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Introduction 

It is well known that the Pearson chi-squared 
test (X 2) and the l Jklihood ratio test (G 2) can 

yield unacceptably large significance levels under 

cluster sampling, and a number Of alternatives 
have been proposed. In a recent study• Thomas and 

Rao (1984) compared the finite sample significance 
levels of these alternative test procedures for 

the case of a simple goodness-of-fit test, under 
simulated cluster sampling. From a study of a 

number of variants of the basic tests• they re- 
duced the main comparison to four procedures, 
namely an F-based version of the Rao-Scott l 
adjusted X 2 statistic (Rao and Scott• 1981), 

the Rao-Scott Satterthwaite adjusted X 2 , Fay's 

jackknifed X 2 (Fay, 1985), and a modified Wald 
statistic referred to an F distribution (Fellegi, 

1980; Hidiroglou et al., 1980). Except for the 
l-adjustment, these test procedures require know- 

ledge of the estimated covariance matrix of cell 
estimates• while the l-adjustment depends only on 
cell design effects• or variance estimates. As 
expected, Thomas and Rao found that the F-based 
version of the ~ adjusted X 2 statistic yielded 
significance levels close to the nominal level 
when the variation among the eigenvalues of the 

design effect matrix was small. In general• the 

Satterthwaite adjusted test and Fay's jackknifed 
test performed well even when variation among the 
eigenvalues was appreciable. They also found 

that for uniform probability vectors, ~0 , the 
modified Wald statistic controlled significance 

levels reasonably well. 
Though adequate control of significance levels 

is essential if a statistic is to be useful• no 
comparison of competing statistics is complete 

without a comparison of their powers. This paper 

thus describes a Monte Carlo study of the power 
of the above statistics, based on the cluster 

sampling model used in the earlier work. 

Methodology and Study Design 

The study is based on simulated two-stage 

cluster sampling in which a k-category sample of 
m units is drawn independently from each of r 

sampled clusters• giving a total sample size 
n = mr. Details of the model• and of the random 

number generation scheme are given by Thomas and 
Rao (1984). 

The Parameters 

As in the earlier study, the degree of cluster- 

ing is categorized by two parameters• l and a, 
which represent the mean and coefficient of vari- 

ation• respectively• of the eigenvalues of the 
'generalized design effect matrix' (Rao and 
Scott• 1981). Using these two parameters, a 
range of cluster sampling situations can be model- 

led, namely: (i) multinomial sampling (I--=1, a=0); 

(ii) constant design effect clustering (I>1, a=0); 
(iii) non-constant design effect clustering (I>1, 

a >0). 
To keep the size of the study to a manageable 

level• all experiments• each consisting of i000 
independent trials• have been run at the tradition- 

al significance level ~ = 5%, and the reported 

results concentrate primarily on the case k=5, 
I =2, under the equiprobable null hypothesis 

= (i/k ..... l/k)'. Further• the true alternative 

probability vector ~ has been restricted to the 

class ~(k,q,~) defined by the vector elements 

~j(k,q,~) = i/k + ~; j=l ..... q, 

= i/k - qS/(k-q) ; j =q+l ..... k. 

It should be noted that this class includes the 
set of alternatives explored by Read (1984), in 
his study of the 'power divergence' family of 

goodness-of-fit statistics. 

Power Estimates and Standard Errors 

The power estimates reported in this study re- 
present• for each parameter setting• the percentage 

of the i000 Monte Carlo trials in which the test 
statistic exceeded its nominal 5% level, leading 

to a correct rejection of H o. Binomial standard 

errors of these point estimates of power are given 
in the footnote to Table i. All test statistics 

were evaluated using the same set of random num- 
bers, in order to improve the precision of power 

comparisons between competing statistics. Approxi- 
mate standard errors of estimated power differences 

are given by Thomas and Rao (1985). In this paper• 

the discussion will be confined to power differ- 

ences that are large enough to have practical 

importance, and which exceed their standard errors 
by a factor of at least two. 

