
THE ANALYSIS OF FREQUENCY DATA BASED ON AN ALTERNATIVE FORM 
OF CONSTRUCTING A CONTINGENCY TABLE 

Jeffrey R. Wilson, Arizona State University 
William Warde, Oklahoma State University 

SUMMARY 

The effects of obtaining a test statistic 
for the test of independence when the data are 
obtained from a certain common complex sam- 
pling scheme is examined in this paper. The 
data are summarized in a two way contingency 
table where the cell entries are not necessar- 
ily an integer value. This alternative method 
of obtaining a two way table based on ratio 
estimators is compared to the traditional 
summing procedure in the construction of 
contingency tables. A Wald test statistic 
based on Wald (1943) for the test of indepen- 
dence is obtained for this particular sampling 
scheme and compared to these two forms of 
table construction techniques. This paper 
shows that an alternative approximation to the 
Wald test statistic for independence is to 
construct a Pearson type statistic based on 
the alternative table presented here rather 
than constructing a Pearson Statistic on the 
usual contingency table, as is sometimes done 
in complex sampling schemes. 

I. Introduction 

Test statistics are obtained for the tests 
of homogeneity and independence under a 
stratified cluster sampling scheme. In the 
past, several researchers have resorted to the 
use of the Pearson statistic in the presence 
of complex sampling procedures. Rao and Scot~ 
(1981, 1984), examined the behavior of the X- 
statistic under complex designs by examining 
the eigenvalues of the product of the inverse 
of the covariance matrix under simple random 
sampling and the covariance matrix for the 
actual sampling scheme. Holt, Scott, and 
Ewing~ (1980) showed that a correction factor 
for X- based on the design effects works well 
for the test of homogeneity. However, they 
demonstrated that for tests of independence an 
appropriate modifying factor is more difficult 
to complete. Cohen (1976), Brier (1980), 
Wilson and Koehler (1984), Wilson (1984) have 
considered models as a means of reducing the 
sample size required for variance estimation 
and producing useful test statistics. 

In this paper consideration is given to an 
alternative form of the construction of the 
contingency table under the specified sampling 
scheme. The researcher is advised in the 
summarizing of the data. Test statistics are 
constructed based on the traditional form of 
table construction and based on the alterna- 
tive form of construction. The covariance 
matrix for each of these cases is constructed 
based on the assumption that the cell propor- 
tions are multinomially distributed. A Wald 
test statistic is obtained based on the actual 
design and ignoring the multinomial assump- 
tion. A comparison is made with those 

statistics obtained under the multinomial 
assumption and the Wald test statistic. A 
numerical example based on data obtained from 
a Wild life study Rolley and Warde (1985) is 
given in section 6 to demonstrate some of the 
results. 

2. Model 

In wildlife studies, it is common to attach 
radio transmitters to a number of animals and 
release them. The animals are then located 
repeatedly by radio telemetry and categorized 
as being in one of several habitats. It is 
apparent that repeated locations on the same 
animal are not independent samples. Research- 
ers attempt to study differences in habitat 
usage by animals of different ages and sexes. 

We therefore consider a sampling scheme 
consisting of J subpopulations or strata 
(defined by age and sex of the animal). From 
each subpopulation, n~ animals are sampled 
from an unknown population of size N.. Each 
animal selected represents a clu~ter of 
observations. 

Let x..1 denote the number of observations 
in the i~mcategory (habitat) which came from 
the kth sampled cluster (animal) of the jth 
subpopulation; i=2 .... I; j=l, 2, ...J; k = 
1,2,..., n.. 
Let 3 

xjj k = (xij k, x2j k ..... Xljk)' 

be the observed vector of frequencies for the 
kth sampled cluster in the jth subpopulation. 
Assume that x. is distributed as a multi- 
nomial distri~ktion with parameters x+j k and 

= P2jk Pljk )' P~jk (eljk . . . . . . .  

Define the total sample size on the kth 
cluster of the j th sub populat ion as 

I 

= E Xi'k'3 (2.1) x+J k i= 1 

and let the fixed total sample size, x+j for 
the j th subpopulation be 

n° 

x÷j - 

k=l X+jk" 
(2.2) 

Note that x+.1_ represents a random sample with 
replacement ~om the X+.I (unknown) observa- 
tions. Since x.1 has aJ~ultinomial distribu- 
tion then the ~nKsity function is 

I 

f(~k; Pjk' X+jk) = X+jk!(i=~l Xijk !) 

