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the correlated errors differently when the character- 

I. In~tiom 
Errors introduced in the measuring, editing, or 

coding of responses in a sample survey affect the 
behavior of the estimators obtained from the sample and 
sometimes affects our ability to measure that behavior. 
Models designed to measure the impact of these errors 
indicate that the non-sampling errors may contribute 
substantially to the bias and/or variance of the esti- 
mators obtained from the sample. Furthermore, when 
these errors are positively correlated within the sam- 
ple, as they might be when a single operator, such as 
an interviewer or coder, handles a number of cases, the 
usual estimators of the standard errors of means and 
totals are likely to be biased downward. This bias is 
called the correlated component of response variance. 
If good estimates of the correlated component can be 
made, the estimates of the standard errors can be 
improved and problem items can be identified. 

Most methods for estimating the correlated component 
require interpenetration of operators, a technique 
introduced by Mahalanobis [ 9 ]. In its most basic form, 
interpenetration requires the random sample of size n 
from a population of size N to be randomly divided into 
k subsamples of size m = n/k, and each subsample to be 
assigned to a single operator. Then the typic~l model 
describing Yijt' the recorded value in the t th survey 
replication for unit j, which is in operator i's 
assignment, is 

Yijt = ~j + eijt' (I.i) 

where ~j = E(Yij t l j) and eij t is the error in 

that recorded value. Then for ~ = 7lYijt/km , we have 

i V(~j+e I m-i 
V(~) = ~ ijt)+~--~-Cov(eijt, eij,t ) (1.2) 

if Cov(eijt, ei, j, t) = Cov(~j, eij t) = 0. 

istic being observed is membership in a category. For 
each category, an interviewer can make two types of 
errors: ~i is the probability that interviewer i re- 
cords a unit reporting that it belongs to the category 
as not belonging to it and e i is the opposite kind of 
error. Then (~i' ei) is considered to be a random 
vector associated wlth the i th interviewer. We can 
avoid consideration of individual characteristics of ~i 
and e- bv definin~ a new random variable p;= E(y~;~I i), 
the prob~ability that interviewer i records a ra~d~omly 
chosen unit from a random replicate as belonging to the 
category. Then the categorical data equivalent of 

(1.3) is 

Yijt = EPi + (Pi -EPi) + eijt' (1.4) 

eijt = (~j - EPi) + e'ijt' ~j = E (YijtlJ). where 

Then the usual estimator for proportion, P, has 

variance 

V(P) - ~V(Yijt)[l + (m-l)Pp] (1.5) 

2/~p(l-~p) with where Pp = V(Pi)/V(Yij t) = Op 

= EPi. Then the correlated component CC = Op 2. % 

2. The Estimator 
Let us denote the m units in interviewer i's assign- 

ment by Yij,J = I, ..., ,~ We suppress the subscript 
t since in this paper only one survey replicate is 
assumed. (This simply means that we are unable to 
distinguish response variance from non-sampling vari- 
ance.) Then the usual ANOVA estimator for the variance 

component of random mode i, 

CC = Sb 2- Sw 2 (2.1) 
m 

We will refer to the operator introducing the corre- 
lated error as an interviewer, since that is a common 
source for such errors. 

We examine a model proposed by Kish [7]for the 
correlated errors in continuous data. He decomposed 
the error term in (i.i) as eij t = b i + e'ijt, where b i 

can be thought of as a random variable associated with 
the i th interviewer and represents the average bias 
that she introduces into a measurement. Then e'ijt 
represents the composite of all other uncorrelated non- 
sampling errors (i.e- 9 only one source of correlated 
error is assumed). Then (I.i) can be rewritten as 

Yijt = ~ + bi + eijt' (1.3) 

where ~ = E~. and e.._ = - J(~-" -~) + e'i: tj contains j .] l j c  
both sampling and uncorrelated non-sampling errors. 