The Test Statistics 

Only a brief summary of the four competing test 
statistics is given here. Details can be found in 

Thomas and Rao (1984). 

F-based Versions of the Rao-Scott l Corrections 

The Rac-Scott corrected X 2 procedure refers 

2 2 --~ 2 ~-- ^ 
= X /l to Xk_l• where I =(k-l)-17.(l-~ )d 

Xc o o o oi oi" 

Here doi =vii/[~oi(l-~oi) ] is the i th estimated 

cell design effect• and vii is the i th diagonal 

element of V , the sample estimate of V , which 

is n times the covariance matrix of the 

estimated cell proportions ~ = (~ ...... ~. .) . 
~ 1 K-.L,. 

2 

The recommended F-based version•o denoted FXco_ 

is obtained by referring X c /(k-l) to an F- 
o 

distribution on (r-l) and (r-l)(k-l) degrees of 

freedom. 
Versions of the l-corrected statistics can also 

be based on a~ alternative consistent estimator of 
denoted ~ obtained by replacing ~ . and 

• • Ol ^ 

d . in the above expression by ~. and 
Ol 1 

di =vii/[~i(l-~')l ]" Since Thomas and Rao (1984) 

found that FX c gives better control of signifi- 
o 

cance levels than does FX c , the statistic based 
^ 

on I , primary attention will focus on the former. 

However• power differences between FX 2 a n d  FX 2 
o c 
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will be summarized. Also compared will be the 

2 
powers of FXco and the analogous statistic de- 

2 
rived from the likelihood ratio test, namely FGco. 

The Rao-Scott Satterthwaite Correction 

This test procedure refers XSo2 = Xc2o / (l+a2o) 

to a chi-squared distribution on (k-l)/(l+~ 2) 
o 

degrees of freedom. The estimate a depends 
o 

only on the elements ~.. of V , and the hypo- 
13 ~ 

thesized probabilities ~ (see Rao and Scott, 
t O 

1981). As with the l-corrected tests, an alterna- 
tive estimator a is available which uses 
in place of ~ ; the corresponding statistic is 

~o 2 2 
denoted X S. Primary attention will focus on XSo, 

2 
though the differences in power between X s and 
2 

XSo , the form recommended by Thomas and Rao 

(1984), will be summarized. A Satterthwaite ver- 
sion of G 2 namely G 2 , So can be defined analo- 

gously, and the power of this variant will also 
be compared to that of X 2 

S O" 

Fay' s Jackknifed Tests 

Fay's (1985) modification of the X 2 procedure 

is based on the statistic 

Xj=[ (X 21 ½-(Kj) ½]/(Vj/8X 21 ½ 

where the normalization constants Kj and Vj 

are obtained by jackknifing the statistic X2/n. 

Xj, and the corresponding G 2 version Gj , are 
2 

referred to the critical points of 

/2[ (X2_I) ½- (k-l) ½]. 

The Modified Weld Statistic 

The basic Wald procedure refers 

X 2 , ~-i 
= n(ff -~o ) (ff -~ ) 

W . . . . .  O 

to a chi-square distribution on (k-l) degrees of 

freedom. The modified procedure (Fellegi, 1980 ; 
Hidiroglou et al., 1980) refers 

F = (r-k+l) X 2 to F 
w (k-l)(r-l) w (k-l) , (r-k+l) 

Estimated Powers of the Primary Test Statistics 

different numbers of clusters (r=50,30,20,10) 

and two non-multinomial clustering setups are con- 

sidered, namely I =2, a =0 (constant design 
effects) and I = 2, a =0.5 (non-constant design 
effects). The results are displayed in Table i. 

