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I. INTRODUCTION 

Survey sample practitioners are often 

required to select probability samples from 

populations in which the variable to be used in 

the construction of the design is some measure 

of unit size and has a right-skewed 

disLribution. For example, in sample surveys 

for electric u t i l i t y  companies, one often uses 

bil led electrical energy use (in kWh) over some 

period of time as a design variable. Exhibits I 

and 2 display the distribution of kWh for two 

u t i l i t y  populations, commercial customers of 

Northeast Ut i l i t ies  in Connecticut and 

Massachusetts in Exhibit l and residential 

customers of Consolidated Edison Company of New 

York in Exhibit 2. Both of these distributions 

are clearly highly skewed. In the Northeast 

Ut i l i t ies  population, the 75th percentile is 

nearly four times as far from the 50th 

percentile as the 25th percentile. 

Distributions of size-related variables 

typical ly are right-skewed. Exhibit 3 displays 

the distribution of total assets reported on 

Federal corporate income tax returns (Forms I120 

and 1120S) for 1980. Total assets is a commonly 

used measure of corporate size, and as Exhibit 3 

shows, its distribution is right-skewed. 
Survey statisticians typical ly take either 

of two approaches when required to sample from a 

population like those of Exhibits I, 2 or 3. 

The f i r s t  approach consists of sampling with 

certainty al l  units above a certain arb i t ra r i l y  

selected cutoff point, and then constructing a 

strat i f ied design on the remaining units. The 

strat i f ied design is typical ly constructed using 

Dalenius-Hodges cutpoints and Neyman allocation. 

(See Cochran (1977) for discussions of these 

techniques.) This technique is employed by the 

Internal Revenue Service in i ts annual Corporate 

StaListics of Income Sample. Currently al l  

corporate returns with total assets above 

$25,000,000 are sampled with certainty. (See, 

e.g., Internal Revenue Service (1983) for the 

details of the Corporate Statistics of Income 

sample design.) This technique amounts to the 

creation of a stratum to be sampled with 

certainty. I t  has the virtue of yielding zero 

sampling error in the stratum with the largest 

unit variance. However, the cutoff between the 

certainty and noncertainty strata is judgemental 

and is not based on any optimality criterion. 

The second approach frequently employed 

consists of applying the Dalenius-Hodges and 

Neyman techniques directly to the complete 

population. This is a technique that is based 

entirely on optimality cr i ter ia and does not 

necessarily result in certainty selection for 

the largest units. I t  is therefore useful to 

develop a technique that selects the largest 

units with certainty and optimally determines 

the cutpoint between the certainty and 

noncerta inty strata. 

2. OPTIMIZED CERTAINTY STRATA 

The proposed procedure for developing 

optimized certainty strata under a fixed sample 

size constraint is i terative. I t  proceeds as 

follows. Let N denote the total population size 

and n denote the fixed total sample size. I f  

the N largest units are selected with 
c 

certainty, then n -N  sample units are 
c c 

"used up" to census the large units. The 

remaining n = n - N sample units are then 
s c 

available to take a probability sample of size 

n from the remaining population units 
s 

N = N - N  . 
s c 

Using th is  notat ion,  the benef i t  of the 

scheme can be examined i n t u i t i v e l y  by 

considering the variance of the estimates from 

the sample. The variance of an estimate from 

any sample depends on the variance of the 

population and the size of the sample taken. 
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For simple random samples from in f i n i t e  

populations, the formula is 

2 
(Ns) / ns (1) 

2 
where (Ns)  is the population unit 

variance among the N smallest units. More 
s 

complex designs have more complex varance 

formulas. However, they typ ica l ly  contain terms 

of the form of expression (1). 

I f  one unit from n is used to take the 

largest unit from N, with certainty, then we 

have n = n - l and N = N - I .  This 
s s 

reduction in sample size w i l l  increase the 

sampling variance. That is, I /n s w i l l  

increase. However, at the same time, the 

, , has population to be sampled now of size N s 

a lower variance than i t  o r ig ina l ly  had, because 

i ts  largest member was removed. Reducing the 

population variance w i l l  reduce sampling 

variance. This variance reduction often exceeds 

the variance increase caused by decreasing the 

sample size, and the net effect is decreased 

sampling variance. 

