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1. INTRODUCTION 

The Randomized Response (RR) technique was 
introduced in Warner (1965) as a means of dealing 

with the bias and non-response associated with 
surveys of stigmatizing traits. The development 

of the RR technique since then has been quite 
extensive and recent reviews are provided in 
Deffaa (1982), Boruch and Cecil (1979) or Horvitz, 
Greenberg and Abernathy (1976). Many of the 
estimators for proportions presented in the early 
RR literature were claimed to be Maximum Likeli- 
hood (ML), although they were capable of producing 
estimates outside the range (0,i), as pointed out 
in Singh (1976). For the early RR designs, 

concerned primarily with the estimation of simple 
proportions, a minor adjustment was all that was 
required to the original estimators to make them 

ML, but for many subsequent RR designs, derivation 
of ML estimators and associated standard errors 

has been difficult, as is evident from Horvitz, 
Shah and Simmons (1967), Gould, Shah and Abernathy 

(1969) , Greenberg et al. (1971) , and Liu and Chow 

(1976). 
In this paper it is shown that by viewing the 

observations from RR procedures as incomplete 
data, one can apply the EM algorithm described in 
Dempster, Laird and Rubin (1977) to find ML 

estimators. The standard error of these 

estimators can moreover be easily obtained using 
the results of Louis (1982). The estimation of a 

multinomial distribution for categorical-type data 
is considered in Section 2, and a general form- 
ulation, similar to that of Warner (1971), is 
presented for both related question designs and 

unrelated question designs. Expressions for ML 

estimators are developed which are very appealing 
in form due to their similarity to the case of 
direct questioning. These expressions are such 

that the natural restrictions on estimated 
proportions are automatically satisfied. In 
Section 3 a number of numerical examples based on 

well-established RR designs for estimating 
proportions are used to illustrate the procedure. 

These include the initial Warner design and the 

Simmons unrelated question design, as well as a 
design without explicit expressions for its ML 

estimators discussed originally by Horvitz, Shah 

and Simmons (1967) . 
In Section 4, the case of quantitative data 

arising from RR procedures, as discussed in 
Greenberg et al (1971) is considered. If one is 
willing to assume a parametric form for the 
distribution of the sensitive variate, then it is 
a straightforward matter to compute ML estimates 

of the parameters. On the other hand without the 
assumption of a parametric form, it is shown that 
one can use the EM procedure to estimate the 
distribution function of the sensitive variate 
(and indeed of the unrelated variate). 

2. ESTIMATION OF MULTINOMIALS 

Consider a multinomial variate with c 
categories, the probability of the k th category 

being Hk where Z Hk = i. Let ~i , l~i~n, represent 

the true response of the ith individual in the 

sample where ~i is a cxl vector with all elements 
but one equal to zero, such that the k th element 

being unity identifies the respondent as belong- 
ing to the k th category. 

A RR design is one which employs a randomizing 

device to produce a coded response ~i rather than 
the true response x i, where ~i is a (dxl) vector(d>,c) 

of similar structure to x i. The true response x i 
may be determined from t~e coded (i.e. observed~ 
response ~i by means of the transformation 

~i - T j Zi 

where T_., l.<j,<t is one of a set of cxd trans- 
formation matrices, the actual transformation used 

being Chosen according to the probability distrib- 
ution {p-- Z p-=l}. The set of transformation j' j 
matrices and their associated probabilities 
essentially define the particular RR design. Note 
that we are considering only RR designs where the 

response ~i and the particular transformation used 

will uniquely determine the true category of the 

respondent. Such designs may be termed one-to-one. 
In the case of unrelated question designs, 

(Greenberg et al. (1969)) some of the questions 
do not deal with the sensitive attribute and this 

is taken up in Section 2.3. 
To begin with we consider RR designs in which 

all questions relate to the sensitive attribute. 
Such designs may be termed "related question" 

designs. 

2.1 Related Question Designs 

If z. is a txl vector, of similar structure to 

x i and~ki above indicatin~ which transformation 
matrix was used by the i t*L individual then the log 

likelihood for the observation (zi,~i), say, may 
be written as 

log L = log f(zi) + log f(~ilzi) (2.1) 

where f(z i) and f(v. Iz ) denote the marginal 
~l ~i . 

density of z i and the conditional denslty of ~i 

given z i respectively. 

