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INTRODUCTION 
Missing data in sample surveys are of two general 

forms. Unit nonresponse occurs when no information 
is available to the survey for an entire sample unit, 
such as a person, or household, or hospital. Some 
information may, however, be available from other 
kinds of records such as those used to define the 
sample frame. The reasons for unit nonresponse vary; 
for example, a person may refuse to respond, be away 
from home, or be impossible to locate. Typically, this 
form of nonresponse is handled in part by a call-back 
strategy. That  is, the interviewer makes repeated 
attempts to contact the unit. If the call-back strategy 
fails, or is not feasible, weights can be assigned to the 
responding units (Cochran, 1977). 

The other type of nonresponse is item 
nonresponse. It occurs when the uni t  supplies 
information for some but not all of the variables. For 
example, a person may answer questions about age, 
race, and sex but not about income; or the information 
may be deleted by an edit failure. Depending upon the 
intended uses of the data, item nonresponse can be 
handled with two different but overlapping 
approaches. Either the data can be completed using 
imputation methods, or the recorded data can be used 
with modified estimation methods. The modified 
estimation methods may also be used to impute the 
missing data. 

The focus of this paper is the imputation of 
categorical data in a longitudinal survey. Statistical 
research pertaining to missing categorical data has 
considered censored, discrete random variables and 
partially or completely unobserved data in contingency 
tables. Harley's (1958) solution to the problem of 
estimating the rate parameter for a censored Poisson 
random variable is a special case of what was later 
called the EM algorithm. Fuchs (1982) applied the EM 
algorithm to find maximum likelihood estimates for 
parameters in a log-linear model, when the values of 
one or more variables are missing for subsets of the 
cross-classified data. Chen  and Fienberg (1974) 
developed models for analyzing contingency tables 
with supplemental marginal totals. 

Unfortunately, none of these methods offer 
solutions to the problem of missing categorical data in 
complex, longitudinal surveys such as the Survey of 
Income and Program Participation (SIPP). Although a 
contingency table could be constructed from monthly 
responses to a categorical survey item over a year, the 
resulting twelve dimensional table would be 
exceedingly sparse. In addition, the application of log- 
linear models or the EM algorithm to such tables would 
be computationally difficult. 

In this paper we describe a general method for 
imputing missing categorical items in longitudinal 
surveys. We show that the longitudinal data, 
completed according to the method, provides unbiased 
estimates of the probability of occurrence of the 
various response patterns, assuming that the data are 
observed at random and missing at random (Rubin, 
1976). The importance of longitudinal information for 
imputing missing data is discussed, and a statistic 
measuring the amount of information available is 
described. 

The imputation methodology described here was 

developed from data collected by the Income Survey 
Development Program (ISDP). The method is 
suggested as the fundamental tool for imputing 
missing, longitudinal, categorical items in the Survey 
of Income and Program Participation (SIPP). However, 
its implementation can occur only after further 
development and modifications. Here, it is described 
as a general, statistical approach applicable to any 
longitudinal survey. The data from the ISDP is utilized 
only to explain the method and provide examples. 

The Income Survey Development Program (ISDP) 
was initiated to gain experience with the data 
collection and data analysis requirements of SIPP. The 
ISDP is a longitudinal survey consisting of two national 
panels (1978, 1979). The sample design is a multi- 
stage stratified sample of the United States 
population. Sampling elements are housing units not 
households (which may move) or persons. The first 
sampling stage involves the definition of the United 
States in terms of counties or groups of counties called 
primary sampling units (PSU's), which are stratified. 
At the second stage, a sample of addresses within the 
PSU's is selected. To minimize the inconvenience to 
sample participants, interviews are conducted every 
three months. Each household is assigned to one of 
three rotation groups (A,B,C). Every three months all 
the households in a rotation group are interviewed and 
data is collected for each of the previous three 
months. A wave is the time period during which each 
rotation group is interviewed once. Data from each 
wave is published by the United States Bureau of the 
Census as a cross-sectional file. The longitudinal data 
for our imputation research is an annual file, 
constructed by merging five waves of ISDP data from 
the 1979 panel. 

THE IMPUTATION OF MISSING LONGITUDINAL 
CATEGORICAL SURVEY ITEMS 

Many of our activities today are the direct result 
of events which occurred yesterday. Last  night we 
may have arrived home late, returning from a long 
trip. Today, it is likely that we will need to stop off at 
the gas station to refill our car's fuel tank. Or perhaps 
yesterday we were layed-off from our job. Today we 
are reading the employment opportunities section of 
the newspaper. 