Table 1 

(i) 
Powers of the Rao-Scott, Fay and Modified Wald 

Tests, as a function of r, a and 8, for k=5 

I = 2; m= i0 

a 8 r FX 2 X 2 X F 
S J w 

o o 

0.0 -0.1 50 94.1 94.0 95.2 94.6 
30 71.5 69.9 77.0 76.8 

20 47.7 44.9 57.8 59.0 
I0 22.4 19.3 32.6 31.7 

+0.i 50 85.3 84.8 84.6 76.4 

30 61.8 60.8 61.1 54.7 
20 39.7 38.4 40.4 33.6 

i0 21.8 20.4 23.8 17.6 

0.5 -0.1 50 89.0 88.1 84.9 75.4 
30 69.1 68.8 65.0 53.9 

20 55.1 54.3 52.0 40.3 

i0 34.4 32.7 39.8 34.8 

+0.1 50 73.8 67.9 63.8 45 . 3 
30 50.4 45.1 41.1 28.8 

20 36.0 29.3 27.2 19.1 

i0 16.9 13.6 14.7 ii. 7 

(I) Standard errors for point estimates of powers 

of magnitudes 95%, 90%, 80%, 50% (and their 
complements) are 0.7%, 0.9%, 1.3% and 1.6% 

respectively. 

For constant design effects, and an alternative 

corresponding to ~ =-0.i, it can be seen from the 

top panel of Table 1 that Xj and F w are equally 
powerful. Also, Xj and F w are both more power- 
ful than the Rao-Scott statistics, except when 
r=50, in which case all powers are close to 95%. 
Generally s~eaking, there is little to choose 

between FX" oc and X 2 in this case. Results 
S o 

for the second panel of Table 1 show somewhat 
different trends. Again under constant design 

effect clustering, but with an alternative corres- 
This section presents and compares estimates of ponding to ~ > 0, F w and Xj lose their superi- 

test power for the four statistics FX2co , XSo , ority. In this case, Xj and the Rao-Scott 
statistics exhibit similar powers, with Xj having 

Xj and Fw under an equiprobable null hypothesis. 

The case k=5 will first be considered in detail, 
and then results for k=3 and k=10 will be 
examined to see whether or not the identified 

trends persist for a wider range of values of k. 

The Case of Five Categories 

Two settings of the true probabilities ~ are 

examined for each value of k. For k=5, these 
are given by ~(5,1,+0,i), yielding the ~ vectors 

(.i,.225 .... ,.225)' and (.3,.175 ...... 175) 
respectively. For each setting of ~ , four 

a slight edge for small numbers of clusters. How- 

ever, all three statistics are appreciably more 
powerful than F w. The third and fourth panels of 

Table 1 display power results for the more import- 
ant case of non-constant design effect clustering, 
in which case the relative orderings differ. 

The Rao-Scott statistics are now more powerful than 

Xj , which is in turn much more powerful than F w- 

This effect is particularly noticeable when ~ >0. 
For example, when r=50 and 8 = 0.i, the power 

of Xj is 63.8% compared to 45.3% for F w. As in 
the constant design effect case, therefore, the 
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modified Wald statistic, F w, is much more sensi- 

tive to the form of the alternative than are its 

competitors. 

It is worth noting that changing the form of 

the alternative from 8 < 0 to 8 > 0 lowers 

the power of all four statistics, for both settings 

of a. This is true even for relatively large 

numbers of clusters (r=50) under constant 

design effect clustering, in which case the Pitman 

powers of FX 2 , Xj and F w are all given by the 
o 

same non-central chi-squared distribution. For 

the case ~ = 2, a = 0 and r = 50, the actual 

Pitman power is 90%. From Table 1 it can be seen 

that for negative 8 , the powers of all four 

statistics are greater than 90%, and are all less 

than 90% for positive 8. Since the non-central- 

ity parameters corresponding to the equiprobable 

null and the two alternatives ~ (5, i,+0. i) are 

equal, the reasons for this strong dependence of 

power on 8 are not immediately apparent. As 

noted above, F w is particularly sensitive to the 

sign of ~ , and an explanation of this aspect of 

the phenomenon, based on an idea due to Larntz 

(1978), is given by Thomas and Rao (1985). 