This in turn may be expressed as 

t c 
log L = Z zi~ J log p~ J + Z Xik log N k 

j=l k=l (2.2) 

where 

t 

j=l ij 

and {zij , 3=1,2 .... t}, {Xik, k=l,2,..,c} denote 
the elements of vectors z i and ~i respectively. 

The ML estimator of [T is simply 
N 

A C 

- x  i , 

C 

since ~ = 1 because of the structure of T. 
k=l xik ' N3 

and ~.. 

Wi~h observations {(hi, ~i ), i=l,2...n} on a 
sample of n individuals, the ML estimator of ~ is 
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A 1 n 
=- ? x. (2.3) 

The E step of the EM algorithm in this context 
consists of replacing the unobserved values z.- lj 
by their expectations conditional on the observed 
values ~i' assuming the values of the parameters 
N are known. 

As each zij is a binary variate, the required 
expectation is simply a conditional probability 
and 

E(zijl~i,[T)=P[~i~ IE'zij=l]pj/li=zij* (say) (2.4) 

where I. is the probability of response ~i as 
follows I 

t 
1 = Z P •19, z = l]pj (2.5) 
i j=l [.-~ ~ ij 

The M step of the algorithm then gives 

A 1 n , 
H = -- Z x. (2.6) 

n i=l ~I 

. t . 
= ( zij ~) ~ is the expected true where ~ j{1 

response given the observed response ~. 
For the d distinct response-types, we form the 

d-element vector I of distinct elements li, and 
using (2.5) it is~possible to write ~ = ~ ~. For 
identifiability, we require that the rank of R 
should be >,(c-l), which imposes restrictions on 
the choice of values for the p_ 's. 

Equations (2.4) and (2.6) p~ovide the basis of 
an iterative a~gorithm which will produce from an 
initial value [~, , a sequence of estimates 

~o; 
converging to the ML estimate of ~ glven observ- 

ations on the {~i } alone. 
It may be noted that the resulting estimator 

automatically satisfies the natural restrictions 

on the Nk, viz. [~k >- O, Vk, and ~ [~k = 1 . 
k=l 

2.2 Standard Errors of the Estimates 

A The asymptotic variance-covariance matrix of 
IT is readily estimated using the results of Louis 
~1982). The derivative or efficient score for [~ 
is a (c-l) xl vector with elements 

n = Xik _ x. 
$lo_qL = Z S with ic l~k,<(c-1) 
~[~k i=1 ik ' Sik Nk ~---c 

Since each x~ is an indicator for a multinomial 
distribution the observed information matrix is 

simply n 
* *t 

I = I s s 
i=l 

where . is the vector of elements 

\[~k Uc 

2.3 Unrelated Question Designs for 
Estimating Proportions 

In an unrelated question P/~ design the vector 
may be replaced by two subvectors H(1) and [~(2) 

~f lengths c and f corresponding to tNhe catego~ries 
of the sensitive and unrelated question respect- 
ivel~ where Z [~(i) = ~ [~k(2) = i. The elements 
of ~=) will be assumed known (see Section 3.3 
for~an example with unknown ~(2)). The vector 

x. representing the true response of the i th 
individua ay be " ilarly replaced by two sub- 
vectors x. and x: each with structure similar 
to x. in Section 2. 

N1 
Corresponding to (2.2) the log-likelihood is 

again 
t c+f 

log L = j=IZ zij Pj + k~l xik log ~k , (2.7) 

while (2.3) is replaced by 

n 
z ~I) 

^(i) i=l 
H = (2.8) 

n c 

Z Z Xik 
i=l k=l 

n c 
where Z Z Xik , the number of respondents to 

i=l k=l 
whom a sensitive question is posed, is assumed 
non-zero The expressions for z._. and x- and the 

" l~ Hi 

rest of the algorithm proceed as in Section 2. i. 

3. EXAMPLES 

3.1 The Initial Warner Design 

Assume that it is desired to estimate the 
proportion of people who submitted an incorrect 
tax return last year. The questionnaire used has 

two questions 

(i) Did you submit an incorrect tax return 
last year? 