(See ADM Associates (1984) for further details 

on this test population.) The i terat ive 

procedure described above was applied to the 

test population, start ing with N = l and 
c 

incrementing by l unt i l  N = lO. We computed 
c 

variances for N = 50, 49 . . . . .  40. The 
s 

variances for each successive value of N are 
c 

plotted in Exhibit 5. As noted above, once N 
c 

exceeds 4, the reduction in variance diminishes 

rapidly. Also plotted in Exhibit 5 is I/n . 
s 

The plot shows i ts  increase, at an increasing 

rate. Exhibit 5 shows the inverse relationship 

between the two factors in the sampling variance 

that necessitate the trade-offs discussed above. 

Next we assumed that available resources 

limited the sample size for this group to 

n = lO. Using this resource constraint, we 

evaluated ten possible schemes corresponding to 

N = O, l . . . . .  9. We did not analyze N = lO 
c c 

because that would be a probabi l i ty sample of size 

zero from the N of 40, resulting in a biased 
s 

scheme. Assuming simple random sampling for 

s impl ic i ty,  we computed the relat ive error at 95 

percent confidence 

Thus, i f  N is i te ra t i ve ly  increased, and 
c 

each time N is increased the largest member 
c 

of the remaining N is removed, then each 
s 

subsequent removal w i l l  cause a population 

variance reduction among the remaining N 
s 

units, but this variance reduction w i l l  get 

smaller and smaller. At the same time, each 

i terat ion results in a variance increase 

associated with reducing n . Eventually, the 
s 

variance reduction due to increasing N w i l l  
c 

not exceed the variance increase due to reducing 

n . At this point, i t  no longer pays to 
s 

census additional members. 

These in tu i t i ve  considerations are 

i l lus t rated with a test population consisting of 

monthly consumption (kWh/month) for 50 " u t i l i t y  

accounts". Exhibit 4 is a histogram of the test 

population. Some of the basic s ta t is t ics  are- 

Minimum = 400 kWh/month 

Maximum = 60,000 kWh/month 

Mean = 6,692 kWh/month 

Standard Deviation = 12,199 kWh/month 

Coefficient of Variation = 182.3% 

c = (1.96/6 692) o(N )In 
' s s 

for each value of N . Exhibit 6 is a plot of 
c 

c against N that shows quite clearly the 
c 

value of using a certain amount of the study 

resources to census a number of the largest 

members of the population. For this 

i l l us t ra t i on ,  the lowest relat ive error is 

encountered when the six largest units are 

selected with certainty. The relat ive error is 

reduced by more than half ,  from lOl percent to 

47.l percent, for no additional cost, when a 

portion of the study resources are used to select 

the largest members with certainty. 

Two points are made relat ive to our analysis 

thus far. First ,  while our specific results 

depend on the specific test population we have 

created, the general conclusions and approach 

w i l l  be valid for any population which exhibits 

the extreme skewness we have encountered. This 

point w i l l  be discussed further in Section 4. 

Second, the simple random sampling assumption 
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does not a l ter  or d istor t  the results. More 

complex sampling schemes would produce o's 

lower in absolute terms, but exhibiting the same 

relative relationships with N . 
c 

3. APPLICATIONS 

We discuss here an application of the 

optimized certainty stratum techniques to a real 

population--the Northeast U t i l i t i e s  population 

of Exhibit I .  The application is described in 

detail in McCarthy, et al. (1984). Other 

applications of the technique to u t i l i t y  

customer populations are described in ADM 

Associates (1984). Because of the size of the 

population, the i terat ive procedure was modified 

s l igh t ly  and proceeded as follows. The total 

sample size was fixed at 300 units due to 

resource constraints. The sp l i t  between the 

certainty and probabil i ty groups was 

successively set at 29,000, 25,000 . . . . .  9,000, 

5,000, 4,500 . . . . .  3,000, and 2,500 kWh/day. 