I xij k 
H P 

i=l ijk 

-I 

(2.3) 
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Define 

S -I 
(2.4) ~jk = X+jk ~jk 

as the observed vector of proportions for the 
kth cluster of the jth subpopulation, which is 
an unbiased estimator of the true proportion 
of times, ~.,.P. that the kth cluster of the j th 
subpopulat~6~'is seen over the I categories. 
Let 

~j ffi (~lj' ~2j .... ' ~lj )' 

be the true vector of proportions for the j th 
subpopulation. These data can be cross 
classified into a two way contingency table of 
dimension (IXJ) where rows represent the I 
categories and columns represent the J subpop- 
ulations. This sort of arrangement is very 
familiar with categorical data. 

Define 

N. 
-i 

- Z 3 X+j X+j k ~jk" (2.51 ~J kffil 

The vector ~4 is a weighted linear combination 
of the true proportion vectors for the N. 
clusters within the jth subpopulation, w~ere 
X .. is the total number of observations in 
i+3~he kth cluster in the j th subpopulation 
and 

N. 
- r J (2 6) 

X+j k=l X+jk 

is the total number of observations in the j th 
subpopulation. Let 

n. 

= Z 3 xij k (2.7) 
xi3 k=l 

be the total sample size for the jth subpopu- 
lation in category i, then the expected value 
(denoted by E) of the vector xj = (Xlj, x2j, 
.... Xlj)' is 

n. 
3 

E(Xj)% = E { I E } 
k=l (~jklnj 

n° 
3 

ffi E { E kP'k}%3 
k=l x+j 

N° 
3 -1 

E(xj) = Z (2.8) k=l njX+3X+jkX+jk Pjk 

Define the I dimensional observed vector of 
proportions for the j th subpopulation as 

^ --I 
~j = x+j ~j, (2.9) 

then under the usual contingency table assump- 
tion of fixed marginals, 

^ 
- 

N° 

k=l j X+j X+j k x+j k 

N °  ^ 

-- E3 n a ~k 
k=l j jk ajk 

(2.10) 

where 

-1 
~jk = X+j X+j k, 

is an unknown constant and 

(2.11) 

^ -i 
Ojk = x+j x+j k. (2.12) 

is considered known. 

So ~̂ ° overestimates the true proportions, 
sin~ the sum of the weightsin (2.10) is 
greater than one. However, if all the 
clusters of the same suhpopulation are of 
equal sample size then v. is an unbiased 
estimator of ~.. Such a~ equality condition 
is rather difficult to satisfy in practice, 
especially in the study of^Wild life. 
Theoretically, the vector ~. is a type of 
combined ratio estimator an@ is expected to 
be biased (Cochran 1977). ^ 

The covariance matrix for the vector 
conditional on the sample size chosen is 

where %k 

Pjk" 

n° 

^ -2 {Var( ~J 
Var(~j) = x+j k=l X+jkPjk) + 

n. 

k=l X+3k k 

-2 {~ 2 
= x+j k=l [x+j k nj ajk(l-ajk)Pjk 

p' + ~jk ( ' ~jk X+jknj AP%j k- PjkPjk )]} 

(2.13) 

_ -I { k[ + - njx+j = ~jk~j k 

(x+j k - X+jk~jk - l)PjkP~k] }. 

----" B., 
3 

is a diagonal matrix with elements 

^ 

A consistent estimator of Var(~) is given by 
^ vj 

v( ~ ~jwhere 

^ -i n~ ^ 

v(~j) = njx+j {k=l-- aJk[ ~jk 
+ 

^ ^ p,]} 
(X+jk- X+jk ~jk- llPjk ~jk " 

(2.14) 

and defined as , where is an unbiased 
estimator of Pjk" P%jk 
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3. Contingency Table 

Let (x..) denote the contingency table 
formed using the frequencies x i. (i-i, ^ 
2 .... I, j-l__ 2 .... J). The estimator 
which is a multiple of x. is not an unbi~sed 
estimator of ~ (2.5) unless the ~X+jk'S are 

equal for all k. The estimator, ~ over- 
estimates ~ except when the sampl~ sizes 
of the chosen clusters of the j th subpopula- 
tion are all equal. 

