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i. INTRODUCTION 
Sample surveys are frequently designed on 

large domains of study. But administrative deci- 
sions are being increasingly based on data on sub 
divisions of the original domains of study. These 
subdivisions are called small domains or subdo- 
mains. It has been found convenient to combine 
several sources of information in an effort to ob 
tain efficient small domain estimates. The com- 
monly available sources of data are the adminis- 
trative registers or population census and the 
survey which is planned on the large domain. The 
most popular and simplest approach for obtaining 
small domain estimators of proportions is the so 
called method of synthetic estimation which is 
described next. The available data from census 
records are the proportions of individuals belong 
ing to subgroup j within small domain i. Where 
the subgroups j=l,...J are formed according to 
one or more symptomatic categorical variables 
(e.g. sex, race). Then it can be assumed that the 
units from the population are grouped according 
to three classifications. The first classifica- 
tion is that corresponding to the small domains, 
the second one to the subgroups and the third one 
to the variable of interest. Let the classifica- 
tions be, respectively, A with I categories, AI, 
A2...AI; B with J categories: BI,B2,...B J and C 

with K categories CI,C2,...C K. We may also think 

of A, B and C as categorical random variables, 
and write, say, A. to denote the event {A = A.}. 
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The standard assumption of synthetic estimation 

is that P(CklA i N B~)O = P(CklBj) , (independent of 

i). Let ~°'lj = P(Bj|Ai) for i=l, .... I, j=l .... ,J 

which are known from census records and ~jk = 

P(Ck]B j) for j=l ..... J and k=l ..... K which can be 

estimated from survey data. The parameter to be 
estimated is: P(CklA i) = Probability that a unit 

belongs to the category k of the variable of in- 
terest, given that it comes from domain i; which 
will be denoted by Ck,i" This can be expressed in 

! 
terms of the ajk'S and the ~ij s and under the 

standard assumption in the following form 

J 
P(CkIA i) = Z ~jk ~'' (i.i) 

j=l 1 j  

The synthetic estimator of P(CklA i) is: 
J ^ 

^ ~(Ck Ck,i : IAi) = l ~ 7.. (1.2) 
^ j=l jk 13 

where ~jk are estimates of ~jk" 

2. PARTIALSYMPTOMATICINFORMATION 

It commonly happens that census data are not 
available for all combinations of the symptomatic 
variables for each small domain. When this occurs 
the standard formula (1.2) can not be applied. 
However, certain linear combinations of the pro- 

portions ~.. are known (_for each small domain i). 
mj 

Thus the following restrictions are imposed on 
the parameters. Let A be a known matrix (L x J) 
of full row rank and b. be a known vector (L x i), 

--1 

i=l,...,I, then the parameters must satisfy 

A 7. = b. for i=l ..... I (2.1) 
--i --i 

where 7' = (z ... z ij , --i if' ' ) the first row of A con- 

sists of units, and the first element of b. is --l 

unity. The purpose of this work is to estimate 
(i.i) subject to (2.1), the restriction that 

kZ ~jk = 1 and the restrictions that 0 < ~jk < 1 

and 0 < 7.. < i. Two methods of estimation are de 
13 

veloped. The first one is the maximum likelihood 
! 

procedure which estimates jointly the ~jk s and 

the 7..'s. The second one consists of estimating 
13 

the z..'s subject to some linear constraints by 
13 

the iterative Proportional Fitting (IPF) proce- 
dure developed by Deming and Stephan (1940), and 

! 
estimate the ~jk s by the IlL method. Both estima- 

tors are obtained in the case that a stratified 
random sampling on the large domain is assumed, 
where the strata are the small domains. Let nij k 

be the number of units falling into the (i,j,k) 

cell and denote --in' = (nill ..... nij k) for 

i=l,...,l, n.++1 = Z Z nij k and n = n+++ Z ni+ +. 
j k i 

The ni+ + is fixed for i = l,...,I and ni+ + is con_ 

= .n where ~. are con- sidered of the form ni+ + ~I 1 

stants such that l~. = 1 and ~. > 0. Under the 
1 1 

standard assumption for each i, n' has a multi- 
--1 

nomial distribution with parameter P' = (~i --i 1 II ' 

~jK ) and the multinomial distributions 
"'~iJ 

are independent. 

