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ABSTRACT 

The problem of regression estimation 
in sample surveys is addressed in the 
context of calibration and three 
regression estimators of the finite 
population mean, called classical, 
modified classical and inverse 
regression are studied. It is shown 
that the linear (inverse) regression 
estimator is more efficient than the 
classical estimators. The bias and 
variance of the inverse regression 
estimator are analytically derived up to 
the order of l/n, where n is the sample 
size. Four variance estimators for the 
inverse regression estimator are 
compared using simulations. 

1 . I NTRODUCTI ON 

Suppose a population consists of N 
units and for some characteristic of 
interest, let x i represent the exact 

value for the i th unit and let Y i be an 

estimate of this value measured by some 
convenient but fallible device. For a 
random sample of n units, the pairs (x i, 
Yi ) ' i = 1,2,...n, are observed. 

On the basis of the error structure, 
the mode 1 

E(y[x) = (~ +B x, 
or equivalently, 

Y = ~+ 8 x + e (I.i) 
is the most plausible choice of models. 
The model error sum of squares is 
minimized by the classical estimator of 

the mean X of the x population given by 

Xc = x + (i/b)(Y- y) (1.2) 

where Y is the population mean of the y 

population, x and y are the sample means 

and 2 
b = Syx/S x 

n 
= 7(y i - y)(x i - x)/(n- i) 

Syx 1 

n - 2/ 
2 = 7 (x - x) (n- i) 

Sx i 
1 

It has been pointed out by Williams 
(1969) that the classical estimator has 
infinite variance. This serious defect 
can be removed by using a modified 
classical estimator proposed by 

Naszodi (1978). Letting 

2 n _ 
s = Z(yi-Y-b(xi - x))2/(n - 2) 

1 
and 

2 b 2 2 
q = s / (n-l)s x , 

it can be shown that 

E[i/b(l + q)] = I/B + 0(i/n 2) 

m 

Thus, a modified estimator of X is 
obtained by 

A 

X = x- (Y- y)/b(l + q). (I.3) u 

This estimator has finite variance and 
is unbiased to 0(i/n). 

On the other hand, the expected 
estimation error sum of squares is 
minimized by the regression estimator of 
the mean, 

= x + t (Y- y), (1.4) 

^ 2 
where t = Syx/S . This minimizing 

Y 

property does not assume that the 
regression of x on y is linear even 

though t is an estimate of the 
regression coefficient in the linear 
inverse model, 

x = Y +~ y +~ , (1.5) 
If (i.I) represents the true error 
structure and if the error distribution 
and the marginal distribution of x are 
both normal, then 

E(x]y) = Y+8 y, 
but for a general x-distribution, the 
regression of x on y is non-linear, and 
vat (x]y) may be a function of y. 

Cochran (1973) has discussed the bias 

and variance of X with and without 

assuming the linear model in (1.5), but 
he does not consider the model in (i.i) 
or discuss the classical estimator. 

In the context of calibration theory, 
the two estimators corresponding to 
(1.2) and (1.4) have been extensively 
studied. Krutchkoff (1967) advocated 
the use of the linear inverse regression 
estimator whereas Berkson (1969) favored 
the classical estimator. The inverse 
estimator is biased toward the mean by 
an amount proportional to the distance 
from the mean. Since we are considering 
estimation of the mean only, all three 
estimators are unbiased when errors are 
normal. 
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Assuming normal errors, Shukla 
(1972) obtained expressions for the 
expected value and variance of the 
classical and the inverse estimators. 
Lwinn and Maritz (1982) extended these 
results to the case of non-normal error. 

2 . SIMULATIONS 

Simulations were carried out to 
evaluate the bias and variance of the 
three estimators. In these simulations 
the x values were generated using a 
family of Beta-like random variables 
over the interval (0,i). The y values 
were obtained using the model in (i.i) 
with B = 1 and errors generated 
according to a normal distribution. The 
y values were truncated at 0 and 1, 
which produced some non-normality in the 
error distribution. 

Populations were constructed with 
N = 25,100 and 500 with means ~ = .i0, 
.33, .50, .67, .90 for the 
x-distributions. Samples of size 
n = 4, i0 and 25 were drawn. The 
variance of the error was chosen to make 

p2 = .25, .70 and .90, where p is the 
correlation coefficient between x and y. 