Consider another two way table denoted by 
) formed using the values y.. i - i, 2, 

...(Yi3,1;" and j = i, 2 .... . J; whe1~e 

-i n. -I 
Yij = x+j n. ~ xij k x+j k. (3.1) 

3 k=l 

n° 

= n?l E3 Pijk" 
x+j 3 k=l 

Define the estimator 

-I 
~j - Y+j ~j 

where ~j - (Ylj' Y2j .... Ylj )'' 

and 
I 

= 
Y+J i-i Yij 

(3.2) 

(3.3) = X+j . 

The estimator ~. is a self weighting estima- 
tor, a desirab] .~ p r o p e r t y  in  sampling.  The 
estimator ~ is a type of separate ratio e~" 
estimator a~d i s  expec ted  to  perform we l l  when 
the relation between x. "k and x+., is constant 
for a given i and j. ~e expect~ value of ~j 
conditional on the sample size chosen is 

n. 

~,~ - n_ I E{ ~ Pjk } 
E(j) J k=l 

(3.4) ----" IT.. 

'b 

Hence ~ is an unbiased estimator of 
regardl~ss of the differences among th~ 
among the clusters' sample sizes. The 
covariance matrix for the vector, ~. 
conditional on the sample size chosen is 

n. 

n~ 2 Var(~j) - {Var ~ Pjk + 
k=l 

n 

E( X j -I AD _ p, )) } X+jk ( Pjk ~jk 
k=l ~j k 

N. 

= n-13 {klJl= ~jk(l-~jk) Pjk P;k + 

-i 

N. 

-I 7. 3 3K3-I % -- n. ~.,x+. k{ + 
3 k=l k 

_ p' } 
(x+j k Xjk~jk -l)Pjk ~jk " 

= c.. (3.5) 
3 

A consistent estimator of Var(~4 ) is given by 
v (~j_) where 

vj 

n. 
-i r J -i ~j (x+j v(~j) = n. {A + - 
3 k=l x+jk "k k 

X+jk~jk- l)Pjk ~3K (3.6) 

and defined as C.. 
J ^ 

T^he difference between the variances of ~, and 
% ;  "vj 
~j is 

N. 
^ ~u --1 ^ 

Var(~j) - Var(~j) = 7.3 ~jk(njx+j ~jk - 
k=l 

-I -i 
n k ) (3 7) 3 x+j Vjk, . 

where 

_ _ p, 
= + (x+j k X+jk~jk I) Pjk ~jk Vjk APjk 

(3.8) 

Hence, the variances are the same whenever 

t~ a I- a2. amf°r=all...k'= bUtaj, it is not necessary 

Define the coefficient of ~. V.kin the 
difference of variances in ~.8~ as 

-1 ^ -i -i 
Rjk = njx+j ~jk- nj x+j k 

-2 -I -I 
= njx+jkX+j - nj x+j k. (3.9) 

Since 

2 2 2 
nj x+j k - x+j = (njx+j k - x+j) (njx+jk+ 

x ), +j 

the sign of R., is unknown. R. k may be nega- 
tive, posltiv~Kor zero for any3kth cluster of 
the j th subpopulation. Thus a clear compari- 
son between the variances is not possible. 
However, Cochran (1977) shows that unless 
those clusters are really alike the use of ~j 
is likely to be more precise if the sample 
size in each cluster is large enough to allow 
estimation of the variance. 

Using the table (y..) with its non 
l 

integer cell values results in estimators that 
are unbiased but not necessarily having 
smaller or larger variances than estimators 
obtained using table (x..). The column totals 

i 
of table (y..) are the s~me as the column 

I 
totals of table (x..). The estimator based on 

1 
table (y..) require~ a knowledge of the 

i 
separate ~otal x+.,, whereas the estimator 

3K based on table (x..) do not require a know- 
ledge of those to~is. 