All accounts with average daily kWh above these 

bounds were set aside to be selected with 

certainty. Their number was deducted from the 

300 total sample size. The remainder were 

allocated across 24 strata defined by state, 

industrial c lassi f icat ion, and average daily 

kWh, using Neyman allocation and Dalenius-Hodges 

stratum boundaries. 

This procedure was repeated for each of the 

bounds given above. Exhibits 7 and 8 summarize 

the results in tabular and graphic form, 

respectively. From Exhibits 7 and 8, i t  can be 

seen that the minimum relative error occurred 

when 157 of the 300 sampled accounts are 

selected with certainty. Further, the minimum 

relative error, 9.32 percent, is less than half 

the error of selecting no accounts with 

certainty. As can be seen in Exhibits 7 and 8, 

the optimum is f l a t  with a range of less than 

0.2 percent as the number of certainty accounts 

range from 133 to 188. For reasons detailed in 

McCarthy, et al. (1984), the lower end of the 

range, corresponding to 4,500 kWh/day was 

selected as the certainty/non-certainty 

cutpoint. Thus, the 133 largest accounts were 

selected with certainty. 

4. THEORETICAL PROPERTIES 

Thus far, the optimality claims for the 

i terat ive certainty/noncertainty cutpoint 

determination procedure have been based upon 

in tu i t ive  arguments and empirical evidence. 

This section presents a theoretical basis for 

the procedure. To develop the theory, we need 

some notation. Let X 1 < X 2 . . .  <_ X N be 

the ordered values for a f i n i t e  population of 

size N. The objective is to estimate the 

population total T - X I + . . .  + X N with the 

data from a probabil i ty sample of size n. 

Denote the ordered sample values by x I < 

x 2 < . . .  < x . Assuming a simple random 
m n 

sample, the mean per unit 

estimator of T is" 

T' = (N /n )  (x I + . . . .  + x n) 

which is unbiased and has variance 

V o = N o 2 (N-n)In, 

° 

where ~ is the population unit variance. 

I f  the largest member of the population is 

selected '~;ith certainty then the estimator of T 

is 

T' I = X n + [ ( N - l ) l ( n - l ) ]  (x I + . . .  + Xn_1) 

which has variance 

V1= (N-I) ~ (N-n)l(n-1) 

where ~ is the population unit variance 

computed without X N. 

Selection of X N with certainty decreases 

variance i f  and only i f  V - V > 0 This 
o 1 " 

is equivalent to 

I12 
X n - (T/N) > ~ [(N(N-2) + n)/nN] (2) 

By redefining N to be N - k + I ,  n to be 

n - k + I ,  T and ~ to be computed without 

XN_k+ 2 . . . . .  X N, we can apply (2) to the 
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k-th i terat ion for k = I,  2 . . . . .  n - I .  At the 

k-th i teration the decision is made to add or 

not add the k-th largest unit XN_k+ 1 to the 

certainty group. 

In order to establish conditions under which 

(2) holds or doesn't hold we wi l l  postulate a 

superpopulation model. That is, we assume the 

f i n i te  population of interest is a random sample 

from a continuous distr ibut ion with density 

f (x) .  The ordered f i n i te  population values 

X l . . . . . .  X N then become the ordered 

stat is t ics for a simple random sample from 

f(x) .  This assumption permits the application 

of the theory of order s tat is t ics.  (See David 

(1970) for an exposition of the theory of order 

s ta t is t ics . )  We further assume that the f i n i te  

population X l . . . . .  X N represents a 

"typical" sample from the superpopulation, so 

that each X. is the expected value of the i - th  
I 

order s ta t is t ic  for a sample of size N from 

f(x) .  For most right-skewed distr ibutions such 

as the exponential, Pareto, or lognormal, the 

left-hand side of (1) w i l l  considerably exceed 

the right hand side at the i n i t i a l  i terat ion. 

Then as k increases, the LHS decreases and the 

RHS increases. For typical values of N and n, 

equality w i l l  be achieved before 

k = n - l and a unique optimal breakpoint 

obtained. For example, for the exponential 

d istr ibut ion, the LHS is i n i t i a l l y :  

a(l12 + I13 + . . .  + IIN) = o V (say) 

which exceeds the RHS unless n is too small. 

