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SUMMARY

The effects of obtaining a test statistic
for the test of independence when the data are
obtained from a certain common complex sam-
pling scheme is examined in this paper. The
data are summarized in a two way contingency
table where the cell entries are not necessar-
ily an integer value. This alternative method
of obtaining a two way table based on ratio
estimators 1is compared to the traditional
summing procedure in the construction of
contingency tables. A Wald test statistic
based on Wald (1943) for the test of indepen-
dence is obtained for this particular sampling
scheme and compared to these two forms of
table construction techniques. This paper
shows that an alternative approximation to the
Wald test statistic for independence 1is to
construct a Pearson type statistic based on
the alternative table presented here rather
than constructing a Pearson Statistic on the
usual contingency table, as is sometimes done
in complex sampling schemes.

1. 1Introduction

Test statistics are obtained for the tests
of homogeneity and independence under a
stratified cluster sampling scheme. 1In the
past, several researchers have resorted to the
use of the Pearson statistic in the presence
of complex sampling procedures. Rao and ScotE
(1981, 1984), examined the behavior of the X
statistic under complex designs by examining
the eigenvalues of the product of the inverse
of the covariance matrix under simple random
sampling and the covariance matrix for the
actual sampling scheme. Holt, Scott, and
Ewingﬁ (1980) showed that a correction factor
for X” based on the design effects works well
for the test of homogeneity. However, they
demonstrated that for tests of independence an
appropriate modifying factor is more difficult
to complete. Cohen (1976), Brier (1980),
Wilson and Koehler (1984), Wilson (1984) have
considered models as a means of reducing the
sample size required for variance estimation
and producing useful test statistics.

In this paper consideration is given to an
alternative form of the construction of the
contingency table under the specified sampling
schenme, The researcher is advised in the
summarizing of the data. Test statistics are
constructed based on the traditional form of
table construction and based on the alterna-
tive form of construction. The covariance
matrix for each of these cases is constructed
based on the assumption that the cell propor-
tions are multinomially distributed. A Wald
test statistic is obtained based on the actual
design and ignoring the wmultinomial assump-
tion. A comparison is made with those
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statistics obtained under the multinomial
assumption and the Wald test statistic. A
numerical example based on data obtained from
a Wild life study Rolley and Warde (1985) is
given in section 6 to demonstrate some of the
results.

2. Model

In wildlife studies, it is common to attach
radio transmitters to a number of animals and
release them. The animals are then located
repeatedly by radio telemetry and categorized
as being in one of several habitats. It is
apparent that repeated locations on the same
animal are not independent samples. Research-
ers attempt to study differences in habitat
usage by animals of different ages and sexes.

We therefore consider a sampling scheme
consisting of J subpopulations or strata
(defined by age and sex of the animal). From
each subpopulation, n, animals are sampled
from an unknown population of size N,. Each

animal selected represents a cludter of
observations.
Let x,,, denote the number of observations

in the i%ﬂkcategory (habitat) which came from
the kth sampled cluster (animal) of the jth
subpopulation; i=2, ...I; j=1, 2, ...J; k =
14250005 0,

Let

)V

Sk T Cigee R 00 Xrgk
be the observed vector of frequencies for the
kth sampled cluster in the jth subpopulation.
Assume that X is distributed as a multi-
nomial distriffition with parameters x+jk and
= ]

Pik ™ Cryie Pagie oo Py
Define the total sample size on the kth
cluster of the jth subpopulation as

1
X .. = I X, (2.1)
+ik 121 ijk
and let the fixed total sample size, X, . for
the jth subpopulation be J
§;
= i1 (2.2)
e K

Note that x ., represents a random sample with
+ik

replacement $¥om the X, (unknown) observa-

tions. Since x,, has a“multinomial distribu-

tion then the &gnsity function is

I
7 X
=1

-1
. = 1 t
f(ﬁjk’ Rjk’ X+jk) x+jk'(i ijk')

I X5k
Pi'k
i=1 H (2.3)



Define

- x_l

Rik = *+ik Bk
as the observed vector of proportions for the

kth cluster of the jth subpopulation, which is
an unbiased estimator of the true proportion

(2.4)

of times, , that the kth cluster of the jth
subpopulation is seen over the I categories.
Let
= A
J\Ej (“lj’ m esny “Ij)

be the true vector of proportions for the jth
subpopulation. These data can be cross
classified into a two way contingency table of
dimension (IXJ) where rows represent the I
categories and columns represent the J subpop-~
ulations. This sort of arrangement is very
familiar with categorical data.

