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1. Introduction

The problem of optimal sample allocation for
multipurpose surveys can be viewed more generally
as a problem in convex programming and, as such,
there are many ways to obtain a numerical solution.
Huddleston, Claypool and Hocking (1970) have applied
a nonlinear programming method devised by Hartley
and Hocking (1963) to this problem, and Kokan (1963)
has discussed some standard nonlinear programming
techniques with respect to optimal allocation. While
these and other, more general methods are available,
most of them are difficult to program and
computationally burdensome, and not all are
guaranteed to converge. In this paper an algorithm is
presented which is relatively simple to program and
which converges quickly, even on small computers.
The proof is beyond the scope of this paper, but it
can be shown that the algorithm is guaranteed to
converge. First, the allocation model and the
algorithm will be described. Then, after a discussion
of various issues related to the implementation of the
algorithm, an example wusing data from an
agricultural survey will be presented.

Consider the case of stratified random sampling
with p variables of interest. Suppose it is required
that the j-th variable, 1 < j < p, satisfy

Let

= otherwise.

Assume the cost function
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The discussion will be limited to this allocation
model, since Kokan (1963) shows how it can be
adapted to cover virtually any sampling situation.

2. The algorithm

Consider this informal argument: For fixed values
of k, the set

Sp= (x1 - W (3)

forms a convex hyperboloid, while the set

4)

forms a convex polygon below Sy. As k increases, Sy
moves downward toward the upper boundary of the
feasible region F and the point where these sets meet
is the optimal solution to (1) and (2).

For any hyperplane
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Kokan and Khan (1967) show that H and Sg are
tangent {for some suitable k) at the point t, where
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Consider the aj = (a_,l, aj2, ..., aj ), as defined by
{2). Let H = {X: a;'x = 1} zmd suppose that = {t; i1s
i‘2 %)' is the point where H; and Sk are tangent
§ t € then, as Kokan and Kf'aan (1967) show, tJ is
the optimal solution to (1). Unfortunately, this is
rarely the case.

Suppose H = {x: a'x = 1} and t = t(H) is the point
where, for some suitable k, H is tangent to Si. The
cost C(t) can be written as a function of the
coefficients a;:
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For convenience, write

G(H) = C(uH)) = C(v). ®)

The algorithm beﬁins by selecting one of the H; as
an initial vatue H(1) = {x: all}'x = 1}. For example,
take

H) - Hy.

Choose H(2) 1o satisfy
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In a sense, H(2) is the convex combination of H{1)
and Hj; which maximizes G. Now find H3) by

refeating this process with Hj, replacing
al ) with a(_z and ap; with a3; in
i i
formula (9).
In general, take H+1) to satisfy
(n+1) () 172
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where j, = n+l (mod p). For the sake of discussion,
one iteration will be considered to consist of
calcutating H(1), H(2), . H(P),

Denote the optimal solutions to (1) and (2) by x*.
At the n-th step, estimate x* with x{) where
x\n is the point of contact between
H® and  Sgum))  Clearly GHO+D) >
G(H®M}), so that SG(u(n)y moves downward towards F
as n increases and, consequently, x\} approaches x*.
While it is true that x( always violates some
constraint, the violations, for large n, will be
negligible.

3. Implementing the Algorithm

The algorithm converges for any starting value
H() but, intuitively, it makes sense to maximize
G(HU)), since the starting value x(1) should be as
close as possible to F. Thus take

H(1) - glio)
where
G b)
G(H 0))2 G(H(b )
for all j.
Since
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is concave in o, a direct search can be carried out for
the maximum on [0,1]. This was accomplished by
using a small positive value 8 and finding

max { g j(0).8 ;(P). 8 j(2P).... & j (kP).....85(1)). (11)
This was done by starting with g j(O) and stopping
when

8 j (k) > g j((k+1)B).

This is not as inefficient as it may appear. Even on
problems with many constraints there are usually
only two or three which determine the solution; that
is, most of the constraints will not be searched since
any value k > O results in lowering the cost. Also,
the value of k which maximizes g; is usually quite
small, almost always less than .5. this searching
method wastes little time searching over constraints
which are unnecessary and usually will not expend too
many steps in finding the optimal k

In order for convergence to occur, g must be
decremented. This was done after each iteration by
replacing g with 18, where 0 < » < 1. If g decreases
too quickly, it will require many steps to obtain (11).
If it decreases too slowly, many iterations will be
necessary to obtain convergence. Initially taking
B = .05 and setting » = .90 seems to work well.

