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I. INTRODUCTION 

1.1 The design problem 
The problem of taking account of several 

optimality criteria simultaneously has not been 
investigated systematically in the past decades. 
This article deals with the combinations of 
several criteria by determining the design that is 
optimal with respect to a particular criterion 
within a class of designs that achieve at least a 
minimal quality relative to other criteria. The 
major concern in this present paper is to 
introduce four useful constrained optimality 
criteria and demonstrate their application in 
the polynomial regression setting. 

The univariate polynomial regression of 
degree m has the form: 

YI = ,80 + #Ixi + -.- + #taxi m+ ei, i- I, ..., N, (I.I) 

where Y'= (Yl ..... yN) are the N observations of 

the response observed at points {xl, ..., XN}, 

,8'=(,60 ..... ,8 m) is a vector of unknown parameters 

and E' = (el, ..., e N) is a vector of random errors 

with the assumption that {e I} are independent 

and have the mean 0 and common variance O 2. 
This model is denoted by Pro The matrix form 

of Pm is then Y = X,8 + E. A design for mth degree 

polynomial regression is a probability measure, 
denoted by (, defining onthe Borei field gener- 
ated by the open subsets of X- The set of all 
possible design measures is denoted by =. Given 
a design t_, in "" the associated information 
matrix of design ( is defined as Mm(t,)- 

[j.li+j_2], i, j = I, ..., m+l, where I.ti+j_ 2 = E(x i+j-2) 

with respect to the design ~'.. The experimental 
region X will be restricted to X = [-1, 1] 
throughout the paper. 

Section 2 defines four constrained D- and 
G- optimality criteria, namely, A-restr icted 
and E-restricted D- and G-optimality criteria, 
and discuss their applications. In section3, 
some general results based on convex analysis 
are given and a theorem that shows there exists 
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a symmetric constrained D-optimal design with 

no more than (re+l) support points for any of 

these constrained D-optimal designs is proved. 

In section 4, some examples for quadratic poly- 

nomial regression are investigated . 

i.2 Popular ..O.Dtimalitu Criteria 
Perhaps the most commonly used family or 

criteria is what Kiefer (1974) called { D 

Ap 
optimality criteria, which is defined as the 
fol lowing - 

Ap(Mm(t_,)) - { 1/(s+1) tr(AMm-1 (?_,)A')P }l/p 

for 0 < p _< oo (1.2) 

where A is an (s+l)×(m+l) matrix with rank s+l, 

s _< m, and A~ is estimable. It is seen that if 

A= Ira+ I, the identity matrix of rank re+l, then 

~p(Mm(~)) ={ll(m+l) tr(Mm-P(~))} Wp , wMich is 

the well known ~p-optimality criterion. The 

special cases ~0, 4>1 and ~ are D-, A- and 

E-optimality criteria. The defects and advant- 
ages of these criteria can be found , e.g., in 
Kiefer (1959), Fedorov(1972), Silvey (1980). 

The criteria introduced previously are app- 
licable when the estimation of A,8 is our main 
concern.There is another group of optimalitg 
criteria which provide designs minimizing some 
function of expected squared error of the 
fitted curve. The most popular one in this 
group is the G-optimality A 

max {E(f'(x),8- f'(x),8)2}, 
x•[-l,l] 

where f'(x) = (1, x, ..., xm). If ,6 is the least 
square estimator of ,8, then, a G-optimal 
design minimizes the maximum variance 

- function, var (f'(x)~) f'(x)M m 

shall write dm(X, t , ) -  r'(x)Mm-l(t,)r(x) and 

din(t_,) = max d re(x, t_,). The most important 
[-1,1] 

characteristics of D- and G-optimal designs 
are that both are invariant under linear 
transformation and equivalent to each other 
(Kiefer (1959, 1974)). 
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2. CONSTRAINED D- AND G-OPTIMALITY 

2.1 A-restricted D- and G-optimality 
If we assume normalitU of errors in the model 

Pro, then the volume of the confidence ellipsoid 

of ,8, which has the form {# I (,8-,8)'Mm(f_,)(,B-~) _< 

w}, is minimized by tho usual D-optimal design. 
The constant w depends on tho given confidence 
coefficient and residual sum of squares, and 
is the least square estimate of ,8. The A-optimal 
design minimizes the sum or the squared princi- 
pal axes. To counterpoise these two criteria, we 
introduce A-restricted D- and G-optimality 
criteria. 