Then (1.2) can be written as 

V(y) = 1 V(Yijt) [i + (m-l)Pb ] 

where Pb = V(bi)/V(Yijt) = ab2/(ab 2 + ae2)' if we 

assume that Cov(bi, bj) = Cov(bi, ~ijt ) = 0. Then the 

2 correlated component CC = o b " 
Biemer and Bailar [I] model the mechanism causing 

where Sb 2 = ~-i 7 (~i.- ~)2 
i 

and Sw2 = 1 17 (Yij - ~i" )2 
k (m-l) ij 

is an unbiased estimator of CC for both models under 
the assumptions stated in the previous sectioru 

The precision of 6'~ is needed for planning of inter- 
penetration studies, but it has not been investigated 
thoroughly by analytical methods. The variance of CC 
when both e i. and b i of (1.3) are normally distributed 
is given in'earle [I0] for a simple random sample. 
MacLeod and Krotki [8] reported the variance of 
Fellegi's [6] more complex estimator of the correlated 
component by empirical variance estimation techniques. 
Biemer and Stokes [2] provided analytical expressions 
for the variance of Fellegi's estimator under the re- 
strictive assumption of normality of both the error and 
interviewer bias terms. However, these assumptions are 
inappropriate for the categorical error model given by 
(1.4). In this paper, we find out how much can be 
learned about the variance of CC for the discrete model 
while making as few assumptions as possible about the 
distribution of Pi" 
3. Variance of the Estimator 

The variance of CC as given by (2.1) under model 
(1.3), adding the assumption of normality of the e ij's 
is 
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i k-3 4 
t% + + (k-l)m 

2 ~$ + o(b) (3.1) 
m2 (k-l) 

where P b4 = Ebi 4. The first term of this expression 
would be the variance of an estimate of oh2 if the b i 
values were known. Because they must be-estimated, 
however, V(C~C) is increased by the 2 nd and 3 rd terms. 
If we add the assumption of normality of the bi's , we 
obtain from (3.1) the well-known expression 

O 2 o 4 

m -~T + 0(m o) ]- (3.2) 

For the categorical model given by (1.4), one can show, 
after much tedious algebra, that 

I pK-~k-30p4 ~4 [-PP4+ v(dc) : [~'4-,--~ ] + 

pp (l+2Up) - Up (2+pp) + P 3 + i 
3 2Up p (k-l) 

Op2 (pp_pp2) ] + 2km 2 [3pp4- PP3 (5 +2pp 

2(3Up + 2) - p2 +k_~ll (pp2 + Up)2] + Up P 

)+ 

0 ( ~ )  (3.3) 

.o ._ -- • where ~r = EPir and p P4 E(Pi pp)4 

When planning an interpenetration experiment, one 
goal might be to determine the sampling plan required 
to achieve a specified coefficient of variation. If 
the assumption of normality of the bi's were accepta- 
ble, then we would find from (3.2) that 

1-Pb + 1  1-Pb ( 1  
(CV) 2 = k___21 [ 1+ 2_m (' Pb ) m 2 ( Pb ) 2 + 0 .m3) ] (3.4) 

Kish [ 7 ] gives ranges for the size of P for different 
types of questions. They range from 0 for factual 
questions to about .I0 for subjective or difficult 
ones. For a specifically assumed p, required values of 
m and k c~n be determined from (3.4) to achieve a de- 
sired (CV)Z. The appearance of ~b4 in (3.1) prevents 
a similar calculation from being possible if a distri- 
bution for b i is not assumed. 

The picture is even worse for the categorical case. 
Notice that all terms of (3.3) (rather than just the 
first ~s in (3.1)) involve moments of Pi higher than 
the 2 na. Without knowing somethi~ about the magnitude 
of these moments relative to o, we can't determine 

. P 
the samplzng plan required for meeting our CV require- 
ments. In this paper, our aim is to see how much we do 
know^ about the 3 rd and 4 th moments of Pi and thus about 
V(CC) for the categorical model, while making as few 
assumptions about the distribution of Pi as possible. 
We use this information to find bounds on sample sizes 
needed to achieve specified CV levels. 
4. Variance Botmds in the  Categorical Model 

Our goal is to obtain bounds for the terms of (3.3) 
for specified survey design parameters k and ~ If we 
can obtain bounds that are sufficiently narrow, they 
might be used for planning an interpenetration study to 
achieve a desired CV, for example, as was suggested in 
the previous section. In addition, we might be able to 
tell, with the help of such bounds, how much the erron- 

eous use of the continuous model formulae (such as 
(3.2) and (3.4)) for planning experiments about cate- 
gorical variables can mislead us. 