3. MAXIMUM LIKELIHOOD ESTI~TOR OF Ck,i 

v ~V V 1.i.v Let 8__' = (~, ~-2 ..... ~-k' ~I ...... i ) where 

--K~I' = (~ik' ~2k ..... ~jk ) k = I ..... K and 

! 

--~i = (~il ..... ~iJ ) i = i ..... I. 

The likelihood function of @ is 

J K n+j k I J 
L(8) = Constant ~ ~ ~jk x ~ ~ 7.. 

-- j=l k=l i=l j=l 13 

nij+ 

(3.1) 
Then, the following result holds true. 
Proposition 3.1 Let nij + and n+j k be positive 

for every i,j and k. The maximum of the logarithm 
of the likelihood function (3.1) subject to A 7. = 

b. for i=l ..... I, Z ~jk = 1 for j-l,...,J and the 
--i k 

restriction that all the e's and ~'s are strictly 
between 0 and i, exists and it is unique. 
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Proof: See Lopez Alvarez (1982). 
^ J ^ 

The estimator of Ck i is Ck, = T. ~ ~... 
, ^ i j=l jk 13 

Asymptotic properties of ~k,i will be given next. 

Notation 3.1 
. a' (2)' ~2)' 

£R : (~{,''~ ,.j, Z . . . .  ,! ) 

a' = (aj aj , .... aj 
.j I' 2 K-I ) 

(2)' : (~(2) ...,~(2) ) 
--i " il ' iJ-L 

~" = ' " " " '~iL --i 

Dli - diag --i ~(£) for ~.=1,2 and i=l,...,l 

D i - diag [_~i ] 

Ti = Ui [U' D-Ill U + D~ li ] 

V. = D. - D. A' (A D i A') -I A D. 
1 1 1 1 

S_ I _ I [- aj ~[ + diag{aj i=i ,K-I}] 
J y . . j  I '  ' " "" 

.J 
I 

. = Z ~.. ~_ 
• 3 i=l z3 I 

o ' : (  . . . . .  ^ '  --I -- --I' .... _~j) the M.L.E. of 0_ 

O ~  : (~' • (~ ,  2)' ^(2) ! 
~I''" '-J' ~- '''''~I ) the ML.E. of 

!R 
Lemma 3 . 2  
U s i n g  n o t a t i o n  3 . 1  t h e n  la. R T -1 R' = V. 

1 1 1 

P r o o f .  See  L o p e z  A l v a r e z  ( 1 9 8 2 ) .  
, P r o p o s i t i o n  3 . 3  

i )  ~ p - - +  O and 
x" --  1 

ii) 8_ is AN(_8, n Z(_8)) where 

l -ST~ 1 I 0 , 
I- I I 

I I ]. 'ST I 1] , 
! L l 
r--~ ! 0 ------I' ! ] 

Z(O)=J ,I S: 13 - S_ 13 ii, 0 . 4 )  
0 ! ! 

! 1 
! l'S- ii 

3 l 
Ii I~- .v~ 0 

I ".i V l[ I0 
! ~I 

i 0 

Proof. See Lopez Alvarez (1982). 
Proposition 3.4 

^ ^ ^ I 2) 
¢ = ~ (G)_ = r ~ ~ is AN(¢ (0)_ n ~ 

k,i k,i j jk ij k,i ' k,i 
where 

j ~2 (l_~3k) , 
(y2 : (~2 (0)  = 7. lj ~jk + ~k _i vi a--k 

k,i k,i -- j : 1  ~. ~i 
J (3.5) 

for k=l,...,K, i=l,...,I. 
Proof. See Lopez Alvarez (1982). 
Considering the asymptotic distribution of (~iI, 
...,¢K_I,j) the following asymptotic covariances 

can he obtained. 
i) k=k' and i#i' (.same category, different do- 

main) 

^ J ~j (l-~jk) 
CoV(¢k i,~k i,) - I 7.. ~i k 

' ' j=l z3 'j 7 . 