.D..efinition 2.1 A design P-,A0 is called an 

A-restricted D-optimal design if it maximizes 
I Mm(()l among all designs in the set S A, 

S A - {f_,E= I t r (M- '  (f_,)) _< c} (2.1) 

A design (AG is called an A-restricted 
. . . , .  

G-optimal design if it minimizes din(()among 

all designs in 5A" 
We note that an A-restricted D-optimal design 

minimizes the volume of the confidence ellips- 
oid of,8 among all designs for which the sum 
of squared principal axes is no larger than a 
given constant. The constant c must be in the 
interval [tr(Mm-l(t,A)), tr(Mm-l((D))], where (A 

is the usual A-optimal design for Pro" If c< 

tr (Mm-l(f_,A)), then the set S A is null. On the 

other hand, i r c  > tr(Mm-l((D)) then the D-opti- 

mal design (D is feasible and thus it is optimal 

for the constrained problem. Defining the D- 
and A-efficiencies as fol lows, respectively- 

I Mm( ')l ll/(m+l) 
emD(() = , (2.2) 

I Mm( ,D) I 
tr (Mm-I (t_,A)) 

emA(() - , (2.3) 

tr(M m-l(t_,)) 

we see that the design f-,AD maximizes eml)(() 

among all designs for which emA(() is at least p, 

where p - tr(Mm-1 ((A))Ic. 

2.2 E-restricted D-and G-optimality 
It is well known that an E-optimal design 

minimizes the maximum principal axis of the 
confidence ellipsoid of ,8. Geometrically, it 
makes the shape of the ellipsoid as spherical 
as possible, and thus, the variances of {~i } are 

as close as possible. However, the E-optimality 
crit0rion is not difforentiabl0, nor invariant in 
linear transformation. On the other hand, the 
design that minimizes the volume of the 
ellipsoid may have^ very large variations among 
the variances of {~8i}. Therefore, to counterpoise 

these two criteria, we introduce E-restricted 
D- and G-optimality. 

Definition 2.2 An E-restricted D-optimaidesign, 
(gD' iS a design that maximizes I Mm(f_,)l among 

all designs in the set S E, where 

5E- {f-,~-i max {Xi(()}/min {Xi(f_,)} _< c}, (2.4) 

where {Xi(f_,)} are the eigenvalues of Mm((). 

An E-restricted G-optimal design minimizes 
dm(~,) among all designs in S E. 

Basically, the constant c can be chosen from 
the interval [I, ~). However, if c > max {Xi(t,D)}/ 

rain {Xi(~0)}, the design P-'D is feasible, and hence, 

it is optimal to the constrained problem. On the 
other hand, the situation that c= 1 is usually 
unattainable, since otherwise, all Xi([) 's are 

equal and therefore the design must be D-opti- 
mal as well as E-optimal. In fact, the Iow0r 
boundary of c is the minimum of the ratio, 
max {:Xi(f_,)}/min {Xi(~)}. Thus the values or c 

are restricted to the interval, 
[min { max Xi(t,) / min Xi(f_,) }, 

max{ Xi(~D)/min %.i((D)} ]- 
Geometrically an E-restricted D-optimal design 
minimizes the volume of the confidence ellip- 

soid of ,8 among all designs of which the ratio 
of the maximal principal axis to the minimal 
principal axis is no larger than a given constant. 
Defining the E-efficiency as the fo l lowing:  

min 

- (2.5) 
min {Xi(t,E)} 
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where t_., E IS an E-optimal design for the model 

Pro, we see that an E-restricted D-optimal design 

maximizes emD(t_,) among all designs with emE(t_.) 

> p, where p = max {XI(P_,)}/c min {)~I((E)}. 

3. SOME GENERAL RESULTS 

The usual D-optimal design for the model 
Pm is a design which puts equal mass on { z 1, 

x i , i - l ,  ..., m-l, x iE(-1, l)}, wherex i ' s a r e t h e  

zeros of the first derivative of the Legendre 
polynomial of degree m ( Hoel, 1958 ). This is no 
longer true for constrained cases. However, the 
properties of symmetry and finite support still 
hold for constrained D-and G-optimal designs. 