The estimates of X and other parameters 
were calculated and these values 
averaged over 500 replications. The 
ratio f = n/N was required to be less 
than 1/3. 

A comparison of relative efficiencies 
is given in Table i. The relative 
efficiency is defined to be the ratio of 
the variance of sample mean to that of 

an estimator. The results clearly show 

that the classical estimator X is less 
c 

efficient than the linear regression 

estimator X; in fact it is highly 
inefficient when n = 4 since its 
variance is substantially larger than 
that of the sample mean. The unbiased 

classical estimator X compares well 
with the linear regression estimator 

X except when p is small. 
Even though in Section 3 it is showed 
that, in theory, the inverse estimator 
is biased when the error distribution is 
skewed, the expected value of this bias 
was negligibly small and the inverse 
estimator showed less bias overall than 
the classical estimators. 

Since the inverse regression 

m 

estimator of the mean, X is clearly the 
best among the three considered, the 
remainder of this paper will be 
concerned only with this estimator. The 

m 

mean and variance of X to 0(i/n) will be 
obtained in Section 3 for fixed x values 

and under sampling from a finite 
population. The variance estimator is 
compared with simulation results. 

3. MEAN AND VARIANCE OF X. 

It is easily seen that 

n - 2 
2 = 7(yi_y ) /(n-l) 

Sy 1 

2 = b2s + (n-2)s2/(n-l) 
x 

and 2 
s = bs . 
xy x 

Thus, the regression coefficient in 
(1.3) can be rewritten as 

A 

t = b/(b2+h) 

w h e r e  2 
h = (n-2) s2/(n-l) Sx 

! 

For the given x i s, 

2 
E(h) = (n-2)a2/(n-l)s-" , 

x 
4 

Var(h) = [2+( 82-3)] o /(n-l)s 

(3.1) 

(3.2) 

4 

X (3.3) 

4 
up to 0(I/n) ; where 8 2 = %] 4 / o is the 
measure of kurtosis. 

A 

Expanding t in a Taylor series in b 
and h around 8 and E(h), and denoting 
small deviation e = h- E(h), and 

d = (b - 8) as before, one gets 

t = t + t(1/8 - 2t)d - (t2/8)e + t 2 

(4t-3)/8)d 2 + (t3/ 8 2) e2-(t2/8 2) 

(i - 4t )de +... (3.4) 

2 
t = S2x/( 82Sx2 + o ) (3.5) 

Next, the mean and variance of t up to 
0 (i/n) are 

E(t) = t + t2(4t- 3/8 ) var (b) 

+ (t3/ 8 2) var (h) (3.6) 

and 
A 

Var (t) = (t/8 - 2t2) 2 var (b) 

+ (t4/8 2) var (h) (3.7) 

where Var(b) = o 2/(n - l)Sx 2 and Var( h) 

is given in (3.3) . 
To determine the bias and variance of 

A 
m 

X, we first observe that 
A m A u 

- x = (i - f)t(Y 1 m 
m 

y) (3.8) 

where 
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N-n 

Y1 = 7. Yi/(N-n) 
1 

m m 

= (NY- ny)/(N-n) 

so that 

E(X - x) = (i - f) [E(t)E(YI - y) 

+ Cov(t, YI - y)] (3.9) 

and 
A 

Var(X- x) = (i - f)2[E(t 2 

_(E(t(y I n y)))2 + COV (t 2 

)E(~ 1 _ ~)2 

(3.I0) 

The first covariance term in (3.9) can 
be evaluated using the theorem of Tan 
and Cheng (1981) . Determination of the 
covariance given in the last term in 
(3.10) is quite involved. As shown in 
Chhikara and McKeon (1985), it follows 
that given sampled xi's , 

E((X- x)) = 8(X- x)E(t) 

(i - f)t2~3/Sns 2 (3 ii) + 
and x " 

Var(X- x) = (i - f)( ~ 2/n) [(E(t))2 

+ Var(t)] + B 2(X- x)2Var (t) 

- - ^ 2 
+ 2(1 - f)(X- x)~3t2(2t- E(t))/ns x 

(3.12) 
A 

with t, E(t) and Var (t) given in (3.5) , 
(3.6) and (3.7) respectively. 