(2) Did you submit a correct tax return 
last year? 

each of which has a yes or no answer. Each 
individual agrees to answer question 1 or 2 
depending on the outcome of a randomizing device 
with probabilities 0.75 and 0.25 respectively for 
the two questions. The sample size is iOOO and 
306 individuals answer yes. In this example we 
have (see Section 2.1) c = 2, d = 2, t = 2. The 
transformations in use are : 

, with probabilities p =0.75 
P2=O. 25 respectively I 

The vector Yi can onl[ assume two distinct values 
viz. (I,O) t and (O,i) L denoting yes and no 
respectively. Corresponding to (2.4) we have 

E(Zillyes) = Pl [~I/(Pl [~i + P2 H2 ) = Zl 

E(Zilln° ) = Pl [~2/(Pl 92 + P2 [~i ) = z2 
A 

Starting with [~i = O.15, the first iterations 
proceed as follows 

I te ration 1 z i z2 

1 
2 
3 
4 

12 
co 

O. 15OO - - 
O.1445 0.3462 0.9444 
O. 1399 O. 3363 0.9467 
O. 1360 O. 3279 0.9486 

o.i  o o.gs+  
o.2  s o.gs   
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The estimated variance of ~lis 0.000849. Both 
the estimate of [~land its estimated variance are 
in agreement with the values obtained by applying 
the appropriate expressions given in Warner (1965). 

3.2 The Simmons Unrelated Question Design 

In this design, the second question of the 
Warner design is replaced by an unrelated 
question, so that the two questions on the 
questionnaire might read : 

(I) Have you ever been convicted of 
drunken driving? 

(2) Were you born in the first six 
months of the calendar year? 

A randomizing device directs the respondent to 
answer either question 1 (with probability 0.5 
say) or question 2. Suppose the sample size was 
250 and iO1 respondents answered yes, and let us 
assume that the proportion of the population born 
in the first six months of the calendar year is 

0.5• 

<;2>= (o:> 
The observed response vector y~ takes only two 
distinct values (i,O)t and (O',i)t, denoting yes 
and no respectively while the true resPonse 
vector x. takes four values (i,0,O,O) t, 
(O,i,0,O~ t, etc. There are only two possible 
transformations, viz. 

iO OO 

Ol O i %1 = %2 = 
O0 1 

O0 0 

with selection probabilities Pl and P2 
respective ly. 

The conditional expectations of the z. are 
z3 

Pl N1 * 

E ( Z i l l y e s )  = Pl lI1 + P2 l'I3 = z l  

Pl H2 * 
E (Zillno) . . . . .  

Pl H2 '+ P2 H4 z2 

Using the initial value ~ = 0.2 the first 
iterations are as follows I: 

nl - * . . . . . .  * 

Iteration z I z 2 
. . . . . . . . . .  - . . . . . . .  ~ - -  

1 .20O0 
2 •2394 .2857 •6154 
3 .2667 •3238 .6034 
4 .2840 . 3479 . 5946 

12 .3079 3 io .s8o6 
.3080 .3812 .5805 

The estimate of the asymptotic variance is 
0.00385. Again, the estimate of [~land its 
estimated variance are in agreement with the 

values obtained by applying the appropriate 
expressions given in Greenberg et al (1969). 

3.3 The Simmons Unrelated Question Design 
with Two Trials 

In the previous examples, closed form express- 
ions for the ML estimator are available. In this 
Section we look at an example, Simmons Unrelated 
Question Design with two trials per respondent, 
where this is not the case. In contrast to the 
previous example 3.2, the proportion of the 
population with the non-sensitive attribute is 
not assumed known, although the sensitive and 
unrelated characteristics are assumed independ- 
ently distributed in the population• (The 
independence assumption ensures that each Hk in 
(2.7) can be expressed as a product of two terms 
so that the form of the log-likelihood in (2.7) 
is preserved). 