As noted above, x(M always violates some
constraint. The convergence criterion used was to
require that the maximum relative constraint
violation be no larger than ¢. For example, if the
variance requirement is Vi=", then setting a
convergence criterion of ¢ would mean that

var(ij) < v (14¢) must hold for each j.

4, Example

The example is drawn from an agricultural survey
done by the United States Department of Agriculture
(USDA). Population totals and standard deviations
were estimated from previous data and are given in
Table 1. Here the variance constraint is that all
coefficients of variation must be less than or equal to
.08, with a convergence criterion of .01, thus the
effective requirement is that all CVs be no larger
than .0808. The allocations are given in Table 2;
each column corresponds to one iteration, as
described in the previous section. Note that columns
3, 4, and 5 are the same, indicating that § was too
large to refine the allocation. Table 3 gives the
actual coefficients of variation resulting from the
allocations in Table 2. Notice that the final CVs for
all variables except variables 1 and 4 (cattle and
dairy cattle) are smaller than .08. This indicates that
these are the "binding" constraints and that the
optimal solution lies on the intersection of the
constraint hyperplanes associated with these two
variables.

The program to implement this was written in
PASCAL and run on a Zilog System 8000. It took 12
seconds of CPU time. Several problems of this size
(including the one given in Huddleston, Claypool and
Hocking, 1970) have been run with this program, all
have taken less than 30 seconds of CPU time.



TABLE 1: SAMPLING INFORMATION FOR ILLINOIS AGRICULTURAL SURVEY (BY STRATUM).

Stratum Stratum

Size  Cost Sy Si2 Si3 Siq Sis Sie Si7 Sig.  Sig”
58112 6 78 1528 543 4 80 75 27 22 59
239 6 51 369 787 5 111 86 28 22 480
87 6 68 3057 665 23 58 17 12 32 556
2440 6 59 2381 1869 35 95 74 45 38 43
17833 6 73 5433 3462 6 242 195 72 33 88
2813 6 124 8600 1530 3 252 183 73 31 690
693 6 98 4051 2264 41 211 148 65 152 111
9% 6 91 4603 527 28 256 113 78 58 804
29415 140 99 936 529 9 58 56 14 12 188
10031 140 21 789 367 2 46 62 24 13 158
9664 140 13 207 72 5 67 34 23 14 38

TOTAL - (000) 2058 105133 30427 245 11450 9354 1849 1152 6171

*The variables are, respectively, number of cattle, bushels of stored corn, bushels of stored
soybeans, number of dairy cattle; acres of planted corn, soybeans, wheat, and hay; number
of hogs. :

TABLE 2: SAMPLE ALLOCATION.

Interation
Stratum 1 2 3 4 S 6
1 2453 2197 2212 2212 2212 2192
2 66 75 75 75 1 75
3 3 6 6 6 6 6
4 78 253 248 248 248 247
S 704 859 853 853 853 967
6 189 176 176 176 176 177
7 37 87 85 85 85 85
8 S 9 9 9 9 9
9 326 320 320 320 320 316
10 24 26 26 26 26 26
11 14 31 30 30 30 30

TABLE 3: COEFFICIENT OF VARIATION.

Interation
Variable* 1 2 3 4 S 6

0800 .0800 .0800 .0800 .0800 .0802
.0483 .0457 L0458 0458 .0458 0445
.0893 .0818 .0820 0820 .0820 0785
0955 0795 0799 .0799 0799 .0800
0257 .0222 .0223 0223 .0223 0219
.0529 0240 0241 0241 0241 0237
.0545 0471 0473 0473 0473 0467
0548 0471 .0473 0473 .0473 0471
.0818 0796 .0796 0796 0796 L0797

DOV AN

*The variables are, respéctively, number of cattle, bushels of stored
corn, bushels of stored soybeans, number of dairy cattle; acres of
planted corn, soybeans, wheat, and hay; number of hogs.
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