.J 
ii) k#k' and i=i' (different category, same do- 

main) 
^ J ( - a j  

C°V(¢k,i ~k' i ) = y ~2 k~J k') , . .  + 
' j=l z3 -- . 

.J 
iii)k#k' and i#i' (different category, different 

domain) 

C o v ( i , )  = Z ~ • 
' j=l i'j y . 

..I 
Computational aspects of the estimator are discus- 
sed next• The maximum likelihood estimator of ~. 

--i 
' s and n ' can Be obtained, when all nij + +jk s are 

positive, solving the likelihood equations develop 
ed from (3•2). This system of equations doesn't 
have a solution in closed form, so it is necessary 
to use an iterative method. The Newton-Rhapson me- 
thod can be used to compute ~.. In the case when 

--i 
' 's are zero• finding the maxi- s.me nij + s or n+j k 

mum likelihood estimator turns out to be a problem 
of nonlinear programming, since it is necessary to 
maximize the nonlinear function (3•2) subject to 
the linear constraints (3.3)• To solve this pro- 
blem the gradient projection given in Bazaraa and 
Shetty (1979) was used. This method projects the 
gradient, which is the direction of steepest as- 
cent, in such a way that the objective function is 
improved and at the same time feasibility is main- 
taned. Both algorithms were programmed in Fortran 
IV, and both require a preliminary estimate of ~. 

4. IPF ESTIMATOR ^ n+j k 
The ~jk s are estimated by ajk n+j+ 

To estimate 7.. for j=l,...,J, i fixed, subject to 
z3 

A!i=h__i, one of the major algorithms for the analy- 

sis of cross classified frequency counts is used, 
which is known as iterative proportional fitting 
(IPF). Denote the estimator by ~o.. Freeman and 

~ 13 
Kock (1976) mention ~.. satisfies (or can be ob- zj 
tained by solving) the following equations 

A~. = b. 

z - z  (4. i) 
i n  { 7 . }  : A i n  r 

--z i 
where A is an orthocomplement of Ar (A A'=0), and 

n 
r' = il+ nij+ 

• ~ - - • ,  
--z ni+ + ni+ + 

The estimator of Ck,i, which will be called IPF 
estimator and denoted by Ck,i is: 

J ^ ~ ~ 

¢ = Z ajk ~ ' "  k,i j=l z3 

Notation 4.1 

e' (~ '  ^ '  ^ '  ~' ~ ' ,  ' '  where 
= , a , .... _aj, !j,-l .... if)' ? ?I 72 ^ 
-(~j . ajK) for j i J a__j I,~j2, •., ..... 

: (~ii '~i2'" 
) •., ~:~_ .hO 
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• elementary vector of dimension K 

e' elementary vector of dimension J 
---I 

D-I = diag [~.] 
i --I 

D = diag [PI ] ; PI = (PIII'''''PIJK)" el 
The asymptotic distribution of e' is obtained 
next, and from this the asymptotic distribution 
of ~k,i can be easily obtained. 

Proposition 4. i 
..... I'' 

is AN(e, ~ E(e)), where Y(O) is given by (3.4). 