Our objective is to estimate H(1) and H(2) 
t~a 

where 

2 
, (HI+H2=1), for the sensitive question• 

and 

N H 
, (H3+H4=I) , for the unrelated question• 

The observed response vector Y~i takes four 
distinct values 

1 0 0 0 

O 1 O 0 

O O 1 O 

O O O 1 

YY YN NY NN 

where YN, for example, indicates a response yes to 
the first question and no to the second• 

There are four possible transformations corres- 
ponding to the possible orders SS, SU, US, UU in 
which the sensitive (S) and unrelated (U) 
questions may be asked : 

Z2 

i000 1 I00 

oo0 i oo i 
OOO IO 1 

OO0 O10 

SS SU 

Z3 Z4 

i010 000~] 

o o i !oo:l 
1 iO OO 

OO 1 OO 

US UU 

The selection probabilities for ~hese four trans- 

formations are PI' PlP2 ' P2Pl ' P2 respectively, 
where Pl and p~ are £he selection probabilities of 
the sensitive ~nd unrelated questions in a single 
trial• The conditional expectations of the z.. 

x3 are : 
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E(Zil Jzi ) 

E(zi2JZ i) 

E(zi3J)i i) 

E (zi4 JZi ) 

YY 
2 

PiLl 

Xll 

PlP2nln3 

111 

PIP2HIN3 

111 

p2D 3 

111 

Possible Responses (~i) 
. . . . . . . . . . . . . . . .  

YN NY 
. . . . .  , , .  

O O 

PlP2111[T 4 

1 
12 

,PlP2TT2TI 3 

1 
12 

PlP2[12[73 

121 

PlP2nln4 
X 
21 

NN 

p 2 
122 

PlP2[~2TI4 

122 

PlP2T]2N4 

122 

2 
P2n4 
x 
22 

where the I.. denote the probability of responses 
YY, YN, etc.17 and are as follows : 

2 
111 = p12 ll I + 2 plP2 l'I1 1"[3 + P2 [[3 

I12 = PlP2 ~l 174 + P2 Pl 112 N3 

121 = PlP2 I"[2 ~3 + P2 Pl 171 [~4 

122 = p2 112 + 2 p lP2 N2 174 + p2 N4 

In Horvitz, Shah and Simmons (1967) , the un- 
related question design with two trials was used 
in a survey to estimate the proportion (1-11) of 
births where the mother was unmarried. Two 
samples, each with different design parameters, 
were used and moment estimates for H_ and I-[ 

± ~ows were presented. Part of the data is as fol 

Frequency of Responses 

YY YN NY NN 

Sample 1 137 271 253 566 

Sample 2 512 291 215 322 

Subsequently, in Gould, Shah and Abernathy (1969, 
Table 4, Model I) ML estimates for N. and N~ were 

J 
reported for this data, but not standard errors 
because of computational difficulties• The 
application of the EM procedure to the above data 
produces the following estimates : 

EM Procedure 
. . . . .  

G o u l d ,  S h a h  & 

Abernathy (1969) 

A 
nl ~3 

0.02829 O.8616 
, 

0.02824 O.8616 

. . . . . . . .  

_ ~  

SAE • SAE • 

(n I) (n 3) 

O.OO95 O.Ol12 
. . . . . . . . .  

It should be noted that for this design, two 
separate samples are not necessary for the 
estimation of N and [~ 

C~ow In Liu and (19~6), the Fisher scoring 
method is used to derive ML estimates for the 
data arising from a design in which the Warner 
related-question procedure is applied three times 
to each respondent. The EM procedure has been 
applied to the Liu-Chow data, with complete 
agreement on the estimates. 

4. QUANTITATIVE DATA DESIGNS 

In Greenberg et al. (1971) an RR design for a 
quantitative sensitive variate was presented. 
This design was used in an abortion study in North 
Carolina and each respondent was asked one or 
other of the following two questions : 

Question A : How many abortions have you had 
during your lifetime? 

Question Y : If a woman has to work full-time to 
make a living, how many children do 
you think she should have? 

Since the distribution for the non-sensitive 
variate was unknown, two samples were required, 
and let I. (x) be the probability function (p.f.) 
of the response x from a randomly selected 
respondent in sample j, while f(x) and g(x) are 
the p.f. 's of the sensitive and non-sensitive 
variates. Then, 

Sample 1 : 11(x) = plf(x) + (l-Pl)g(x), 

Sample 2 : 12(x) = p2f(x) + (l-P2)g(x), 

(4.1) 

(4.2) 

where p_. is the selection probability of the 
sensiti~e question in sample j. 