The constrained D- and G-optimal design 
problems are generalized as the f o l l o w i n g  

(D) Maximize I Mm(() I subject to t_, c S, 

(G) Minimize d'm(() among all ~ E S, 

where 5 is a given convex subset of--. 

Lemma 3.1 Let S (D) (S (e)) be the set of all 
constrained D- (G-) optimal designs for 
problem (D) ((G)), then S &)) ( S (6)) is a 
convex set. 
Proof" Using concavity of I M(()I and 
convexitu of max(.), it is trivial to show 
S (D) and S (G) are both convex. E! 

Lemma 3.2 
Among all t ,~S (D) (S(e)), there exists a 

symmetric design t_, 0 in 5(D)(s(G)). 
Proof. See Stigler (1971) El 

Lemma 33 Oiv~n any design for Pro, there 

exists a design t, such that both designs 
share .the same moments of order 1 ..... 2m 
and ( has support on at most m+l distinct 
points. 
Proof. ..See Escobar and Cornette (1983). O 

Combining these three Lemmas, we obtain 
the fol lowing Theorem. 

Theorem 3.1 If the problem (D) ((G)) llas solut- " 
ions, then, there exists a symmetric and finite 
supported optimal design for the problem (D) 
((G)). The support of this design is on at 
most m+l distinct points. 

Proof: The existence of a sgmmetric optimal 
design fol lows from Lemma 3.1 and 3.2. Now, 
if this symmetric design has more than m+l 
distinct support points, then, by Lemma 3.3, 
there exists a design t, 0 with the same first 

2m moments which has exactly m+l support 
points. Furthermore, the design t, 0 can be chosen 

to be symmetric , since the corresponding odd 
moments of ~.0 are all zero. Thus this theorem 

is proved. O 

We note that the sets S A and S E are both 

convex sets. Theorem 3.1 is thus applicable 
for our constrained problems. 

4. CONSTRAINED OPTIMAL DESIGNS FOR P2 

We now consider the special case, P2-The 

constrained optimal designs ~AD Z, Ae ~ED' ~'EG 

and their performances are investigated. The 
designs that are interesting to us can be restric- 
ted to the set {t_,-(d l , d  2,d 3 ) l d l  -d3}  with 

the corresponding supports {-1, O, 1 }. The 
information matrix for P2 is 

I 0 1-d 2 

M2([) - 0 1-d 2 0 . 

l-d 2 0 l-d 2 

We then obtainl M 2(t.) J: (1-d 2)2d2 , tr(M2-1 ([)) = 

2/((1-d 2)d2), the eigenvalues of 1'12(~) are{:X I ,X2, 

%3 } - [ { (2-d2)-  (5d22-  8d2+4)W2 } /2 ,  l-d 2, 

{ (2-d 2) + ( 5d22- 8d2+4) W2 }/2 ] with ~'1 -< ;k2 

< X 3 , and d2(x, () - [  x 4 + (3d2-2)x2 + (1-d 2)]/ 

((1-d 2)d2). 

4.1 A-restricte.d D- and G-optimal designs 
The A-restricted D-optimal design problem is 

tomaximize (1-d 2)2d2 subject to 2/((1-d 2)d2) 

<c  and d 2E[0,1]. Forc>9, we see that d l=d2= 

d 3 - 1/3 is the optimal design. For c E [8, 91, the 

solution is given at d 2 - 1/2 - (1/4 - 2 / c )  1/2 

The A-restricted G-optimal design problem is 
to minimize ma×{1/d 2,  2/(1-d 2 ) } subject to 

2/(( l-d 2)d2) < c and d 2 E [ 0, 1 ]. The solution 
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is seen to be the same as the A-restricted 
D-optimal design. Thus we obtain the 
following Lemma: 

Lemma 4.1 The A-restricted D- and G-optimal 
design for P2 is given bg 

d 1 =d 2=d  3=1/3 for c > 9  

rdl = d 3 = 114 + { (1/4 - 2/c)1/2 }/2 

for cE[8 ,9 ]  
L d2_ 112 - (1/4 -2/c)  1/2 13 

The D- G- and A-efficiencies of this design are 
e2D='3 [ (2/c){112 + (1/4 - 2/c) 1/2 }14 ]1/3 , 

e2G- 3 min [ 1/2 - (1 /4 - 2/c) 1/2 , 

114 + { (1/4 - 2 /c ) I /2  }/2 ] , 
e2A- 8/c . 