A Comparison of Trends for k=3, 5 and l0 

Estimates of the powers of the four primary 

statistics for three and ten category tests are 

shown in Table 2, for the case of 30 clusters. 

These results were made comparable to those for 

k=5 by a suitable choice of the parameters 

and a. First 8 was chosen to make the Pitman 

powers for k=3, 5 and i0 categories equal to 90%, 

for the specific case I = 2, a = 0, r = 50. 

Then, for comparisons in the non-constant design 

effect case, a , the coefficient of variation of 

the eigenvalues, was chosen to make a/a the 
max 

same for all three values of k, a being the 
max 

maximum attainable value of a. 

Results for the constant design effect case 

are given in the top panel of Table 2. For ~ < 0, 

it can be seen that the power advantage of F w 

and Xj over the Rao-Scott statistics depends on 

k. For k=10, the difference is greater than it 

is for k=5 ; for k=3, the difference disappears, 

all four statistics attaining similar powers in 

this case. 

When 8 > 0, and a =0, xj and the Rao-Scott 

and Fay statistics again exhibit similar power 

2 
(with the exception of XSo , when k =I0), all 

three statistics being markedly more powerful than 

F w , especially when k = i0. For the case k = i0, 

2 
it is also worth noting that XSo is less power- 

2 
ful than FXco , (54.5% versus 60.9%, when 8 >0), 

a difference that is consistent with the slight 

conservativeness of the Satterthwaite corrected 

statistic for a =0 and k =i0 that was noted by 

Thomas and Rao (1984) . 

Results for the non-constant design effects 

case, a >0, are shown in the bottom panel of 

Table 2. Together with the results of Table I, 

these show that, for moderate to large numbers of 

clusters (r > 30), the effect of increasing a 

is to lower the power of all four tests. As for 

the case k=5, the Rao-Scott statistics are again 

more powerful than Xj , when a >0, and consider- 

Table 2 

A Comparison of the Power Trends of the Primary 

Statistics for k = 3 and I0. 

= 2; m = i0 for k=3; m =20 for k=10; r=30 

k a 8 FX 2 X 2 Xj F 
o So w 

3 0.0 -.ll 72.7 74.0 74.5 71.9 

+.ii 65.7 67.5 66.5 60.1 

i0 0.0 -.06 73.0 65.3 

+.06 60.9 54.4 

79.7 81.3 

58.6 35.5 

3 0.29 -.ii 

+.Ii 

71.6 72.7 69.8 63.8 

60.3 59.4 57.4 48.8 

i0 0.82 -.06 70.2 66.4 60.9 47.7 

+.06 36.7 23.5 20.4 12.7 

ably more powerful than F w. When 8 < 0, and 

a = 82 for example, the powers of X 2 , 
. , So Xj 

and F are 66.4%, 60.9% and 47.7% respectively. 

Result~ from Table 2 clearly indicate that the 

power of F w relative to its competitors drops 

with increasing k. Also for k =i0~ under non- 

constant design effect sampling, FX z is more 
c O 

power ful than X 2 , a trend that is to be ex- 

pected since FX 2-° is known to exhibit inflated 
c o 

significance levels in this situation. 

The decreased power values associated with 

switching alternatives from 8 < 0 to ~ > 0 

can again be seen in Table 2, and the effect 

clearly becomes more pronounced as k increases. 

For k = i0, for example, the power of F w when 

a =0 goes from 81% to 36% as 8 changes from 

-.06 to +.06. This effect also interacts with 

the previously noted effect on power of increasing 

a . For the constant design effect case, with 

k=10, switching the sign of 8 lowers the powers 

of the Rao-Scott statistics about i0 percentage 

points, and the Fay statistic about 20 points. 

With a = .82, however, the drop in power of 

these statistics is drastic, being approximately 
r% e% 

33, 43 and 40 percentage points for FXco , X~o 

and Xj respectively. Once again, however, the 

relative effect on power is greatest for F w . 