4. Test of Homogeneity 

Consider testing the hypothesis 

H : = j=l 2 .. J; (4 I) 
o ~j ~o . . . . . .  

where ~ is a known vector and ~. is the true 
~O 

vector of proportions for the j t~ subpopula- 
tion. Then, a Wald type test can be formed 
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^ 

- ~o and the with the biased estimator ~ 
covariance B., where B. is consistent 

J J 
estimator of B. (2.13). Such a test statistic 
is given by 3 

J A 

XI H2 = j=IZ ( - ~)' Bj I (~j - ~), 

(4.2) 

and is asymptotically distributed as a chi- 
square random variable with J(l-l) degrees of 
freedom under H_, (Stroud 1971). Similarly, 
another statistic can be computed using the 
unbiased estimator ~ - ~^ and the consistent 
estimator C.. Such ~ tes~ statistic for 
testing (4.~) is given by 

J 
2 Z (~ ~I 

XmH = ~ - ~)' (~ - ~), 
j=l (4.3) 

^ 

where C° is a consistent estimator of C. 
(3.6). 3X~m is also asymptotically distributed 
as a chi-§~uare random variable with J(l-l) 
degrees of freedom, (Stroud 1971). 

Consider the contingency table formed based 
on (x..) and assuming that the frequencies 
obtained for the jth subpopulation follows a 
multinomial distribution then a test statistic 
for testing the hypothesis in (4.1) is 

J I 
^ 2 -i 

X21Ht = Z j f (~ij - ~io ) ~'Io" j=l x+ i l 

(4.4) 
2 

X is the usual Pearson Statistic for the 
1H 

tes~ of homoseneity, and is used as an approx- 
imation to X%_. Similarly for table (y..) 
with the same multinomial assumption, an~ the 
use of the estimated vector of proportions 

, we obtain the test statistic 

J I 2 -I 
X22Ht = j=iZ x+j i Z=l (~ij - ~io ) ~io' 

(4.5) 
2 

as an approximation to_ 2X^ H. 21t was shown by 
Rao and Scott (1981) tha~ _ XIH t is a conserva- 
tive test, for testing the nypothesis in 
(4.1). In practice, the data are usually 
available in the form of table (x..), s~ H[H t 
i~ e a s i l y  c a l c u l a t e d .  The s t a t i s ~ { c s  XI~ ~ and 
X~_ are obtained from the data in the §~mar- 
ZH 

ize~ tables (x..) and (y..) respectively. They 
do not requirel~nformati~ on eac~ cluster. 
However, the statistics X~H and XTHZ cannot be 
computed from the summarized data given in 
tables (x..) and (y..). These statistics 

1 l 
require information ~n each cluster. 

5. Test of Independence 

Consider testing the hypothesis 

H : ~j = z o  ~o j = I, 2 ..... J; 

(5.1) 

where ~ is an unknown vector and ~ is the 
true ve~ctor of proportions for the th 

subpopulation The unknown vector ~ can be • .~ . 

estimated by a weighted linear comb1~atlon of 
the J estimated vectors ~,~, j =I, 2 ..... J; 
Thus 

^ J ^ 

= Z 
~o 

j =i j~j 
(5.2) 

j=l, 2 .... J; and for some know~ weights ~ z'.9). 
an estimator ~. given in ( Similarly 
one can define 3 

J 
- r.. ~ ~ _  (5.3) ~o j=l j 

ouj 

where ~. is an unbiased estimator of ~. as 
given ~ (3.2). ~ 

The estimator vj~-- ~o is an unbiased 
estimator of ~3~'- ~ for fixed e'.s. Let T.. 

J ~ $J 
denote the diagonal elements of var(~. - ~ ) 
and T. , denote the off diagonal elements,° 
j # j~J= i, 2 ..... J; Then as shown in 
Wilson and Koehler (1984) the matrix 

J ,) 

T = C - 2e. C + E ~ C£ 
JJ J 3 J ~=I 

and 
J 

T__.,jj = -a. C - ~ Cj + Z 2 
3 J j, , ~ CE. 

£=i 

(5.4a) 

(5.4b) 
^ ^ 

Let T.. and T.., be consistent estimators of 
r.. a~ r.., ~spectively. T.. ̂ and r.., are 
o~ained ~ replacing C. wit~3C.. A3~est 
statistic for the hypothesis in 3(5.1) where 
is an unknown vector, is 

0 

(5.5) 
A 

where M u is a consistent estimator of 
0 

h -var(  
O 

(5.6) 

~c is the Moore Penrose inverse of under H 
O H 

o 
, and t h e  v e c t o r  o f  v e c t o r s ,  

O 

. . . . . .  