Analogously, in the ISDP, there are strong 
dependencies between the monthly values of the 
survey items. For example, fitting a logistic 
regression of the receipt of wages and salaries in July 
on the receipt reported in other months, we found the 
parameters for the months June, August, and 
November to be significantly different from zero. 
Similiar results where obtained in regressions of each 
month on the remaining months. 

Define a longitudinal record for a survey unit to be 
the set of responses recorded over a fixed time 
period. In the ISDP as well as SIPP, the survey unit is 
a household, but other examples of survey units include 
the person, family, and employer. In this paper, the 
survey person is the unit of analysis. The set of 
responses on the longitudinal record may be any 
combination of survey items. Here ,  we restrict 
ourselves to a single item recorded monthly for one 
year. For example, the receipt of wages and salaries. 
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The following example i l lustrates the imputation 
process. Consider the ISDP survey item indicating 
whether a person had a job or business during a 
month. Further,  consider the set of individuals in 
rotat ion group A who responded "yes" from January 
thru November 1979, but did not respond in December,  
1979. The longitudinal record for these individuals is 
given by 

X = (0,0,0,0,0,0,0,0,0,0,0,2), 

where X t = 0 (t=1,...,12), if the response in the t th 
month is "yes", X t - 1 if the response is "no", and 
X t = 2 indicates missing data. Either "0" or "1" is an 
admissible imputation value for X 2 Based on the 1 • 
individuals in rotation group A who reported data in 
every month from January to December we estimate 

Prob(Xl2 =0 I X l = 0 , x  2=0, . . . ,x l l  =0) 

2313 
- 2379 = 0.9723, and 

Prob(Xl2 =I  I X I =0, X 2=0, . . . ,x l I  =0) 

= I- .9723 = 0.0277. 

Generating a random number between zero and one, 

we impute X I2 = 0 if the random number is less than 

or equal to 0.9723, otherwise we impute X12 = 1. 

This imputation procedure can be applied to any 
categorical survey item with any combination of 
missing months. Consider the sample item indicating 
the monthly receipt of wages and salaries and the 
following longitudinal record for persons in rotation 
group A 

X = (0,0,0,0,0,0,0,2,2,2,0,0) . 

Based on those persons responding in all twelve 
months, we estimate 

Prob (X 8 = x8, X 9 = x9, Xl0 = Xl0 I (1) 

X 1 = 0,...,X 7 = 0, Xll = 0, X12 = 0) 

1120 
= 1140 = 0.9823 if  X8= 0, X9= 0, X10= 0,  

10 = 0 0088 if  X8= 1, X9= 0, Xl0= 0,  1140 

1140 - 0.0035 if  X8= 0, X9= 0, X10 = 1 ,  

3 - 0.0026 if  X 8 1, X 9 1, X10 0 ,  1140 

= 2 = 0 0018 if  X8= 0, X9= I ,  XI0 = 0 ,  1140 

1 = 0 0009 if  X8= 1, X9= 0, XI0 = 1 1140 " 

Here, we impute the entire subvector (x~, x9, xln) 
based on a random draw from a uniform (0,][) 

distribution. 
The imputation process is formalized by let t ing 

the random variable X represent  the responses (and 
missing data) on a longitudinal record. The vector X = 
x can be parti t ioned into subvectors x_  and Xr, 
representing the missing a/Ld recorded mon{~ly valves, 
respectively. On the i TM longitudinal record, we 
impute the missing items X_ i based on the reported 
values x i" The imputed values are a random draw 
from tge conditional distribution f(x_ I Xr=Xri ), 
emperically estimated from the longitudin'al records 
with values reported in every month. 

AN UNBIASED ESTIMATE OF THE O C C U R R E N C E  
PROBABILITY OF A LONGITUDINAL PATTERN 

Response pat terns  to survey items are singularly 
important  in longitudinal surveys. The longitudinal 
data is collected so that  changes over t ime of the 
survey items can be analyzed. For example, a 
researcher  may wish to accurately  es t imate  the 
average duration of unemployment or the length of 
t ime a n  individual part icipates in a social welfare 
program. It is important  that  the imputations do not 
disrupt the frequency distribution of response pat terns  
and bias these longitudinal es t imates .  

