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1. INTRODUCTION

1.1 The design problem
The problem of taking account of several
optimality criteria simultaneously has not been
investigated systematically in the past decades.
This article deals with the combinations of
several criteria by determining the design that is
optimal with respect to a particular criterion
within a class of designs that achieve at least a
minimal quality relative to other criteria. The
major concern in this present paper is to
introduce four useful constrained optimality
criteria and demonstrate their application in
the polynomial regression setting.

The univariate polynomial regression of
degree m has the form:

Y= Bo+ Bty t o+ BpxiMre, i3 L N, (1n

where Y’ =(U1’ gN) are the N observations of
the response observed at points {x, .., xN},
Bm) is a vector of unknown parameters
and E'=(ey, .., eN) is a vector of random errors
with the assumption that {e;} are independent

and have the mean 0 and common variance o2
This model is denoted by P, The matrix form

of P is then Y = X8 + E. A design for mth degree

polynomial regression is a probability measure,
denoted by &, defining onthe Borel field gener-
ated by the open subsets of X. The set of all
possible design measures is denoted by =. Given

a design & in I, the associated information
matrix of design & is defined as M_(&) =
[Piq-zl i, j =1, ., m+l, where Hisjog = E(x!*)2)

with respect to the design £.  The experimental
region X will be restricted to X = [-1, 1]
throughout the paper .

Section 2 defines four constrained D- and

G- optimality criteria, namely, A-restricted
and E-restricted D- and G-optimality criteria,
and discuss their applications . In section 3,

some general results based on convex analysis
are given and a theorgm that shows there exists
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a symmetric constrained D-optimal design with
no more than (m+1) support points for any of
these constrained D-optimal designs is proved.
In section 4, some examplies for quadratic poly-
nomial regression are investigated .

1.2 Popular imalit riteri
Perhaps the most commonly used family of
criteria is what Kiefer (1974) called °Ap-

optimality criteria, which is defined as the
following :

& p M@ = {1/(s41)  tr(AM "1 AP
for 0spsgow (1.2)

where A is an (s+)x(m+1) matrix with rank s+,
s<m, and ABis estimable. It is seen that if
A=1n., the identity matrix of rank me+i, then

8, (M (E) =(1/(me)  tr( PENP, which s
the well known ¢p—optimalitg criterion. The
special cases $0 <I>] and ¢, are D-, A- and

E-optimality criteria. The defects and advant-
ages of these criteria can befound , eg., in
Kiefer (1959), Fedorov(1972), Silvey (1980).

The criteria introduced previously are app-
licable when the estimation of A is our main
concern.There is another group of optimality
criteria which provide designs minimizing some
function of expected squared error of the
fitted curve. The most popular one in this
group is the G-optimality,

max  {E(T'(x)B-"(x)8)?},
xe[-1,1] A

where ©'(x) =(1, %, .., x™. If B is the least
square estimator of B, then, a G-optimal
design  minimizes A the maximum  variance
function, wvar (f'(x)B) = f'(x)Mm“(E)f(x)c52. we

shall  write d_(x &) = M "T(E)M(x) and
a,-n(E)= max dy,(x, £). The most important
[-1.1]

characteristics of D- and G-optimal designs
are that both are invariant under linear
transformation and equivalent to each other
(Kiefer (1959, 1974)).



2. CONSTRAINED D- AND G-OPTIMALITY

2.1 A-restricted D- and G-optimality
If we assume normality of errors in the model
P,W then the volume of the confidence ellipsoid

of B, which has the form {BI(B-E)'Mm(i)(B-E) <

w}, is minimized by the usual D-optimal design.
The constant w depends onthe given conf idenc/:\e
coefficient and residual sum of squares , and 8
is the least square estimate of . The A-optimal
design minimizes the sum of the squared princi-
pal axes. To counterpoise these two criteria, we

introduce A-restricted D- and G-optimality
criteria.
Definition 21 A design £,y is called an

A-restricted D-optimal design if it maximizes
[My(€)] among all designs in the set S,

Sp= e |tr(m'(€)) < ¢} (2.1
A design &, is called an A-restricted
G-optimal design if it minimizes d—m(}:) among
all designs in S,

We note that an A-restricted D-optimal design
minimizes the volume of the confidence ellips-
oid of B among all designs for which the sum
of squared principal axes is no larger than a
given constant. The constant ¢ must bein the
interval [tr(Mm“(EA)), tr(Mm'1(£D))], where £,
is the usual A-optimal design for P If c<
tr (M 1(€Y), then the set S, is null. Onthe
other hand, if ¢> tr(M () then the D-opti-
mal design £, is feasible and thus it is optimal
for the constrained problem. Defining the D-
and A-efficiencies as follows, respectively :