^ 

The m a t r i x  N.. has  d i a g o n a l  e l e m e n t s  T . .  and 
H ^ J21 

O 
o f f  d i a g o n a l  e l e m e n t s  T - ,  • S i m i l a r l y ,  a 
t e s t  s t a t i s t i c  can be 6 6 n s t r u c t e d  u s i n g  t h e  

^(J) ^(J) 
biased estimator ~ - .  ~ o and a c o n s i s t e n t  
estimator of the covarlance matrix 

V H = var (~(J)- ~J)). (5.8) 
O 
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A consistent estimator, VH is similar to MH 

except that C. is replaced°by ~ (2.13) in o 
(5.3) and (5.~). Thus, 

2 
XlI 

_ , ^c ~(J) ~J) (~(J)- ~J)) V H ( - ) 

O 

(5.9) 

is a test statistic for ~esting H in (5.1). 
L g O 

The statistics X and X are distributed 
iI 2I 

asymptotically as a chi-square random variable 
with (I-l)(J-l) degrees of freedom, (Stroud 
1971). 

Consider using the summarized data in 
tables (x..) and (y..) based on the multi- 

l 
nomial assumption. 1~hen the test statistic 
based on table (xij) is 

2 
Xllt 

J I ^ 
^ 2 ^-I 

= E i E ( ~ij- ~io ) j=l x+ i=l io 

(5.10) 
(I-I) 2 (J-l) 

> 7 Z by Re, & Scott (1981) 
- i=l i 

The Z's are standard normal variates. 
statisltic based on table (Yij) is 

The 

2 J I ~ ~ 2 ~-I 

= l i I (~ij - ~io ) 7. . X21t j=l x+j =I lo 

(5.11) 
2 

The statistic X is the usual Pearson 
Statistic for t~ttestiT of independence. It is 
normally used by researchers as an approximate 
statistic when the covariance matrix cannot be 
or is too complicated to estimate to construct 
o~ the Wald test statistic. The statistic 
X7 is similar to XT in structure and is an 
21t ii 2 

approximation to the s~atistic X2T. 
In section 6 in the analysis ~f th~ Wild 

l~fe study data the statistics X , X _ and 
2 21 21t 

XII t are related by the expression 

2 2 } < E {X21 }. (5 12) E {X2I } _< E {X2I t _ It 

Thus, having the table constructed with (yi=) 
as the cell values and using the multinomial 
assumption results in a less conservative test 
and a better approximation to the Wald test 
than the usual Pearson statistic, which is 
obtained from the use of table (x..). Hence 
in the case where the sampling scheme is as 
described in section 2 and the estimation of 
the covariance matrix needed in computing the 
Wald test, is too complicated, a reasonable 
approximation is obtained by constructing the 
alternative contingency table (y..), and 
assuming multinomial sampling. ~ese results 
suggest that one can obtain better results in 
terms of approximations in making the adjust- 
ments to the construction of the table and 
then using the multinomial assumption. This 
requires that the researcher be forewarned 
about the method of summarization. 

6. Numerical Example 

Data from the study of the diel patterns of 
habitat use by male and female bobcats in 
southeastern Oklahoma, Rolley and Warde (1985) 
w~re a~alyzed u~ing the test statistics 
X~l, X~ t and X~_ in (5 5), (5 I0) and (5 Ii) 
respectively.__ t " " " ~e data are reproduced in 
Tables 6.1a and 6.1b. There are J=2 subpopu- 
lations, male bobcats and female bobcats. For 
the male subpopulations, there are n I = 5 
clusters with vector ~i = (352, 125, 74, 23, 
95)'. For the female sdbpopulation there are 
no = 9 clusters with vector, x = (195, 19, 
90, 72, 26, 74, 60, 95, 52)'.~+~here are I=5 
categories of interest; pine, deciduous, mixed 
pine, grassfields, and brush. These categor- 
ies are assumed to be nonoverlapping and well 
defined. 

The contingency tables (x.)and (y..)are 
given in Tables 6.2a and 6.2~J I respectively. 
Table 6.2a is the traditional way of construc- 
ting a contingency table while Table 6.2b is 
the alternative technique proposed in this 
paper and based on a type of separate ratio 
estimator. Our hypothesis of interest is H~: 
~ = ~e ~j=l, 2) for some unknown ~ .~o The u 

ea r is to investigate whether or not the 
male and female bobcats have the same habitat 
preferences. 