To compare the usual D-, G- and A-optimal 
designs with the A-restricted D-optimal design, 
let us consider the problem with equality const- 
raint, 2/((1-d 2)d2)- c, and denote the optimal 

design as f_,0[I). Then, the design f_,0 (I) is given 

by d2=I12 - (I/4 - 2/c) I12 , d I - d 3 - (l-d 2)/2. 

Table 4.1 shows the characteristics of t_,0(,l,I 

and Figure 4.1 plots the efficiencies of ?_,0 (1) 

versus the. constant c. 
The design having equal D- and A-eff iciency 

e2D- e2A- 0.9805, denoted as ~AI~ '~ , is attained 

at c -  8.1587 with d I - d 3 - 0.285 and d 2 - 0.43. 

The design having equal G- and A-eff iciency e26= 

e2A- 0.9375, denoted as lAG", is attained at c - 

8.533 with d 1 -d  3-0.3125 andd 2-0.375.  

4.2 E-restricted D- and O- optimal designs 
The associated E-restricted D-optimal design 

problem for P2 is to maximize (1-d 2):Zd2 subject 

to %3/~1 -z. candd 2E[0, I], where~,l andX3 

are. the smallest and the largest eigenvalues of 
M2(~,) , respectively. The ratio of :X 3 / :X I for the 

usual D- and E-optimal designs are (21 +5~17)i 
4 ~. 10.4 and 6, respectively. The smallest ratio 
among all designs is found to be 3.~8 ~ 5.828. 
Thus the range o f c i s [ 3  + ~ 8 ,  o~]. The usual 

D-optimal design is also the E-restricted D-opt- 
imal deign when the value c > (21 + 5,,/17 )/4. 
The corresponding range of d 2 ror c e [ 5.828, 

10.4] is [1/3, 2/3 ]. Using the concavity of 
(1-d 2)#d2 ror d 2 _~ 2/3 and the convexity of the 

set 5 E , d 2 has the form given in Lemma 4.2. 

The associated E-restricted G-optima~ design 
problem is to minimize max { l id 2 ,2/ (1-d 2 ) } 

subject to X 3/::x I _<c and d 2 E [ 0 , I  ]. By the 

same argument as the E-restricted D-optimal 
design problem, the range of c must be limited 
to [3 + ~ 8 ,  ~ ] ,  andd I - d  2 - d  3 -  I/3 is the 

optimal design for  c > (zl + 5 717 )/4. For 
c E [3+./8 , (21+5~17)/4], max {1/d 2,2/ ( I -d 2)} 

= 2/(I-d 2). Hence, the solution is the. same as 

the E-restricte~ D-optimal ciesign. We then 
obtain the following Lemma : 

Lemma 4.2 The E-restricted D- and G-optimal 
design for P2 is given by 

(c 2 + 1) + ((c,1) 2 (c 2_ 6c+1)} 

d 1 =d 3 = 

4(C 2 + 3C + 1) 

(c + 6 c ,  1)-{(c+1) (c 6c+1)} 

d 2 = 

2(c 2+ 3c + 1) 
for c E [ 3 + / 8 ,  (21+,5717)141 

d I = d 2 = d 3 = 113 

(4.1) 

f o r c >  (21 . 5 / 1 7 ) / 4  n 

We note that if we consider the equality con- 
straint only, the E-restricted optimal design for 
P2, denoted as t_,o(2), is given by equation (4.1) 

for all c~[5+.j8,~o]. The characteristics of t_,0(2) 

is given in Table 4.2 and the graph of eff icie- 
ncies versus constant c is given in Figure 4.2. 
The D-, G- and E-efficiencies are" 

e2° : ( 27(1-d 2)2d2/4 )1/3 , 

e26- 3 min { d 2, (1-d 2)/2 } , 

e2E- 2.5 [ (2-d 2) - (5d2~- 8d 2 + 4) 1/2 ] , 
- ~ .  

where the value of d 2 is given in equation (4.1). 