Define

Nj 1
z X+j X+jk Rjk'
The vector is a weighted linear combination
of the true Broportion vectors for the N,
clusters within the jth subpopulation, where
is the total number of observations in
in %he kth cluster in the jth subpopulation
and

(2.5)

X, = 1 x

1 k=1
is the total number of observations in the jth
subpopulation. Let

+ik (2.6)

X,., = Zj X
Hook=1

be the total sample size for the jth subpopu-~
lation in category i, then the expected value

denoted by E) of the vector x, = (x,., X,.
f. s X )'yis) “J ( 137 7237
. 13

ijk 2.7)

n,
R
E(x,) =E { I E(x, }
(ﬁJ) k=1 (ﬁJk!nj
n,
{ ’ }
= E I x,.,P.
k=1 +ikjk
N,
]
E(;\(lj) = k§1 an+jx+Jk ik ka (2.8)

Define the I dimensional observed vector of
proportions for the jth subpopulation as

~ -1
Ry 7 %y Ry

then under the usual contingency table assump-
tion of fixed marginals,

(2.9)
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N j 1 -1
E(Qd) kfl nJ X +j +jk x+j x+jk de
Nj ~
= ¥ n, o, . 2,10
I %k %k Rk (2.10)
k=1
where
-1
ajk = X+j x+jk’ (2.11)
is an unknown constant and
~ -1
qjk = x+j X+jk' (2.12)
is considered known.
So y overestimates the true proportions,

sincl the sum of the weightsin (2.10) is
greater than one. However, if all the
clusters of the same sulpopulation are of
equal sample size then 7, is an unbiased
estimator of J,. Such af equality condition
is rather difficult to satisfy in practice,
especially in the study of Wild life.
Theoretically, the vector 1 is a type of
combined ratio estimator and is expected to
be biased (Cochran 1977).

The covariance matrix for the vector Rﬁ
conditional on the sample size chosen is

-2 n,
X, War( © x
1 k=1

’EJ
k=1 JkAPk_

Var(x,) TR IR

i Ry}

ﬂ[x

{k_ (e )Ry

+jk "3 %k

1
%k+xﬁw3%kﬂ%k wka]}

(2.13)
{ Ej a,
J+Jk1 3k A‘ijk
(X+jk " X%k T B,
=B',

k’\gk] t.

where
M

is a diagonal matrix with elements
Ry
A consistent estimator of Var(n ) is given by

v(w lﬂwhere

~ _ -1
v(;\rj) = njx+j { 2)] a [AR,Jk
(x+jk - x+jk %~ 1)P ik ﬂgk]}
(2.14)

and defined as B , where P

estimator of ij

Rik is an unbiased



3. Contingency Table

Let (x,,) denote the contingency table
formed usigg the frequencies LIP (i=1,
2, ...I, j=1, 2,... J). The edlimator .
which is a multiple of x, is not an unbfgsed

estimator of (2.5) uniess the x+jk's are

equal for all k. The estimator, over-
estimates J. except when the samp%é sizes
of the chosen clusters of the jth subpopula-
tion are all equal.

Consider another two way table denoted by
(yi.) formed using the values Vg4 i=1, 2,
see3l; and j =1, 2, ..., J; whéte

~

n
_ -1 -1
yij = x+j nj k:i xijk x+jk' 3.1
n
-1 5
= .0, P... .
43" k=1 LIk
Define the estimator
N -1
SRR (3.2)
here y, = .s Ly ees DT,
W % (y1J Y25 yIJ)
and
I
., =z .
Y+ i=1 713
= X+j' (3.3)

The estimator m. is a self weighting estima-
tor, a des%;abl property in sampling. The
estimator T is a type of separate ratio
estimator aAd is expected to perform well when
the relation between x,,, and x ,, is constant
for a given i and j. & expectés value of T
conditional on the sample size chosen is 4

L | 4
E(F) = 1] E{k=231 Pix!
= Rﬁ' (3.4)

Hence %, is an unbiased estimator of
regardl&ss of the differences among th
among the clusters' sample sizes. q?he
covariance matrix for the vector, T
conditional on the sample size chosgn is

Var(i&) = ngz {Var k%j gjk +
E( ;j X (8 =P Bl NI
k=1 +jk Rik jk Ajk
= n—l{ ij o, (l=a,. ) P, P! +
3 oy JET IR Adk Ak

-1 _ .
x+jk°‘jk(ARj Rjk Rjk)}
a N

=n; o

-1
. X, .1 +
I k=1 kT +jk AP

Ak
_ '
e ™ B DRk Rkt
¢ - (3.5)
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A %onsistent estimator of Var(ia) is given by
V(Ej) where

n B i S |
v(r.) = n, Y x {A2 + (x ., -
R T T
S e
% S 1 S E )
and defined as C..