Mm@

1/(me1)
e?@)= | — |, (2.2)
MmEp)|
tr (M, (E W)
e, XE) = : (2.3)

tr(M, 1))

we see that the design £, maximizes e, (&)
among all designs for which em/"(E) is at least p,
where p = tr(M m“(EA))/c.
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2.2 E-restricted D- and G-optimality

It is well known that an E-optimal design
minimizes the magimum principal axis of the
confidence ellipsoid of B. Geometrically, it
makes the shape of the ellipsoid as spherical
as possible, and thus, the variances of {ﬁi} are

as closeas possible. However, the E-optimality
criterion is not differentiable, nor invariant in
linear transformation. On the other hand, the
design that minimizes the volume of the
ellipsoid may have very large variations among
the variances of {Bi}. Therefore, to counterpoise

these two criteria, we introduce E-restricted
D- and G-optimality.

Definition 2.2 AnE-restricted D-optimaldesign,
8y is @ design that maximizes |M(£)] among

all designs in the set Sp, where
Sg = ez max (0 E)Ymin (E} el (2.4)
where {Ai(£)} are the eigenvalues of M (£).

An E-restricted G-optimal design minimizes
d,(£) among all designs in S.

Basically, the constant ¢ canbe chosen from
the interval [1, ). However, if ¢ >max {;({p)}/

min {X;({p)}, the design & is feasible, and hence,

it is optimal to the constrained probiem. On the
other hand, the situation that ¢c=1 is usually
unattainable, since otherwise, all A(£)'s are

equal and therefore the design must be D-opti-
mal as well as E-optimal. In fact, the lower
boundary of ¢ is the minimum of the ratio,
max {A(£)}/ min (A(£)). Thus the values of ¢

are restricted to the interval ,
[min {max () / min () 3,

4 max{ X(Zp)/ min A} 1.
Geometrically an E-restricted D-optimal design
minimizes the volume of the confidence ellip-
soid of § among all designs of which the ratio
of the maximal principal axis to the minimal

principal axis is no larger than a given constant.
Defining the E-efficiency as the following :

min {)\l(a)}
e £¢) - (25)

min {(2p)



where &E is an E-optimal design for the model
Py We see that an E-restricted D-optimal design
maximizes e, (&) among all designs with e &)
2 p, where p = max {A;(£)}/ cmin {\(E)

3. SOME GENERAL RESULTS

The usual D-optimal design for the model
P is adesign which puts equal mass on {1,

m
i, 1 =1, ., m-l, x€e(-1, 1D}, where x;'s are the
zeros of the first derivative of the Legendre
polynomial of degree m ( Hoel, 1958 ). This is no
longer true for constrained cases. However, the
properties of symmetry and finite support still
hold for constrained D- and G-optimal designs.
The constrained D- and G-optimal design
problems are generalized as the following:
(D) Maximize |M_(£)| subject to €S,
(6) Minimize d(£) among all £ €S,

where S is a given convex subset of Z=.

Lemma 31 Let s (5©) pe the set ofall
constrained D- (G-) optimal designs for
problem (D) ((G)), then S (s©) is a

convex set.

Proof: Using concavity of |M(£)| and
convexity of max(), it is trivial to show
S(D) and S(G) are both convex. o

Lemma 3.2

Among all £eS® (s®) there exists a
symmetric design & in SO (6.
Proof. See Stigler (1971) m]
Lemma 33 Given any design for P, there
exists a design & such that both designs
share -the same moments of order 1, .., 2Zm
and ¥ has support on at most m+! distinct
points.
Proof.

See Escobar and Cornette (1983). O

Combining these three Lemmas, we obtain
the following Theorem.

Theorem 3.1
jons, then, there exists a symmetric and finite
supported optimal design for the problem (D)
((G)). The support of this design is on at
most m+1 distinct points.

If the problem (D) ((G)) has solut-
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Proof: The existence of a symmetric optimal
design follows from Lemma 3.1 and 3.Z. Now,
if this symmetric design has more than m+l
distinct support points, then, by Lemma 3.3,
there exists a design £ with the same first

2m moments which has exactly m+l support
points. Furthermore, the design ":D canbe chosen

to be symmetric , since the corresponding odd
moments of Z’,O are all zero. Thus this theorem

is proved. 0

We note that the sets 5, and S; are both

convex sets. Theorem 3.1 is thus applicable
for our constrained problems.

