and Wilson
and Koehler (1984) except that the weights used
here apply to the contribution from each cell
individually instead of affecting an average of
those cell contributions for each cluster, It
also differs from Rao and Scott (1981) and
Bedrick (1983) in the way the weights are used.
In their work the weights are obtained as
design effects and are used as an overall
divisor in the construction of the fest
statistic. The chi-squared test, X can be
averaged over the I positive deletions to
obtain an approximate statistic sygmetric in

the observations. An average of X s &=
. [910)3
1, . . . 1I; is
J 1 - R ~
xéD = ¢ I npbt i (my: - oi)2 +
j=1 i=1 3% © J
I I
-1 ~=1 -4 > ~
(I-DIT - z2{Z I 7. n,[b, (n,, =7 )
t=1 t=1 j=1 (077 Tl 4 2] ok
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I 4, . - 2
- L bIEi(m, -7 )1},
e=] Jtttd ot

(3.25)

Another form of a chi-square test statistic
based on the Moore—Pigfose inverse for the
covariance matrix, I is

x; = <i(J) - iﬁJ))'Ii(J)l' (£<J) _ iﬁJ))’
(3.26)
S(I) -
where [Z777]
255

3.3 Limiting Distribution of X?D

is the Moore-Penrose inverse of

By the Multivariate Central Limit Theorem,

n, (K' ~ 7.) has a limiting noraml distribu-
tioth fol suf?iciently large nj. Since

ﬁ;; (Qj - Hb) is a linear combination (for
bjii fixed) of the pj's, then by Cramer (1946)
ﬂ?; (35 - RD) also has a limiting normal dis-
bution. Under H , vh, (Q. - m.) has a mean
vector 0 and coviriante matrix given by
&) BRI &)
Z.. But 7 -
; LT
~(J) 2

of 1 . Therefore, the statistic XD is
distributed asymptotically as a chi-square
random variable with (I-1)(J-1) degrees of
freedom (Moore 1977). If b.,, . is unknown and a
consistent estimator is availible then the
asymptotic distribution of XSD is also
asymptotically chi-square.

is a linear combination

3.4 Estimating b, 's.
ii

Consider sampling the same number of
observations from each cluster then from

equation 2.8 a consistent estimator of bjiiis

~ ~

- -1 ; :
bjii = ojii/nj wij(l T, ) (3.27)

1]
where ojiiis the ith diagonal element of

s
- -1 S5 = - - A
I, = (s,-1 by P .= m)!
J (:| ) A (,1‘5tJ ,‘ﬂ) (,wJ ;'LJ) s
(3.28)
where 7_., is the estimated probability vector

of the“%Jth cluster of the jth subpopulation
and s, 1s the number of clusters in the jth
subpoaulation.

A second possible estimate of the vector of
b,,.'s following the procedure of Wilson (1984)
aﬂélequivalent to Brier (1980) in estimating
the cluster effect for each subpopulation
category is

" -1 i; - VRS
bjii = (sj—l) 2 nj (“itj - ﬂij) “ij .

(3.29)



An average of b, i is equivalent to the factor

C 1if the Diricﬂiet Multinomial model with its

constant design effects is assumed for cluster-
ing (Wilson and Koehler 1984).

4. Numerical Example

Brier (1980) considered data pertaining to
the manner in which people in Minnesota per-
ceive the quality of their housing and their
community housing. The variable of interest in
this survey is the opinions of families about
their homes (personal satisfaction). There
were 85 families questioned in the metropolitan
area and 90 questioned in the outlying area.

In each community, five homes were randomly
selected and the families were questioned about
two items: satisfaction with the housing in
the neighborhood as a whole (unsatisfied,
satisfied, very satisfied) and satisfication
with their own home. The groups of five homes
are the clusters. There are a total of 35
clusters, 17 in the metropolitan Minneapolis-
St. Paul area 18 in the outlying region (non
metropolitan area).