Unfortunately, unless we include some restrictions 
on the distribution of Pi' V(CC) is so variable that no 
useful general conclusions of the type we wish to draw 
can be made. So we arbitrarily include the assumption 
that the 3 rd central moment of Pi is 0. This assump- 
tion is weaker, of course, than that of normality of 
the bi's in the continuous model. 

The bounds for V(CC) in the categorical model are 
found by using a corollary (DeVylder [5],Brockett[3]) 
of the Markov-Krein theorem, which provides the best 
upper and lower bounds on the expected value of certain 
functions of a bounded random variable whose first 
three moments are knowr~ The corollary, tailored to 
our application, is as follows: 

LetX be a random variable having range [ 0,I ] 

with EX = p, V(X) = 0 2 and p = E(X-p) 3 
' 3 

knowru Then for any h for which h(4)(x)> 0, 

h(Cl)Z 1 + h(c2)(l-~l)< Eh(X) <h(0)q I + h(d)q 2 

+ h(1)(l-ql-n 2) (4.1) 

where 

U - (l-2p)o 2 
3 

d = 0 2 - p(l-p) + U, 

o 2 + (d-p)(l-H) p(l-p)-o 2 

= n = i d 2 (l-d)d 

P - P 2 +4o6 P +P 2+406 
3 3 3 3 

c = +P c = + P  
1 202 2 202 

= 112+ 
p 

P 
3 

2 + 4o.6 
3 

Since the terms of V(CC) for the categorical model 
can be expressed as Eh(X) for an appropriate h (or 
perhaps as EhI(X) -Eh2(X) if the condition concerning 
the non-negative derivative is not met), w, may use 
(4.1) to find upper and lower bounds for V(C"C) for a 
characteristic with a specified Up and p_. 

Kish's ranges can help us choose a suit~able value of 
O for a certain type of question and p p is the expect- 
e~ proportion recorded in the category. Then we see 
from (1.5) that o 2 = ~p(l-pp)Pp. Table 1 illustrates 
the results of t~is procedure 5y displaying bounds for' 
V(C~C) where Pp = .I, k = 2, and 2 values of interviewer 
workloads, m~ correspond to a telephone survey (m=25) 
or a census (m=500). 

There is an analogous corollary (DeVylder[5], 
Brockett [3 ]) of the Markov-Krein theorem that provides 
the best bounds for E(h(X)) when only the first two 
moments of a bounded random variable are knowru Unfor- 
tunately, as mentioned earlier, the bounds achieved 
without the assumption on the third central moment are 
too wide to be of much value for our purposes. 

An important point to emphasize is that these corol- 
laries of the Markov-Krein theorem yield "tight" bounds 
in the sense that they can not be any shorter. The 
corollaries actually produce distributions which satis- 
fy the assumptions and achieve the bounds. 
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5. Applicati~ to Sampling Designs 
With the bounds obtained for V (C~C), we can address 

obtaining the optimal design for an experiment to esti- 
mate CC~ Two criteria for determining the number of 
interviewers to interpenetrate are considered: cost 
and coefficient of variatiork 

The cost of conducting a personal interview survey 
with k interviewer assignments interpenetrated is 
modeled by C = C O + C 1 km/~ where C O is overhead 
cost of the survey and C 1 is the cost of each interview 
when the interviewer assignments are not interpene- 
trated. The model is based on the assumption that the 
increased cost arises from the increase in travel ex- 
penses (Cochran [ 4]). The assumption that the cost 
increases by a factor /k is based on the fact that the 
average distance between randomly distributed points in 
a plane is increased by ~-k when the density of those 
points is decreased by a factor of k. Numerical stud- 
ies ~ indicated that for fixed cost and total sample size 
n = ink, V(C~C) is a decreasing function of k for both 
the continuous and categorical models. Therefore, k 
should be chosen as large as resources will allow in 
each case. So using the continuous model to make such 
a decision about categorical variables (as is often 
done) leads to the right allocation of resources. 

A model for the cost of interpentrating k interview- 
er assignments in a telephone survey has not been 
developed. 