4. CONSTRAINED OPTIMAL DESIGNS FOR P,

We now consider the special case, Po. The
constrained optimal designs &,y Zan Ly Epg

and their performances are investigated. The
designs that are interesting to us canbe restric-
ted to the set {£=(dj, dp, d3)|dy =dz} with

the corresponding supports { -1, 0, 1 }. The
information matrix for Py is

10 -do
MAE) = 0 dy O
-dy 0 1-d,

We then obtain|M (&) |= (1-d 9)%d, , tr(M,1(E)) =
2/((1-d 5)dy). the eigenvalues of M,(Z) ar{A| Ao,
Mg} = [1(2-0p) - (5d,2- 8d+4)2}/2, 1-d
((2-d) + (50,2- 8d* )2 /2  with %y < A,
Sz, and dyx, &) = [ %%+ (3d5-2)x2 + (i-d 5)I/
((1-d 5)do).

4.1 A-restricted D- and G-optimal designs

The A-restricted D-optimal design problem is

to masimize (-d 5)%d, subject to 2/((1-d p)dp)
<c and dy€[0, 1] For ¢>9, we see that d;=d)=

dz = 1/3 is the optimal design. For ce (8, 9],4the
solution is given at dy = 1/2 - (174 - 2/c)/2 .

The A-restricted G-optimal design problem is
to minimize max{1/d 5, 2/(1-d 5) } subject to

2/((1-d 2)d2) <c and dye[ 0,1 ] Thesolution



is seen to be the same as the A-restricted
D-optimal design. Thus we  obtain the
following Lemma:

Lemma 41 The A-restricted D- and G-optimal
design for P, is given by
dy =dp=dz=1/3 for ¢>9
O =0g=1/4 + ((1/4 - 2/c)/2)/2
i for ce8, 9l
dy=1/2 - (1/4 -2/c)/? O

The D-, G- and A-efficiencies of this design are
el =31(2/c) (/2 + (174 - 2/c)/2 Y4173
e,6=3min(1/2 - (/4 - 2/c)/2

V4 + {74 - 2/¢)V2y/21
QZA =8/c .

To compare the usual D-, G- and A-optimal
designs with the A-restricted D-optimal design ,
let us consider the problem with equality const-
raint, 2/((-d 5)dp) = ¢, and denote the optimal
design as &I Then, the design &V is given

by do=1/2 = (174 - 2/cV2 | d) = dg = (1-d ,)/2.

Table 4.1 shows the characteristics of &4
and Figure 4.1 plots the efficiencies of E,o(‘)

versus the constant c.
The design having equal D- and A-efficiency
e,0= e,A= 0.9805, denoted as SAC', is attained

at ¢ = 8.1587 with gy =dz = 0.285 and d, = 0.43.
The design having equal G- and A-efficiency BQG=
e,A= 0.9375, denoted as LAc", is attained at c =
8.533 with d; =d3 = 03125 and d, = 0.375.

4.2 E-restricted D- and G- optimal designs
The associated E-restricted D-optimal design
problem for P is to maximize (1-d 5)“d; subject

to Az /N Scanddye [0, 1], where Ay and Az

are the smallest and the largest eigenvalues of
M(£), respectively. Theratio of Az / Ay for the

usual D- and E-optimal designs are (21 +54/17)/
4%10.4 and 6, respectively. The smallest ratio
among all designs is found to be 3+/8 % 5.828.
Thus the range of cis[3 + 48, ] Theusual
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D-optimal design is also the E-restricted D-opt-
imal deign when the value ¢ > (21 + 5417 )/4.
The corresponding range of d, for c €[ 5.828,

10.4] is [V/3, 2/31 Using the concavity of
(1-d 2)202 for do < 2/3 and the convexity of the

set S¢, do has the form given in Lemma 4.2.

The associated E-restricted G-optimal design
problem is to minimize max {1/d 5, 2/(1-d o) }

subject to Az /Xy £c and dy€e[0,1 ] By the

same argument as the E-restricted D-optimal
design problem, the range of ¢ must be limited
to [3+4/8,0], and d, =d2=d3=l/3 is the

optimal design for ¢ » (21 +5 417 )/4. For
ce[3+/8 , (21+5/17)/4], max {1/d 5 ,2/(1-d )}

= 2/(1-d 2). Hence, the solutionis the same as

the E-restricted D-optimal design.  We then

obtain the following Lemma :

Lemma 4.2 The E-restricted D- and G- optimal
design for P, is given by

(@4 1) + (e 2(2- bes) 2

d] = d3 =
4(cZ+3c+ 1)