J ~
xhe difference between the variances of Hd and

H;j 1s

N
R NN -1 ~
Var(gd) - Var(gd) = kil ajk(njx+j Ay "
-1 -1
nj X+jk)vjk’ 3.7)
where

- - - 1)
ij = Aij + (x+jk x+jkajk 1) Rjk Rjk
(3.8)

Hence, the variances are the same whenever
= a, for all k, but it is not necessary

X
4 = =
tﬁ3§ a, =a, = ...=ap.

Define the coefficient of a,, V kin the
difference of variances in {5.8; as

R =N x—l & - n_l x_l
jk j7+3 ik 3 T+ik
_ -2 -1-1
= njx+jkx+j - nj x+jk' (3.9)
Since
2 2 2
B3 Tk T e T g T Rey) Ot

x+j),
the sign of R,, is unknown. R, may be nega-
tive, positive or zero for anyjkth cluster of
the jth subpopulation. Thus a clear compari~
son between the variances is not possible.
However, Cochran (1977) shows that unless
those clusters are really alike the use of T
is likely to be more precise if the sample
size in each cluster is large enough to allow
estimation of the variance.

Using the table (y..) with its non
integer cell values resiiits in estimators that
are unbiased but not necessarily having
smaller or larger variances than estimators
obtained using table (x,.,). The column totals
of table (yi ) are the same as the column
totals of taﬂle (x,.). The estimator based on
table (y,,) requirdd a knowledge of the
separate total X i whereas the estimator
based on table (x;.) do not require a know-
ledge of those totdls.

4, Test of Homogeneity

Consider testing the hypothesis
Ho: Rj = To
where 7 is a known vector and 7, is the true

vector of proportions for the j%g subpopula~
tion. Then, a Wald type test can be formed

=1, 2, veuus I3 (4.1)




~

with the biased estimator - and the
covariance B,, where B, is consistent

estimator of Bj (2.13). Such a test statistic
is given by
J
2 _ o M
SUREARL I SO
(4.2)

and is asymptotically distributed as a chi-
square random variable with J(I-1) degrees of
freedom under H,, (Stroud 1971). Similarly,
another statistgc cgn be computed using the
unbiased estimator gg - Qg and the consistent
estimator C,. Such test statistic for
testing (4.i) is given by

>
1
T &

N y =1
i (ij ) Cj (gj 1)

(4.3)
where C, %s a consistent estimator of C,
(3.6). 4% is also asymptotically disttibuted
as a chi-square random variable with J(I-1)
degrees of freedom, (Stroud 1971).

Consider the contingency table formed based
on (xi ) and assuming that the frequencies
obtainid for the jth subpopulation follows a
multinomial distribution then a test statistic
for testing the hypothesis in (4.1) is

J I
2 n 2 -1
X = I x.., &L (m, -m ) m .
1Ht -1 +i i=1 ij io io
(4.4)
X2 is the usual Pearson Statistic for the

tégE of homo§eneity, and is used as an approx-
imation to X, ,. Similarly for table (y..)
with the samé multinomial assumption, and the
use of the estimated vector of proportions

nj’ we obtain the test statistic

3 I
Tox.., L (
j=1 =1

2

2 -1
Xone =

v )
ij io iO,
(4.5)

as an approximation to XZH. 21t was shown by
Rao and Scott (1981) tha% X is a conserva-
tive test, for testing the hypothesis in
(4.1). 1In practice, the data are usually 9
available in the form of table (x..), sg Hip,
ig easily calculated. The statisfics X and
X2H are obtained from the data in the summar-
izea tables (x,.) and (y,.) respectively. They
L od i
do not require dnformatidy on eacE cluster.
However, the statistics X and X cannot be
computed from the summarized data given in
tables (x..) and (y..). These statistics
require ififormation™dn each cluster.