Proof. See Lopez Alvarez (1982). 
It has been shown that ~ and e have the same asym 
ptotic distribution, the--refor~ Sk,i = ~k,i (~)- hasA 

the same asymptotic distribution of ~k,i = ~k,i (~)- 

given in proposition 3.4. A consistent estimator 
of the asymptotic variance of Sk,i is o 2 (e) 

k,j -- " 
where o2,i(e _)~ is given by (3.5). Notice that +k,i ^ 

is a BAN estimator,~ since #k,i is BAN. Computa- 

tional aspects~ of ~k,i are discussed next 

The vector ~. may be computed using the subroutine 
CTLLF of theIInternational Mathematical and Sta- 
tistical Libraries, Inc. (1981). This subroutine 
adjusts frequency tables to some given set of mar- 
ginal constraints using the IPF method. The IPF 
method doesn't provide a means of computing an es- 
timate for a cell that is empty in the original 
table, that is if nij + = 0 then the estimate of 

~.. is zero. This leads to the fact that if cer- ij 

tain relative frequencies are zero, the IPF method 
might not converge to ~. which satisfies the equa- 

--I 
tions (4.1). In this case there is no estimate of 
~_ . by the IPF method Another problem with 
K I " - 

ha~ing null cells is that the matrix AD.A' is sin- 
l. 

gular. To compute an estimate of the varlance of 
the estimator the Moore Penrose inverse (AD.A') + 

~I 

was substituted in the expression of 02 
i(O_) • 

5. MONTE CARLO STUDY 
In order to compare the small sample properties of 
the estimates, evaluate the usefulness in small 
samples of the asymptotic variance formulas of the 
estimates and explore the effects of departure 
from the basic assumption of synthetic estimation, 
a Monte Carlo study was performed. Data which sim- 
ulated 1,000 replications of an experiment were 
constructed using known values of ~'s and ~'s, and 
hence of ~k,i" Estimates of ~k,i were calculated 

by both methods in each experiment. In this Monte 
Carlo study it is considered that the population 
is divided according to two domains, with the do- 
main of interest being number i, that is i=1,2. 
Also the population is divided in eight subgroups 
j=l .... ,8. The categorical variable of interest 
has two categories; k=l,2. The simulation sample 
size is 3,000. Two multinomial distributions were 
generated for each replication, one with parame- 
ters p~ and nl++, and the other with parameters 
' and 3000 - nl+ +. The vectors Pi are of the form -P2 

P--i- (~il ~I 1 '~i2~21 ' " " " '~i8~81 '~il~i 2'~i2~22' " • " ' 
)for i = 1,2. 

~i8~82 
The multinomial distributions were generated using 
the subroutine GGMTN of the IMSL (1981) package. 

Three different sample sizes were considered, 
which represent 1%, 4% and 10% of the simulation 
sample size, so according to Purcell and Kish 
(1979), domain 1 can be considered a small domain 
for these cases. Other simulation parameters are: 
the number of restrictions of 7.; the size of 
P(CIIAI) and the departure fromZthe basic assump- 
tion of synthetic estimation. The departure from 
the standard assumption is obtained by consider- 

ing: K 

= ~jk+6ik where 0<l~ikl<l and k=iE ~ik = 0. aijk 

Some results of the Monte Carlo study are shown 
in tables 5.1, 5.2 and 5.3. On the basis of the 
results given in table 5.1 we conclude that, the 
IPF estimator is unbiased when there is no depar- 
ture from the basic assumption of synthetic esti- 
mation and when the sample size of the small do- 
main represents 1%, 4% or 10%. The ML estimator 
sometimes shows bias, even when there is no de- 
parture from the basic assumption. When there is 
moderate departure the ML estimator is biased. 
For large departure both estimators are biased, 
notice that the bias is greater in the cases that 

is small. Also it can be seen that the ML es- 
timator is more efficient than the IPF estimator, 
especially when the sample size of the small do- 
main represents i% of the simulation sample size. 
A close look at tables 5.2 and 5.3 shows that the 
average estimated asymptotic standard deviation 
(a.s.d.) usually overestimates the standard devia- 
tion,:regardless of the method of estimation. As 
it is expected the asymptotic standard deviation 
always underestimates the standard deviation of 
the estimators. Finally, notice that the s.d of 
the ML estimator is always smaller than the s.d 
of the IPF estimator. 