Thus, provided n is large enough, a f i n i te  

population from an exponential superpopulation 

wi l l  always have an optimal cutpoint between the 

certainty and noncertainty strata. 
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EXHIBI T I : DISTRIBUTION OF CONSUMPTION FOR 
NORTHEAST UTILITIES COMMERCIAL 
SECTOR (1983) 

EXHIBIT 3: DISTRIBUTION OF TOTAL ASSETS REPORTED ON 
FEDERAL CORPORATE INCOME TAX RETURNS 
FOR 1980 

Percentile Average Daily kWh 

Minimum .003 

5% 1.17 

25% 5 .83  

50% 20 .3  

75% 70.9  

95% 500.2  

Maximum 32 ,846  

Popu la r . i on  S i ze  21 ,014  

Asset Range Number of Returns Percent of 
(000) (000) Total 

$0 under $100 1,504 55.9 

$100 under $250 495 18.4 

$250 under $500 285 10.6 

$500 under $1,000 184 6.8 

$1,000 under $5,000 167 6.2 

$5,000 under $10,000 22 0.8 

$10,000 under $25,000 16 0.6 

$25,000 under $100,000 12 0.4 

$100,000 or more 6 0.2 

Total 2,689 100.0 

EXHIBIT 2: DISTRIBUTION OF CONSUMPTION FOR CON EDISON 
RESIDENTIAL SECTOR (1984), TRUNCATED AT 
10,000 kWh 

97.8% of Distribution is Shown, 
Continues to 429,120 kWh 

Total Annual kWh (x100) 

Population Size = 2,460,901 Customers 

EXHIBIT 4: HISTOGRAM OF TEST POPULATION 

Number 
of 

Accounts 

0 

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 100 200 300 400 500 600 

AVG. kWh/Mo. (x100) 

Note: Change in Scale at 9,000 kWh 
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EXHIBIT 5: 

0 .8  

VARIANCE o-2(Ns) OF kWh/MONTH IN NONCERTAINTY 

PORTION OF TEST POPULATION AND 1/n s VERSUS 

NUMBER OF UNITS SELECTED WITH CERTAINTY (Nc) 
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10^8 1In s / 
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/ 
.] 
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/ 

. . .  

.. 

2 3 4 5 6 7 8 q 10 

EXHIBIT 7: RELATIVE ERROR ¢ AS A FUNCTION OF N c (TOTAL 

SAMPLE SIZE = 300), NORTHEAST UTILITIES 
POPULATION 

N c Certainty/ ~ At 95 Percent 

Probability Confidence 
Breakpoint 

1 27 ,11  3 20 .0% 
6 2 4 , 4 2 5  18 .3  

13 1 9 , 9 0 2  16 .3  
20 1 6 , 8 8 1  14 .8  
29 1 2 , 8 6 4  1 3 . 4  
52 8 , 8 6 4  11 .6  

118  4 , 9 4 1  9.56 
133  4 , 4 6 8  9.40 
157  3 , 9 9 5  9 .32 
188  3 , 4 9 3  9.45 
2 2 9  2 , 9 8 0  1 0 . 3 6  
272  2 , 4 9 9  14.5  

N c 

EXHIBIT 6" PLOT OF RELATIVE ERROR IN PERCENT AGAINST 
N c FOR TEST POPULATION 

EXHIBIT 8: RELATIVE ERROR IN THE ESTIMATOR OF MEAN 
AVERAGE DAILY kWh VERSUS NUMBER OF ACCOUNTS 
SAMPLED WITH CERTAINTY, NORTHEAST UTILITIES 
POPULATION 

Relative 
Error of 

Estimate 

100 

90 

80 

70 

60 

50, 

18 

16 

14 

_ 

12 

Error in 
Percent 

I I I I I I I 1 
2 3 4 5 6 7 8 9 

N 
c 

8 

6 

4 

2 

0 

0 10 30 50 70 90 110 130 150 170 190 210 230 250 270 

Number in Certainty Group 
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