5. Test of Independence

Consider testing the hypothesis

Ho: Qﬁ =1, j=1,2, ..., J;
(5.1)
where T is an unknown vector and T is the
true vector of proportions for the Jth
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subpopulation. The unknown vector can be

estimated by a weighted linear combiflation of
the J estimated vectors Rj’ j=1l, 2, «.., J;

Thus

(5.2)

for some known weights, ¢ , j=1, 2 ..., J; and

an estimator . given in?(2.9). Similarly,
one can define
J

N Y

I o= L o, T (5.3)

vo j=1 3]
where m. is an unbiased estimator of J. as
given in (3.2). J

The estimator i~ %o is an unbiased
estimator of Hj_ Qi for fixed als. Let T,,

Y
denote the diagonal elements of var(g, - go)
and T,,, denote the off diagonal eleménts,
j#3*t'=1, 2, ..., J; Then as shown in
Wilson and Koehler (1984) the matrix

I
T,., =C, -2, C,+ L a,C
i30Ty T3y o, AR
=1
(5.4a)

and
J
T,., = ~0, Cj - aj,Cj, + I

. ai C
3] ] =1

e
(5.4b)

Let T., and T,,, be consistent estimators of
T,. atd T.., spectively, T,,.and T,., are
ottained ﬂ§ replacing C, witdle, . Adest
statistic for the hypotﬂesis ind (5.1) where T
is an unknown vector, is

2 MI) _ MIye e MI) | MD)
Kpr = (7 - R ) My (X - KT

(5.5)
where MH is a consistent estimator of
[¢)
v, = var(E - 3
[¢]
(5.6)

e .
under H0 . MH is the Moore Penrose inverse of

o)
MH , and the vector of vectors,
(¢]

TR U A 3
% - x“r('))'. (5.7)

The matrix MH has diagonal elements Tjj and

vess sy

off diagonal glements T., . Similarly, a
test statistic can be Udnstructed using the
. ~J ~(J .
biased estimator nf )— Rf ) and a consistent
estimator of the covariance matrix

~(J (3
VH0 = var (f - % ).

(5.8)



~

A consistent estimator, VH is similar to MH

except that 6. is replacedoby B, (2.13) in °
(5.3) and (5.1). Thus, J
YA © b RSl € ) NS P ) B )
1= "%)VHO(J\', )
(5.9)

is a test statisEic for Eesting H in (5.1).
The statistics X and X are distributed
asymptotically as"a chi-Square random variable
with (I-1)(J-1) degrees of freedom, (Stroud
1971).

Consider using the summarized data in
tables (x,.) and (y,.) based on the multi-
nomial asé&mption. “then the test statistic
based on table (xij) is

J I
2 ~ ~ 2 -1
Xl1e jfl L im0 e
(5.10)
(I-I)Z(J-l)
>z Zi by Rao & Scott (1981)

i=]

The Z,'s are standard normal variates. The
statistic based on table (yij) is

J 1 s N
X = L x,, I (m.-m)
5=1 +j 1=1 ij io io

(5.11)

The statistic X2It is the usual Pearson
Statistic for tﬁe test of independence. It is
normally used by researchers as an approximate
statistic when the covariance matrix cannot be
or is too complicated to estimate to construct
of the Wald test sta&istic. The statistic
X is similar to xlI in struchre and is an
approximation to the sEatistic X .
In section 6 in the analysis % thﬁ Wild

1jfe study data the statistics XZI’ XZIt and
xlIt are related by the expression
2 2 2
Edyp! fE{XZIt} 5E{X11t}' G.12)

Thus, having the table constructed with (y..)
as the cell values and using the multinomia
assumption results in a less conservative test
and a better approximation to the Wald test
than the usual Pearson statistic, which is
obtained from the use of table (x,.). Hence
in the case where the sampling scheme is as
described in section 2 and the estimation of
the covariance matrix needed in computing the
Wald test, is too complicated, a reasomnable
approximation is obtained by constructing the
alternative contingency table (y..), and
assuming multinomial sampling. tiese results
suggest that one can obtain better results in
terms of approximations in making the adjust-
ments to the construction of the table and
then using the multinomial assumption. This
requires that the researcher be forewarned
about the method of summarization.
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6. Numerical Example

Data from the study of the diel patterns of
habitat use by male and female bobcats in
southeastern Oklahoma, Rolley and Warde (1985)
were aBalyzed uiing the test statistics
le, X ¢ and X ¢ in (5.5), (5.10) and (5.11)
respec%lvely. %ﬁe data are reproduced in
Tables 6.la and 6.1b. There are J=2 subpopu-
lations, male bobcats and female bobcats. For
the male subpopulations, there are n = 5
clusters with vector = (352, 125, 74, 23,
95)'. For the female siibpopulation there are
n, = 9 clusters with vector, x = (195, 19,
96, 72, 26, 74, 60, 95, 52)'. *There are I=5
categories of interest; pine, deciduous, mixed
pine, grassfields, and brush. These categor-
ies are assumed to be nonoverlapping and well
defined.