By averaging with respect to the 
• ' s, the sampling distribution of the x l 

bias up to 0(I/n) is 

Bias(X) = (I- f)~ 3T/n(o 2 + B2Sx 2) 

(3.13) 

2 
where T is obtained by replacing s x by 

2 2 
S x in t. Here S x is the finite 
population variance for the x values. 
Next, the variance can be obtained by 
using the standard result 

^ "~ r 

Vat(X) = Ex(Var(XIx i S)) 

+ Varx(E(XIx i's)). (3.14) 

Below we provide the final expression 
for the variance; the full details of 
its derivation are given in Chhikara and 
McKeon (1985) . 

A 

Vat(X) = [(i - f) ( 1 - p 2)S 2/hi . 
x 

[i + i/(n- I) 

2 2 
- + K )/(n- i)] + p (i P ) (Kx e 

(3.15) 

where K is the kurtosis (standardized 
x 

fourth cumulant) of the x-distribution 
and K is the kurtosis of the error 
distrebution. 

4. VARIANCE ESTIMATORS 

A variance estimator based on the 
expression in (3.15) which assumes the 
linearity of y on x in (i.i) is compared 
with three estimators of the variance of 
A 

X given by, Cochran (1973) who assumes 
that the inverse regression of x on y is 
linear. 

First, the large sample estimator is 
given by 

V A = ( 1 - f)s 2 /n (4.1) 
F 

2 
where s r is the residual mean square 

error, 

2 n ^ 2 
s = 7. (x. - x.) /(n- 2) (4.2) 

r 1 1 

i-i 

with 
A A 

n 

x. = x + t(y i - y). (4.3) 1 

Another estimator is obtained using 
Equation (7.36) of Cochran (1973) which 

is of order i/n 2 and takes the skewness 
of the distribution of y into 
consideration. It is given by 

V C = (I- f)(Sr2/n) [i + i/(n- 3) 

2921/n2 ] ( 4.4 ) + 

where gl is the estimated relative 
skewness of the distribution of y. If 
the distribution of y is nearly normal, 
then this estimator is approximately 

V N = (i- f)(Sr2/n) [i + i/(n- 3)] 
(4.5) 

Let V I be the variance estimator 

2 
obtained by replacing p , K and Ke by 
their sample estimates. Th x term 
I/(n-l) in (3.15) is replaced by I/(n-3) 
to improve the small sample2Properties 
This difference is of 0(i/n ) and can be 

A 

justified by noting that var(t) contains 

2 2 (I/s ) = the factor i/s x and E x x 

[(n - l)/(n - 3)] S 2 . 
x 

We then have 
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V I = 

^2 + p 

[(i- f)/n]s 2 [I + i/(n- 3) 
r 

^2 ^ ^ 
(I- p )(n + K )/(n- i)] 

x e (4.6) 

The ratio of each of the estimates 

VA, V N. V C and V I to the actual variance 

from the simulations are given in Table 
2 for N = 500 and n = 10. There is very 
little difference between V N, V C amd V I 

indicating that the effects of the 
kurtosis of the x-distribution and the 
error distributions are slight. When 
estimating the mean it does not appear 
to matter significantly whether the 
linear regression of y on x or of x on y 
is assumed. 

Table i. Relative efficiencies of the 
estimators when N = i00 and n = i0 

Estimator 

^ _~ _~ 
X- X P X u c 

p2 = .25 

.i0 1.00 .44 .01 

.33 1.08 .49 .00 

.50 1.05 .47 .00 

2 p = .70 

.10 2.66 1.87 1.40 

.33 2.83 1.92 .48 

.50 2.82 1.86 .00 

p2 = .90  

.i0 9.31 7.46 6.69 

.33 8.88 8.42 8.19 

.50 9.66 8.82 3.38 

Table 2. Ratios of the estimated variance to actual variance of 
A 

X when N = 100 and n = 10 

Variance Estimator 

V A V N V C V I 

2 
= .25 

.i0 .82 .93 .95 .94 

.33 .89 1.02 1.03 1.02 

.50 .81 .92 .93 .92 

2 
= .70 

.i0 .80 .92 .93 .92 

.33 .90 1.03 1.04 1.03 

.50 .94 1.07 1.08 1.07 

2 
p = .90 

.i0 .92 1.05 1.06 1.05 

.33 .79 .90 .91 .90 

.50 .95 1.08 1.09 1.08 
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