As a result of this statistic's sensitivity both 

to increases in a and to the form of the alter- 

native, its power when k=10 and a = .82 is only 

about one half of that of X 2 23.5%) . So (12.7% versus 

Estimated Powers of variants of the Primary 

Statistics 

This section examines the power of two variants 

of the Rao-Scott and Fay tests discussed above: 

(i) basing the Rao-Scott and Fay statistics on G 2, 

the likelihood ratio statistic~ rather than on 

Pearson's _^X 2 ; (ii) 2 use of "~ and 22 in 

place of ~ and a in the definition of the 
o o 
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Rao-Scott statistics. In the interests of brevity, 

results will be presented only for the case k=5, 

but similar trends were observed for k=3 and 

k=10. 

Table 3 

A Comparison of X 2 and G 2 Versions of the 

Rao-Scott and Fay Tests 

k=5 ; ~=2 ; m=10 ; r=30 

a 8 FX 2 X 2 X j 
c O o 

o o 

0.0 -0.i 71.5 69.9 77.0 

(77.0) (75.6) (77.3) 

+0.1 61.8 60.8 61.1 

(59.0) (58.3) (59.2) 

0.5 -0.I 69.1 68.8 65.0 
(72.5) (71.9) (58.7) 

+0.1 50.4 45.1 41.1 

(48.3) (41.2) (43.4) 

2 G 2 X versus Versions of the Rao-Scott and Fay Tests 

In the earlier study, Thomas and Rao (1984) 

found that the significance levels of both X 2 and 

G 2 versions of the Rao-Scott and Fay tests were 

very similar, though where there were differences, 

they tended to favour the X 2 tests. Table 3 dis- 
plays the powers of the X 2 and G 2 versions of 

these three tests, for the case k=5. Results, 

for 30 clusters, are shown for two settings of the 

alternative, ~(5,1,+0.i), and for two values of a. 

Some marked differences in power can immediately 

be seen. For the case 8=-0.1, G 2 versions of 

both Rao-Scott tests are more powerful than X 2 

versions. This relationship is reversed when 

8=+0.1. These results are consistent with the 
findings of Koehler and Larntz (1980) and R~ad 

(1984), regarding the relative powers of X and 

G 2. These investigators showed that when one 
2 

element of ~ is decreased towards zero, then G 

becomes more powerful than X 2. When the single 

element of H is increased, and the remaining 

elements decreased, the power relationship is re- 

versed, with X 2 now being more powerful than G 2. 

Given that both Rao-Scott statistics are simple 

modifications of X 2 and G 2 , one would expect 

these trends to be manifested in the relative 2 
2 

powers of FX 2 and FGco, and of XSo and GSo. 
c O 

No clear winner emerges from the comparison, 

particularly since for the more important non- 

constant design effect case, the gain in power 

from using G ~ when 8 <0 is offset by a similar 

loss due to using G 2 when 8 >0. Of course, if 

one has prior knowledge of the true form of the 

alternative, then the appropriate statistic can 
be selected. 

In the constant design effect case, and for 

both settings of 8 , there are no differences of 

practical interest between the powers of the Fay 

statistics Xj and Gj. For the case a > 0, 

however, there are worthwhile differences, partic- 

ularly when 8=-0.1, and it is interesting to note 

that these are in the opposite direction to the 

differences exhibited by X 2 and G 2 forms of 

the Rao-Scott statistics. Thus, when a > 0 and 

8=-0.1, the power of Xj is markedly greater than 

that of Gj , while for 8=+0.1, Gj has the 

edge. THere is no ready explanation for this 

anomalous behaviour of Xj and Gj. 