The hypothesis of interest is in the
distribution of the responses for the two areas
given as

HE Ty (unknown) j = 1, 2;

for personal satisfaction categories.

The two subpopulations correspond to the
non-metropolitan (non-metro) area and the
metropolitan (metro) area, so J = 2. Let
subscript 1 denote the non-metropolitan
subpopulation area and subscript 2 denote
the metropolitan subpopulation area. Then, the
observed vectors of proportions are

T (.5222, .4222, .0556)'

for the non-metropolitan area and

~

T, = (.3529, .5059, .1412) '

for the metropolitan area. A test statistic,
for testing H , was computed in Wilson and
Koehler (19849? based on the Dirichlet
Multinomial model. They constructed the

statistic
2 3
2 -1 - SN2 -1
X = I N.C, L (v, -1 )" 7
DMI =1 b s IR ij io io

where Nj is the total sample for the jth

subpopulation §, = (7, ., T, ., ..., T )7

is th%hobserve&gvecto%Jof %}oportionéjfor

the j subpopulation, C, 1s a consistent
estimator for the cluste}ing effect, C., in the
covariance matrix for the Dirichlet-Muitinomial
distribution,

~ 2 ~ N 2 N
~1 ~1.~1
m = L N,C,°m [ Z N,C, 17,
io =1 J ] ij o=1 278
i=1,2,3;

One possible estimator for C, following the
method of Brier (1980) is 4
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A -1 -1 83 1L
C.p = (I-1) (sj—l) oz om,
] t=1 i=1
~ s~ 2~
(ieg = ™43 Tyy o
where
- . . ‘
Tie = @rger Toger o0 Trge) 2

is the vector of proportions for the tth
cluster of the jth subpopulation. I is the
number of categories, s, is the number of
clusters, and m, is the’size of the clusters
in the jtj subp8pulation. The values for

= 1,2 for personal satisfaction are C

C.ns ]
=J§.619 (nonmetro area) and C2B = 1,632 (metto
area).

The estimated proportion vector from (3.13)

is
To = (.4427, .4642, .103)'.

and the estimated vector of b's for the metro~
politan area from (3.27) is
b

by = (0.9975, 1.0526, 1.1882)°'.

A second estimate of the vector of b's from
(3.29) is

-

gl = (2.0878, 1.8219, 1.2581)'.

v
An average of the elements of b, is equal to
C.,. Similarly for the non-mettopolitan area
the vector of b's are

éz = (1.5250, .8953, .8438)' from (3.27)
and
B, = (2.3568, 1.8120, 0.9824)", from (3.29),

which also has elements with average equal to
C2p° 5 5

The covariance matrices I. and I, for the
vectors [, and T, under the specified design

can be estimated using b or b in expression
(3.4). Here we use b to construct the various
statistics. A constant reminder of this is
given by attaching the v sign to the computed
statistic., The vectors F, and F, (3.17) which
are used to compute Zl ané 22 are estimated
respectively by

.
]

(0.3560, 0.3400, 0.3237)'

!
#

(0.2879, 0.3687, 0,3841)'.

The statistics constructed in section 3 are
used in the analysis of these data., The
average chi-square test statistic X% is 3.1837
ag given in (3.25). The conjecture statistic
XﬁD in (3.24) has the value 3.1871., Using the
Moore-Penrose inverse, XB as used in SAS in
(3.26) results in a value of 3,1521, The usual



Pearson statistic has the value of 6.807. Rao
and Scott (1981) made use of the eigen values
of the product of the inverse of covariance
matrix under multinomial sampling and the
covariance matrix under the spﬁcified design.
They presentgf the statistic X°/ A where

A = trace (I "L)/I-1., This statistic has a
value of 4.3806 with A = 2.3628. Tables in
Johnston and Kotz (1968) allows us to find the
distribution of the Pearson Statistic, since
the weights can be obtained from the calculated
eigen values. The weights are 0.39, 0.21, 0.21
and 0.19. The Pearson statistic, X using
these weights has a p-value less then .025.
Assuming that X 1is distributed as a chi~square
random variable with 2 degrees of freedom gives
a p-value of approximately .007. The Wald test
statistic Table 5.1 has a p-value less than
.05.