The response for each question is discrete 
(with relatively few distinct values) and the 
estimation of the two distributions is merely a 
special case of the multinomial estimation 
considered in Section 2. Means and other para- 
meters of the estimated distributions can then be 
computed. The following data were reported in 
Greenberg et al. (1971). 

Response . 0 1 2 3 4 5 1 
I 

Frequency (Sample I) 304 14 56 iO 7 2 1 

] Frequency (Sampl e 2) 114 10 30 6 1 1 

After applying the EM procedure of Section 2, 
the following estimates of f and g were obtained : 

A = ^~ 
x value f(x) 9(x) 

j 

2 

3 

L J  

4 

• ,, , 

.83 .65 
(.046) (.065) 

.O16 .O81 
(.022) (.034) 

.ii .22 
(.038) (.055) 

.O17 .046 
(.O18) (.027) 

5 

.O25 0 
(.O13) (.O13) 

. . . .  -- 

• 004 .007 
(.008) (.O11) 

(Standard errors in parentheses) 

Estimates for the average values (~A' ~Y) of the 
sensitive and non-sensitive variates are as 
follows : 
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Greenberg 
et a.!. (1971) . Present Approach 

UA .415 .408 
(.107) (.107) 

. . . . . . . . . . . . . . .  -- _ _  

A 
Uy .678 .686 

(.145) (.145) 

(Standard errors in parentheses) 

It may not be necessary to use the EM procedure 
to compute ML estimates for f(x) and g(x). One 
should first look at the simple ~stimatorsAin 
terms of linear combinations of Xl(X) and ~2(x), 
the proportions responding 'x' in samples 1 and 
2 : 

A A 

^ (l-P2)l l(x) - (l-Pl) 12(x) 
f (x) = , (4.3) 
s Pl(l-P2) - P2(l-Plj 

A 
with a similar expression for gs(X). If these 
estimators produce values all lying in [O,I], 
then one has found the ML estimates for f and 
g. ^In the ca~e of the above data not all values 
of f (x) and g (x) lie in [0,i], so that some 

s s 
numerical procedure, such as EM, was necessary. 
This accounts for the difference between the 
present estimates for ~,, ~. and those presented 

(19~i) 
v 

in Greenberg et al. ~hich were based on 
linear combinations of the 15 (x). 

In the case of a continuous variate, or a 
J 

discrete variate with a large number of distinct 
values, one can split the range of the variate 
into a number of disjoint categories, so that 
one can again apply the multinomial estimatdon 
of Section 2. Alternatively, one can derive ML 
estimates of the distribution functions. Let 
Aj (x) denote the distribution function of the 
response from a respondent in sample j, while 
F(x) and G(x) are the distribution functions for 
the sensitive and non-sensitive variates. Then, 

Sample i: Al(X) = PlF(X) + (l-Pl)G(x), (4.4) 

Sample 2: A 2(x) = P2F(x) + (l-P2)G(x), (4.5) 

By analogy with (4.3) one can suggest simple 

estimators of F(x) and G(x) such as 
A A 

^ (l-P2) A l(x) - (l-Pl) A 2(x) 
F(x) = 

Pl(l-P2) - P2(l-Pl) 

where ~j(x) is the proportion of responses in 
~ample j ~hich are less than or equal to x. If 
F(x) and G(x) are monotone and in [0,i] for all 
x (which is unlike!v) then ~(x) is the ML 
estimator for F(x) . 

Notice that in estimating F(x) for a given x 
one is in fact estimating a simple proportion 
using what is in effect the Simmons unrelated 
question design. Thus one can build the ML 
estimate for F(x), and for G(x), by taking each 
x value in turn and applying the EM procedure to 
estimate the unknown proportions F(x) and G(x). 
The latter can then be used to estimate means, 
variances, percentiles and other summary 
statistics, as well as to motivate parametric 
forms for F(x) and G(x) . 

An alternative approach in both the discrete 
and continuous cases would be to assume parametric 
models (e.g. Poisson) for the sensitive and non- 
sensitive variates. With this approach, only one 
sample is needed, and the problem of estimation 
reduces to a special case of the classical 
mixture problem in which the mixing proportion is 
known. A straightforward application of the EM 
procedure will produce the ML estimates for the 
model parameters, and their standard errors. 
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