The coefficient of variation appears to be a more 
influential criterion in the determination of the 
interpenetration requirements than the cost. We deter- 
mined numerically the required number of interviewers, 
each having assignment size m~ to achieve a specified 
coefficient of variation. This approach was taken 
since the survey designer knows the number of 
interviews a full-time interviewer can be expected to 
complete during the survey period. A previously men- 
tioned, m=500 is appropriate for a census interviewer, 
while m=25 is more reasonable for a two-week telephone 
survey. 

Table 2 shows the results that were obtained for the 
two models. The range of k, number of interviewers 
required to achieve a coefficient of variation (CV) of 
0.5 when 0_ = .I and m is fixed is given for several 
values of~_ for the categorical model. The last row 

~2 . . 

of the table shows the number of intervlewers required 
to achieve CV -.5 when ~b = .i for the continuous 
model where the bi's are normally distributed. (This 
can easily be shown from from (3.4)). The intervals 
yielded by (4.1) are quite short when ~ is near 0. As 
~bnears .5, there is a wider range o~ distributions 
which can satisfy the moment conditions and thus (4.1) 
cannot pinpoint the required k as well. Note that when 
~p is close to 0, using (3.2) as a proxy for the cor- 
rect variance formmla for choosing the interpenetration 

sample design is overly pessimistic; i.e., even in the 
worst possible case, a better CV than expected would be 
achieved if the normal theory required k's were used. 
There are distributions of Pi for larger ~p, however, 
for which choosing the k suggested by the-continuous 
model would yield unacceptably low precisioru 

A surprising observation from the table is that the 
values for m=25 and m=500 are so similar. Shouldn't we 
expect a much smaller k when each interviewer's work- 
load is 20 times as large? Certainly the required k to 
achieve a fixed CV will always be smaller when m=500 
than when m=25, but it may not be by much, if the 
largest component of V(C~C) is the first term of (3.3) 
(or of (3.1) or (3.2), since the same holds for the 
continuous model), which happens when 0 is large. The 
first term of (3.3) doesn't involve m, and that is 

where most of the uncertainty from not being able to 
pinpoint the distribution of Pi does its damage. When 
~p is closer to 0, the ranges for k yielded by (4.1) 
are wider, and the intervals for m=25 and m=500 are 
more wide ly separated. 

In general, the bounds widen rapidly as the CV 
decreases. Both the upper and lower bounds increase 
with increasing CV, as would be expected. 

It might seem natural to compare the classical con- 
tinuous model with the categorical one in which Pi 
behaves like a normal random variable in the sense that 
its first 4 moments match that of a normal. (It ob- 
viously cannot be exactly normal since it is bounded on 
(0,I).) For a large portion of the square making up 
the range of interest (0 < ~p< i, 0 < OR< .I) there 
doesn't exist a bounded random variable having its 
first 4 moments match those of a normal. So the natur- 
al comparison isn't possible. For those that were 
possible, we found still a large discrepancy, in some 
cases, between the required k's for the two models. 

For both the categorical and continuous model, for 
any specified 0, increasing m beyond a certain point is 
not helpful in improving the precisiork This can be 
done only by increasing the number of interviewers. 
The increased number of interviewers, it turns out, 
improve the precision whether they are interpenetrated 
all together or in smaller groups. This information 
suggests, for example, that when several surveys are 
being run out of the same telephone facility, it would 
be helpful for estimating CC to have each interviewer 
working on more than one survey, so that a larger 
number of interviewers can complete interviews for 
each. 

TABI~ 1 
Bounds of V(CC) under the categorical model 

with0p = .i and k = 2 

m=25 m=500 
P 

xl0 -3 xl0 -4 

.I0 (.23, .28) (.87, 1.3) 

.30 (.90, 3.0) (4.7, 23.) 

.50 (1.2, 4.5) (6.5, 35.) 

TABI~ 2 
Ranges of Required k to Achieve CV=.5 when0 =.i0 

P 

m=500 m=25 
P 

.I0 (3.5, 6.2) (i0.0, 13.3) 

.20 (3.5, 26.4) (9.0, 29.7) 

.30 (3.5, 32.9) (8.7, 34.9) 

.40 (3.5, 35.5) (8.6, 37.0) 

.50 (3.5, 36.2) (8.5, 37.6) 
normal theory 9.3 15.8 
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