The contingency tables (x,.) and (y..) are
given in Tables 6.2a and 6.2%Jrespecti%ély.
Table 6.2a is the traditional way of construc-
ting a contingency table while Table 6.2b is
the alternative technique proposed in this
paper and based on a type of separate ratio
estimator. Our hypothesis of interest is HO:
T = (j=1, 2) for some unknown 7,. The
{dea heére is to investigate whether or not the
male and female bobcats have the same habitat
preferences.

TABLE 6.la

Diel Patterns of Habitat Use by
Five Female Bobcats in Southeastern Oklahoma

Bobcats
HABITATS 1 2 3 4 5
Pine 227 80 50 9 39
Deciduous 53 10 3 4 0
Mixed Pine 53 30 20 9 11
Grass Fields 8 5 1 0 31
Brush 11 0 0 1 14
Total 352 125 74 23 95
TABLE 6.1b

Diel Patterns of Habitat Use by Nine Male
Bobcats in Southeastern Oklahoma

HABITATS 1 2 3 4 5 6 7 8 9
Pine 145 11 49 38 6 33 46 39 19
Deciduous 3 1 11 11 13 3 0 5 8
Mixed Pine 26 2 21 15 6 18 9 14 13

18%8s 11 4 4 2 1 1 2 30 1
Brush 10 1 5 6 0 19 3 7 11
Total 195 19 90 72 26 74 60 95 52

Under Table 6.2a.the estimated vectors are
for female bobcats = (.605, .105, .184,
.067, .039)' and for male bobcats 1, = (.565,
.081, .181,..082, .091)'. The usual Pearson
statistic X1 ¢ given in (5.10), is 18.289.
Under Table g.ZbﬁFhe estimated vector for
female bobcats, T = (.553, .089, .%}4,
.081, .044)' and %or male bobcats, T, =
(.513, .121, .189, .084, .093)'. The
alternative statistic X I given in (5.11)
is 9.171. From Tables 8.fa agd 6.1b the
statistics XlI in (5.9) and X2I in (5.5)



were calculated. These are Wald statistics.
The diagonal elements,of the covariance matrix
used in calculating X7_ are (.01283, .00032,
.00177, .00706, .00209, .00863, .00096,
.00271, .00233, .00224)'. The diagonal
elements of the covariance matrix used in
calculating X 1 are (.02574, .00069, .00363,
.01405, .0042%, .01786, .00203, .00Q573,
00464, ,00470)'. The statistic X,_. based on
the separate type estimatgr has thé value
6.664 and the statistic X]_ based on the com-
bined type eﬁtimator Qas %ﬁe value 8.830.

Statistics XlIt and XZIt are the approximations

to X2 . While X1 iszan unsuitable approxi-
mation the statisggc XZIt is a reasonable
estimator.

When these statistics are considered to be
distributed as chi-square random variables
with 4 degrees of freedom, we are led to
rejecting the null hypothesis Qt the 5%
significant level, if we use X1 e the usual
Pearson Statistic., All other s%atistics
considered in this example led to supporting
the claim that the bobcats (males and females)
have about the same habitat preference in
Southeastern Oklahoma.

TABLE 6.2a

A Habitat by Sex Two Way Contingency
Table for Bobcats in Southeastern Oklahoma

Females Males
Pine 405 386
Deciduous 70 55
Mixed Pine 123 124
Grassfields 45 56
Brush 26 62
TABLE 6.2b

A Habitat by Sex Two Way Alternative
Contingency Table for Bobcats in
Southeastern Oklahoma

Females Males
Pine 369.689 350.227
Deciduous 59.541 82.719
Mixed Pine 156.278 129.011
Grassfields 53.921 57.524
Brush 29,570 63.443

7. DISCUSSION

The presence of clustering in the collec-
tion of sample data can have a severe effect
on certain test statistics obtained from the
frequency data in a usual contingency table.
Such computed statistics are usually too large
in numerical value. A better approximation is
to construct the table based on a separate
type estimator and then to use the usual
techniques of constructing Pearson statistics.
This technique has its greatest gain when the
clusters differ greatly.

Rao and Scott (1981, 1984), Bedrick (1983),
Wilson and Koehler (1984), Brier (1980) and
Holt, Scott and Ewings (1980) have considered
model that leads to a correction of the usual
Pearson Statistics. Their works rely on
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summarized data through the usual construction
of a contingency table. However, in this
paper no correction is considered for the
usual Pearson Statistic. Here the changes are
suggested prior to the summarized data. There
is no need for matrix inversion or the compu-
tation of several covariances. Eigen values
are not needed. The computer programs neces-
sary are readily available. They are the same
as when multinomial sampling is conducted and
a Pearson Statistic computed.
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