5. DISCUSSION

A numerical comparison can be made between
the results here and those obtained in Wilson
and Koehler (1984). These data were analyzed
in Wilson (1984) and Wilson and Koehler (1984).
A summary of the test statistics values
obtained are given in the following table.

Table 5.1
Test
Method Statistic Source

1. Dirichlet multinomial 4,1881 Wilson
model with normality (1984)
assumptions and an
assumed diagonal
covariance matrix.

2. Dirichlet Multinomial 4,2079 Wilson
model with normality (1984)
assumptions.

3. A Wald test with no 4,16 Wilson &
assumptions on the Koehler
covariance structure. (1984)

4. Model given in section 3.1521 Section 3
2. (3.26)

5. Approximate statistic  3.1871 Section 3
to the model given in (3.22)
section 2,

6. Pearson Statistic 6.807 Wilson &

Koehler
(1984)

7. Eigen values 4.3806 Rao &

(Rao & Scott) Scott

Similar results were obtained with other data
sets when examined by these different methods.
The indication is that the model given in this
paper works fairly well in comEarison to the
Wald method. The statistic X2 (conjecture)
which well approximates the WgEé techniques of
method 4 in Table 5.1 requires only a knowledge
of the variances under the particular design.
It is not as restrictive as methods 1 and 2 and
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Qot as complicated in constructing as method 3.
he advantage of the approximate statistics
developed in this paper over the Dirichlet
Multinomial technique of Wilson and Koehler
(1984) and Brier (1980) is the fact that the
statistics do not require constant design
effects on the clusters within a particular
subpopulation. Also these statistics can
easily accommodate unequal cluster sample
sizes. Further, this statistic does not
require large amount of data as in the case
with method 3.

The statistics constructed in section 3
differ from the techniques of Rao and Scott
(1981) in the way in which the weights are
obtained in their contribution to the formation
of the test statistics. Also the techniques
used to obtain these weights do not require any
matrix inversion as in the case with the
statistics obtained in obtaining the eigen
values. Bedrick (1983) makes use of marginal
design effects and cell design effects but the
contribution of these design effect on the test
statistics differs from the procedure adapted
in this paper.

Work is being done by this author to get
some guidance as to when some of these
techniques should be employed. Rao and Thomas
(1984) conducted a Monte Carlo study for the
case of the goodness of fit problem, which has
contributed to such guidance. However, this
author is conducting a study to investigate the
test of independence and to have some way of
testing the fit of the model.

6. REFERENCES

Bedrick, E. J. 1983. Adjusted Chi-squared
tests for cross-classified tables of survey
data. Biometrika 70:591-595.

Bishop, M. M., Fienberg, S. E. and Holland, P.
W. (1975), Discrete Multivariate Analysis:
Theory and Practice, Cambridge,
Massachusetts: MIT Press.

Brier, S. S. 1980. Analysis of contingency
tables under cluster sampling.Biometrika
67:591-596.

Cramer, H. 1946,

Mathematical Methods of
Statistics.

Princeton University Press,
Princeton.

Rao, J. N. K. and Scott, A. J. 1981. The
analysis of categorical datafrom complex
surveys, J. Amer. Statist. Assoc.
76:221-230.

Rao, J. N. K. and Scott, A. J. 1984. On
Chi-squared test for Multiway Contingency
Tables with Cell proportions estimated from
survey data. The Annals of Statistics 1984,
Vol. 12, No. 1, 46-60.

Wald, A. 1943, Tests of Statistical
hypotheses concerning severalparameters when
the number of observations is large. Trans.
Amer .Math. Soc. 54:426-482.

Wilson, J. R. 1984. Statistical methods for
frequency data from complex sampling
schemes. Ph.D. Dissertation, Ames Towa
State University, Ames, Iowa 50011.