The design having equal D- and E-efficiency 
e2D= e2E-0.9491 , denoted as t_,ED", is given at 
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c -  6.93755 with d 1 - d 3 -  0.25333 and d 2= 

0.49334. The design having equal G- and 
e2E - E-efficiency e26- 0.86782, denoted as 

t_,EG*, is given at c -  8.0945 with d 1 - d 3 - 

0.28924 and d 2 = 0.42153. 

5. DISCUSSION 

There are many considerations in choosing 
a design for a particular experimental situation. 
Box and Draper (1975) proposed fourteen 
properties for a good design. A single optimality 
criterion usually results in optimal designs 
that satisfy one or very few properties. Thus, 
it is necessary to take into account of several 
criteria. It may not be possible to optimize c d 2 

several criteria simultaneously. By optimizing 

a criterion among the designs that achieve a 

minimal quality with respect to other criteria, 

we are able to obtain optimal designs that 

satisfy more properties as well as reduce the 

sensitivity of the defects of each criterion. 

Thus, a constrained optimal design is robust 

in the sense that it makes good compromises 

with respect to all involved criteria. 

A fundamental problem is how the minimal 30.0 0.072 
quality should be determined. This is apparently 100.0 0.020 
quite subjective. The goal is to make the ef f ic i -  
encies as high as possible. One way to obtain the 
best design is to determine a set of constrained 
optimal designs by giving different minimal 
qualities, then choosethe one that is best for 
the particular experimental situation. The di f f i -  
culty of this method is the computational 
complexity. However, with the help of prior 
information, if possible, and a highly developed 
computer system, this should not be a serious 
problem. If there is no prior information 
available, then, the one having equal efficiencies 
for all the involved criteria is a generally 
good design. 

The examples discussed in this article are 
based on P2- For higher order polynomial regres- 

sions, the closed-form D-restricted D-optimal 
designs can be obtained by using canonical 
moment (Lee, 1984). In fact, Studden (1982) 
has obtained closed-form solutions for 
C-restricted D-optimal designs (Stigler,1971). 
However, computational methods are necessary 

in general. Bohning (1981) proposedan approach 
based on the penalty method. Futher investi- 
gation on numerical algorithms is needed. 

It is interesting that constrained D-optimal 
designs are equivalent to constrained G-optimal 
designs for both A-restricted and E-restricted 
cases for P2- Unfortunately, this is not generally 

true (Stigler,1971). However, Kiefer's equiva- 
lence theorem (1974) can be extended to 
constrained optimal design problems by using 
the Lagrangian theory (Lee 1984). 

Table 4.1 A-restricted D- and G-optimal designs, (0 If) 

d 1 :d 3 e2D e26 e2A 

8.0 0.50 ((A) 0 .250  0 .945 0.750 1.0000 

8.159 0.43 (t_,AD*) 0.285 0.9805 0.855 0.9805 
8.4 0.391 0.3045 0.981 0.9135 0.9524 

l . I  8.533 0.375 (t_,AG) 0.3125 0.996 0.9375 0.9375 
8.8 0.349 0.3255 0.999 0 .976 0.9090 
9.0 0.333 (t-. D) 0.3333 1.000 1.000 0.8890 

10.0 0.276 0.362 0.992 0.829 0.8000 
13.0 0.158 0.421 0.912 0.475 0.5330 
20.0 0.113 0.4435 0.842 0.338 0.4000 

0.464 0.748 0.218 0.2670 
0.490 0.609 0.061 0.0800 

Table 4.2 E-restricted D-and G-optimal designs, t--0(2) 

c d 2 d 1 =d 3 821) 826 e E 

5.83 0.667 0.167 0.794 0.500 0.976 
6.00 0.600 (t, E) 0.200 0.865 0.600 1.000 

6.938 0.4933 (t-,ED '~) 0.2533 0.949 0.760 0.949 
7.50 0.4545 0.2727 0.970 0.818 0.909 
8.095 0.4215 (P_,EG) 0.2892 0.984 0.868 0.868 
9.00 0.381 0.3095 0.995 0.928 0.809 
10.40 0.333 (t_, D) 0.333 1.000 1.000 0.731 
11.00 0.317 0.3415 0.999 0.950 0.701 
20.00 0.183 0.4085 0.938 0.550 0.433 
50.00 0.077 0.4615 0.761 0..231 0.189 

100.00 0.039 0.4805 0.625 0.118 0.097 
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