TABLE 6. la 

Diel Patterns of Habitat Use by 
Five Female Bobcats in Southeastern Oklahoma 

Bobcats 
HABITATS 1 2 3 4 5 
Pine 227 80 50 9 39 
Deciduous 53 10 3 4 0 
Mixed Pine 53 30 20 9 I i 
Grass Fields 8 5 1 0 31 
Brush ii 0 0 I 14 

Total 352 125 74 23 95 

TABLE 6. ib 

Diel Patterns of Habitat Use by Nine Male 
Bobcats in Southeastern Oklahoma 

HABITATS 1 2 3 4 5 6 7 8 9 
Pine 145 II 49 38 6 33 46 39 19 
Deciduous 3 1 II ii 13 3 0 5 8 
Mixed Pine 26 2 21 15 6 18 9 14 13 

~[~s II 4 4 2 1 1 2 30 1 
Brush I0 1 5 6 0 19 3 7 Ii 

Total 195 19 90 72 26 74 60 95 52 

Under Table 6.2a^the estimated vectors are 
for female bobcats ~| = (.605, .I0~, .184, 
• 067, •039)' and for~male bobcats ~p = (•565, 
.081, .181,9.082, .091)'. The usual Pearson 
statistic X~_ given in (5 I0), is 18 289 

t • " " 
Under Table ~.2b the estimated vector for 
female bobcats, ~I = (.553, .089, .~34, 
.081, .044)' and for male bobcats, ~p = 
(.513, .121, .189, .0849 .093)'. Th~ 
alternative statistic X~T~ given in (5.11) 
is 9.171. F~om Tables 57~a a~d 6.1b the 
statistics XlI in (5.9) and X2I in (5.5) 
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were calculated. These are Wald statistics. 
The diagonal elements^of the covariance matrix 

z 
used in calculating XIT are (.01283, .00032, 
.00177, .00706, .00209~ .00863, .00096, 
.00271, .00233, .00224)'. The diagonal 
elements of t~e covariance matrix used in 
calculating X~I are (.02574, .00069, .00363, 
.01405, .00425~ .01786, .00203, .0~573, 
.00464, .00470)'. The statistic X~T based on 
the separate type estlmatgr has the-value 
6.664 and the statistic XT based on the com- 
bined type e~tlmator ~as ~e value 8.830. 
Statistics X- and X- are the approximations 

2 lit ^ 21t 
to X While X Z is_an unsuitable approxl- 

21" 1 2 
matlon the statistic X21 t is a reasonable 
estimator. 

When these statistics are considered to be 
distributed as chl-square random variables 
with 4 degrees of freedom, we are led to 
rejecting the null hypothesis ~t the 5% 
significant level, if we use X7_ , the usual 
Pearson Statistic. All other ~tlstics 
considered in this example led to supporting 
the claim that the bobcats (males and females) 
have about the same habitat preference in 
Southeastern Oklahoma. 

TABLE 6.2a 

A Habitat by Sex Two Way Contingency 
Table for Bobcats in Southeastern Oklahoma 

Females Males 
Pine 405 386 
Deciduous 70 55 
Mixed Pine 123 124 
Grassflelds 45 56 
Brush 26 62 

TABLE 6.2b 

A Habitat by Sex Two Way Alternative 
Contingency Table for Bobcats in 

Southeastern Oklahoma 

Females Males 
Pine 369.689 350.227 
Deciduous 59.541 82.719 
Mixed Pine 156.278 129.011 
Grassfields 53.921 57.524 
Brush 29.570 63.443 

7. DISCUSSION 

The presence of clustering in the collec- 
tion of sample data can have a severe effect 
on certain test statistics obtained from the 
frequency data in a usual contingency table. 
Such computed statistics are usually too large 
in numerical value. A better approximation is 
to construct the table based on a separate 
type estimator and then to use the usual 
techniques of constructing Pearson statistics. 
This technique has its greatest gain when the 
clusters differ greatly. 

Rao and Scott (1981, 1984), Bedrick (1983), 
Wilson and Koehler (1984), Brier (198~) and 
Holt, Scott and Ewlngs (1980) have considered 
model that leads to a correction of the usual 
Pearson Statistics. Their works rely on 

summarized data through the usual construction 
of a contingency table. However, in this 
paper no correction is considered for the 
usual Pearson Statistic. Here the changes are 
suggested prior to the summarized data. There 
is no need for matrix inversion or the compu- 
tation of several covariances. Eigen values 
are not needed. The computer programs neces- 
sary are readily available. They are the same 
as when multinomial sampling is conducted and 
a Pearson Statistic computed. 
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