Table 4 

The Effect of Alternative Estimates of ~ and a 

on the Power of the Rao-Scott Tests 

k=5; ~=2; m=10; r=30 

a 8 FX 2 FX 2 2 2 
c o c XS XS 

o 

0.0 --0.i 71.5 70.7 69.9 70.6 
+0.1 61.8 61.0 60.8 61.1 

0.5 -0.i 69.1 63.7 68.8 59.8 

+0.1 50.4 54.5 45.1 51.3 

Alternative Estimates of I and a for the Rao-Scott 

Tests 

As noted earlier, the expressions given by Rao 
m 

and Scott (1981) for estimating ~ and a can, 

under H o , be based either on ~o or on its con- 
sistent estimator ~ Powers for both forms of 

the Rao-Scott statistics are shown in Table 4, 

for thirty clusters (r=30), and for the previous 

two values of 8 and a. All results shown re- 

late to the case of five categories, i.e. k=5. 

When a=0 , i.e. in the constant design effect 
and FX2 ° case, the powers of FX 2 , and of X S 

and X 2 , are virtually identical for both set- 
S O 

tings of 8. However, when a=0.5, and 8=-0.1, 
the power of FX 2 exceeds that of FX 2 , and the 

2 Co 2 When 8=+0 1 power of XSo exceeds that of X S. . , 

i.e. when H=(.3,.175, ..... 175)', this trend is 

reversed, the powers of the tests based on ~ now 

exceeding those of the test versions based on H . 
~o 

An explanation of some of these trends is given 

in Thomas and Rao (1985). 

Behaviour of F w for Small Values of r 

Thomas and Rao (1984) introduced F , the_modi- 
statistWlc fied form of the standard Wald ~L ~ 

because X 2 itself failed to provide adequateW 

w . X 2 exhibited signi fi- control of Type I error w 

cance levels around 20%, even for 50 clusters, 

under multinomial sampling. For small values of 

r , significance levels were even higher. For 

goodness of fit tests on i0 categories, values as 

high as 95% were recorded for the case r=10. 
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Use of the modified test, F w, which^takes into 

account the degrees of freedom of V , reduced 

these significance levels to the acceptable range 

in most cases. However, it is interesting to con- 

sider what happens to test power in these situa- 

tions. In reducing significance levels to the 

acceptable range, does F w also destroy the power 

of the test? Table 5 reports some results that 

address this question. 

Table 5 

The Power of F w for Small Numbers of Clusters 

k=10; ~=2.0; a=0.0; m=20; H=(0.05,0.05,0.1125 .... , 

0.1125) ' . 

) Power (FX~ o) ~-~ S. Level (X 2) Power (F r 
W W 

30 90.0 91.4 29.5 

20 68.0 71.3 47.3 

18 59.6 63.2 54.0 

16 51.5 57.7 60.3 

15 49.0 56.0 69.0 

14 41.0 50.0 76.0 

13 34.9 42.8 80.0 

12 27.8 40.2 85.0 

ii 17.4 36.6 93.0 

i0 10.2 31.0 97.0 

_ Powers of F w are shown for the_case k=10, 
2 

~=2.0, a=0, along with those of FXco, which is 

known to control Type I error well in the constant 

design effect case. The alternative has the form 

~(i0,2,-0.05), i.e. ~ has two elements equal to 
0.05, the remaining eight being equal to 0.1125. 

From Table 5, it can be seen that for 15 or more 

clusters, the power of F W is about 90% or more 

of that of FX 2 . However, when r=14, the ratio 
o 

of the powers drops to approximately 80%, and de- 

creases rapidly from that level to a low of 26% 

when r=10, the smallest number of clusters for 

which F w can be evaluated. At this value of r, 
the significance level of X 2 is over 90%. 

W 

Thus it appears that when the number of clust- 

ers is very close to k , the power of F w does 

collapse. However, this effect is serious only 
A 

when the degrees of freedom of V , given by r-k+l, 

are 4 or less. It is interesting to note at this 

point that the variance of an F-distribution on 

k-i and r-k+l degrees of freedom does not exist 

when r-k+l < 4. From Table 5, and other results 
m 

not displayed here, it is found that for k=10 and 

r=15, the power of F w is never less than 60% of 
g - 

that of FX over a range of values of X and 
o 

a. In these cases, the significance levels of 

the unmodified test are around 60%, and are all 

reduced to the acceptable range by F w. Thus the 

power robustness of F w for small numbers of 
clusters is better than might be expected. Except 

when degrees of freedom are very small (r-k+l <4), 

it reduces significance levels to an acceptable 

range without sacrificing all of its power. 