6. CONCLUSIONS 
The estimator which is obtained using the IPF me- 
thod is easier to compute than the ML estimator 
due to the simplicity of the IPF algorithm. It 
was found that the asymptotic distributions of 
the ML estimator and the IPF estimator are the 
same, that is, both are best asymptotically nor- 
mal estimators. The results of the Monte Carlo 
study indicate that both estimators are biased 
when there is a large departure from the basic 
assumption of synthetic estimation. The ML esti- 
mator is sometimes biased even when there is no 
departure from the assumption and the sample size 
of the small domain represents 4% of the simula- 
tion sample size. A possible reason why the ML 
estimator is biased is that the algorithm used to 
solve the nonlinear programming problem may not 
perform well in certain cases when some cells 
have null counts. The Monte Carlo study also 
showed that the ML estimator is more efficient 
than the IPF estimator. 
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TABLE 5. i 

P(CIIAI) Number of Sample size of Percent of bias eff(IPF,ML) 
Restrictions small domain ML IPF 

NqDeparture 

.i0 3 I% i o* .71 

.I0 3 4% 0 0 .93 

.i0 4 i% 2 0 .81 

.I0 4 4% i 0 .98 

.I0 3 10% 0 0 .99 

.47 3 1% 0 0 .80 

.47 3 4% 0 0 .99 

.47 3 10% 0 0 1.00 

Moderate Departure 

.47 3 1% I 0 .87 

.47 3 4% i 0 .94 

Large Departure 

.12 3 1% 8 i0 .71 

.12 3 4% 8 9 .89 

.12 4 4% 8 9 .83 

.46 3 I% 2 i .95 

.46 3 4% 2 i .90 

*0 bias indicates a non significant t-test. 

TABLE 5.2 

Estimated asymptotic s.d, asymptotic s.d and empirical s.d of ML 
and IPF estimators when there is no departure from the assumption 
of synthetic estimation. 

P(CI IAI) Number of Estimator 
restrictions 

ML .I0 3 
IPF .i0 3 

ML .i0 3 
IPF . i0 3 

ML .I0 4 
IPF .i0 4 

ML .I0 4 
IPF .i0 4 

ML .47 3 
IPF .47 3 

ML .47 3 
IPF .47 3 

Sample size of s.d. Average a.s.d. 
small domain xl03 estimated xl03 

a.s.dxl03 

1% 7.185 8.550 6.387 
i% 8.718 8.706 6.387 

4% 6.710 6.890 6.327 
4% 6.952 6.970 6.327 

1% 7.115 8.446 6.387 
i% 8.614 8.495 6.387 

4% 6.849 6.884 6.327 
4% 6.819 6.919 6.327 

i% 12.524 14.748 11.42 
i% 14.674 14.939 11.421 

4% 12.452 12.458 11.240 
4% 12.476 12.413 11.240 
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TABLE 5.3 

Estimated asymptotic s.d and s.d of the ML and IPF estimators 
when there is departure from the assumption of synthetic esti- 
mation. 

Estimator P(CIIAI) Number of Sample size of s.d. Average esti- 
restrictions small domain xl03 mated a.s.d. 

x 10 3 

Modera te Departure 

ML .47 3 i% 13.042 14.789 
IPF .47 3 i% 15.023 14.989 

ML .47 3 4% 12.125 12.166 
IPF .47 3 4% 12.269 12.214 

Laq~eDepartu re 

ML .12 3 I% 7.497 8.468 
IPF .12 3 1% 9.141 8.630 

ML .12 3 4% 6.682 6.913 
IPF .12 3 4% 6.846 6.990 

ML .12 4 4% 6.848 6.899 
IPF .12 4 4% 7.047 6.938 

ML .46 3 i% 12.625 14.738 
IPF .46 3 i% 14.982 14.931 

ML .46 3 4% 12.293 12.154 
IPF .46 3 4% 12.383 12.198 
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