(c2+ 6c+ )-{(c+1) 2(c?- pe+)) V2

dy =

2Ac?+3c+ 1)

force[3+/8 , (21+5y17)/4] (4.0)

dy =dy=d3=1/3 forc>(21+5y17)/4 0O

We note that if we consider the equality con-
straint only, the E-restricted optimal design for

P, denoted as £(?+ is given by equation (4.1)

for all celS+y B,0). The characteristics of &2
is given in Table 4.2 and the graph of efficie-
ncies versus constant ¢ is given in Figure 4.2.
TheD-, G- and E-efficiencies are:
- -d )2 73,

el =(27(1-d p)“dp/4)

e,5=3min {dy, (I-d5)/2) . '

ef= 25 (2-dp) - (5dp% - 8dy + A4 1,
where the value of d is given in equation (4.9).

The design having equal D- and E-efficiency
e,0=ef=0.9491 , denoted as gy*, is given at



c= 693755 with d; = dg = 0.25333 and d -

0.49334. The design having equal G- and
E-efficiency ef = ef = 0.86782, denoted as

Leo . Is given at c = 8.0945 with dy = dz =
0.28924 and d, = 0.42153.

5. DISCUSSION

There are many considerations in choosing
a design for a particular experimental situation.
Box and Draper (1975) proposed fourteen
properties for a gooddesign. Asingle optimality
criterion usually results in optimal designs
that satisfy one or very few properties. Thus,
it is necessary to take into account of several
criteria. It may not be possible to optimize
several criteria simultaneously. By optimizing
a criterion among the designs that achieve a
minimal quality with respect to other criteria,
we are able to obtain optimal designs that
satisfy more properties as weil as reduce the
sensitivity of the defects of each criterion.
Thus, a constrained optimal design is robust
in the sense that it makes goodcompromises
with respect to all involved criteria.

A fundamental problem is how the minimal
quality should be determined. This is apparently
quite subjective. The goal is to make the effici-
encies as high as possible. One way to obtain the
best design is to determine a set of constrained
optimal designs by giving different minimal
qualities, then choosethe one that is best for
the particular experimental situation. The diffi-
culty of this method is the computational
complexity. However, with the help of prior
information, if possible, and a highly developed
computer system, this should not bea serious
problem. If there is no prior information
available, then, the one having equal efficiencies
for all the involved criteria is a generally
good design.

The examples discussed in this articie are
based onP,. For higher order polynomial regres-

sions, the closed-form D-restricted D-optimal
designs can be obtained by using canonical
moment (Lee, 1984) . In fact, Studden (1982)
has obtained closed-form solutions for
C-restricted D-optimal designs (Stigler,1971).

However, computational methods are necessary

in general. Bohning (1981) proposedan approach
based on the penalty method. Futher investi-
gation on numerical algorithms is needed.

It is interesting that constrained D-optimal
designs are equivalent to constrained G-optimal
designs for both A-restricted and E-restricted
cases for Po. Unfortunately, this is not generally

true (Stigler,1971). However, Kiefer's equiva-
lence theorem (1974) can be extended to
constrained optimal design problems by using
the Lagrangian theory (Lee 1984).

Table 4.1 A-restricted D- and G-optimal designs, 50“)

C d2 dl =d3 220 22G 22A
80 050 (£,) 0250 0945 0.750 10000
8159 043 (£,7) 0285 09805 0855 0.9805
84 0391 03045 0981 09135 0.9524
8533 0375 (8,s) 03125 0996 09375 09375
88 0349 03255 0999 0976  0.9090
9.0 0333 (§,) 03333 1000 1000  0.8890
100 0276 0362 0992 0829 0.8000
130 0158 0421 0912 0475 05330
200 013 04435 0842 0338  0.4000
300 0.072 0464 0748 0218  0.2670
1000 0.020 0430 0503 0061  0.0800
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Table 4.2 E-restricted D- and G-optimal designs, £O(2)

c dy dy=ds e,P ef et
5.83 0.667 0.167 0.794 0500 0.976
6.00 0.600 (aE) 0.200 0.865 0.600 1000
£.938 0.4933 (Z'ED*) 0.7533 0948 0760 0.949
750 0.4545 0.2727 0870 0.818 0909
8.095 0.4215 (E‘EG‘) 0.2892 0.984 0.868 0.868
9.00 0.38! 03095 0.995 0.928 0.809
10.40 0.333 (E‘D) 0.333 1.000 1000 073
11.00 0.317 0.3415 0998 0950 0.701
20.00 0.83 0.4085 0938 0550 0.433
50.00 0.077 0.4615 0.761 0.231 0.189
100.00 0.038 0.4805 0625 0.118 0.097
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