Nevertheless, this cannot be taken as a recom- 

mendation for the use of F w instead of its 

2 
competitors FX , XSo and Xj. It has been 

o 
noted previously that F w is particularly suscep- 

tible to the form of the probability vector ~ , 

and it has been shown that its power is inferior 

to its competitors in the important case of non- 

constant design effects. 

Summary and Conclusions 

Monte Carlo methods were used to examine the 

power performance of four basic goodness-of-fit 

tests, and their variants, under cluster sampling. 

The basic tests studied were (i)_ FX2 °- , an F- 2 

based version of the Rao-Scott l adjusted X 
statistic, (ii) X 2 , the original Rao-Scott 

o 
Satterthwaite adjusted X 2, (iii) Xj, Fay's jack- 

knifed X 2 statistic, and (iv) F w , a modified 

Wald statistic referred to an F distribution. 

Test powers were estimated for goodness-of-fit 

tests involving 3,5 and i0 categories, under a 
m 

number of combinations of ~ and a, the mean and 

coefficient of variation, respectively, of the 

eigenvalues of the generalized design effect matrix. 

Attention focussed on the equiprobable null hypo- 

thesis, the data being generated under two basic 

forms of the alternative ~. With the exception 

of the previous section's analysis, both alter- 

natives consisted of single cell deviations from 

the equiprobable ~o ' of the form ~i = ~01 +8' 
with 8 positive or negative, the subscript one 

denoting the first cell probability. 

The form of the (true) alternative was found 

to have a major effect on power. For 8 <0, i.e. 

for a deviation of the first true cell probability 
towards zero, powers of all statistics were higher 

than their corresponding values for 8 > 0, and 

this effect was found to be particularly marked 

for F w . 
For the case of constant design effects, a=0, 

both Xj and F w showed similar power for 

vectors having 8 < 0 (~i < 701)' both being more 
powerful than the Rao-Scott statistics. However 

for alternatives ~ > 0 (~i > 701)' the power 
ranking of the four statistics was different, with 

F w exhibiting less power than its three competi- 

tors, all of which performed similarly. For the 

more important case of non-constant design effects, 

a > 0, both of the Rao-Scott statistics showed more 

power than Fay's X and a great deal more power 

than F w. Thus F w appears to be highly suscept- 
ible not only to changes in ~ but also to in- 

creases in the variability of the design effects, 

as measured by the parameter a . 

Variants of some of the basic procedures were 

also examined, and though some power differences 

were identified, there appeared to be no consistent 

advantage to using any of the variants in place of 

the basic forms FX 2 , X 2 or Xj . 
o o 

In summary, this study has shown that F w has 

several unattractive features. It is very sensi- 

tive to the form of ~ , and its power is markedly 

less than its competitors in the important case of 

non-constant design effects. X shows much better 
J 

power characteristics, and in some cases is super- 

ior to the Rao-Scott tests. It is, however, not as 

powerful as the latter tests when a > 0, an import- 

ant case in practice. When k=3 or k=~, there is 
and terms little to choose between FX2 °u XSo in 
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of power. When k=10, the power of FX 2 is 

greater than that of 2 Co XSo, though when a > 0, 

this power advantage can be attributed to its 
somewhat inflated Type I error. Thus, when 
significance levels, under the influence of non- 
constant design effects, and power, are both 
taken into account, the Satterthwaite corrected 

Rao-Scott statistic comes out ahead, with Fay's 
Xj a close second. Of course, if full informa- 

tion on V is not available, then only FX20 

can be used. 
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