Consider a simple random sample of a size n 
without nonresponse. The longitudinal records for 
individuals in the labor force every month are 
represented by 

X = (0,0,0,0,0,0,0,0,0,0,0,0) (2) 

Let the binomial random variable T represent the 
number of times the pattern (2) occurs. It follows that 

1 T(X1 0, X = 0,..,Xl =0) (3) = 2 • 2 

is an unbiased estimate of 

Prob (X 1 = 1, X 2 = 1,...,X12 = 1). 

Of course, in longitudinal surveys with complex sample 
designs like SIPP, the s ta t is t ic  (3) would need to be 
modified to ref lect  the part icular survey design. 

In longitudinal files, completed according to the 
imputation method described above, statistics 
analagous to (3) are also unbiased estimates of the 
probability that the particular pattern occurs; provided 
the data are missing at random and observed at 
random (Rubin, 1976). We prove this result for 
longitudinal records containing two time periods. 
Without loss of generality the result extends to 
longitudinal records of any length. 

THEOREM 
Consider the longitudinal record (X 1 = a, X2 = b), 

where a and b represent the only values of the 
categorical random variables X 1 and X 2. In a simple 
random sample of size n, completed by fmputation, let 
the binomial random variable T'(X 1 = a, X 2 = b) 
represent the number of occurrences of the 
longitudinal record. Assuming the data are observed 
at random and missing at random. 

I_ T,(x l=a,x 2=b) 
n 

is an unbiased es t imate  of 
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Prob(X l = a , x  2 =b) 

Proof: 
The pattern (X 1 -- a, X 2 = b) can arise in the 

imputed sample in four ways: 

1) (X 1 = a, X 2 = b) is reported, 
2) X 1 = a is imputed given X 2 = b is reported 
3) X 2 = b is imputed given X~ = a is reported, 
4) (X 1 = a, X 2 = b) is imputeo. 

Define the binomial random variable T( ) as the 
number of occurrences of the event in parentheses. 
For example, using an astrisk to indicate imputed 
counts, 

T*(X l = a  [ X 2 =b) 

represents the number of times that X 1 - a is imputed 
given that X 2 = b is reported. 

The total number of times the pattern 

(X 1 = a, X 2 - b) 

occurs in the sample, completed by imputation, can be 
decomposed into terms corresponding to the four ways 
the pattern (a, b) arises, 

~"(X l = a , x  2=b) = T(X l = a , X  2 =b)+ (4) 

T*(X l = a  [ X 2 =b)+T*(X 2 =b [ X l = a ) +  

T*(X 1 = a, X 2 = b). 

Let the indicator vector Y = (YI, Y2 ) represent 
the reporting status of the elements in thelongitudinal 
record. That is, 

Yi = 1 if X i is reported (i-1,2), 
- 0 otherwise. 

The expected value of the sum (4) with respect to the 
data reported in the sample is 

E(q~(X l = a , X  2-b)  I T(X l = a , X  2 - b ) ) =  (5) 

T(X 1 =a,X 2 =b, Y I - 1 ,  Y2 = 1)+ 

T(X 2 -b,  Y1 - 0,Y2 = i) .  

FT(XI= a, X2= b, Y1 = I ,  Y2 = 1)-] 
[~ ..... _ 

--~(x2- b" ~I I, Y2 I) + J 
T(X l=a,Y1 =1'Y2 =0)" 

T(X 1 a ,  Y1 = 1, Y2 1) + 

+T(Y 1=0,Y2 =0)" 

T(X1= a, X2= b, Y1 = I ,  Y2 = 1) I 

- T(YI= I ,  ~f2 = I) j 

Note that the random variables in the conditional 

expectation (5) are multimonial. The expectation with 
respect to all possible samples is found by applying the 
following result. 

I ~ M M A  
Let (XI,...,X k) be multimonial (n;P , ,Pk ) random .,. 

variables, then X 1 and X 3 are independent given 
X 1 +X2 =Z and 

X1 P1 
= nP3 p + p • E X 3 Xi+ X2 1 2 

The expectation of (5) with respect to all possible 
samples follows from the lemma. In addition, the 
assumption that the data are observed at random and 
missing at random asserts the independence of the 
indicator random vector Y and the random variables in 
the longitudinal record. 

E(T'(X 1 = a, X 2 = b)) = 

E 2 E I(~(X l = a , X  2 =b) [ T(XI = a , x  2 =b)) = 

n Prob (X 1 = a, X 2 = b) Prob (YI = I, Y2 = I) + 

n Prob(X 2 = b) Prob(Y 1 = 0, Y2 = 1) • 

= b)¥Prob(X b ,  X = b r o b ( X  I a ,  k - = + 

n Prob(X 1 = a) Prob(Y 1 = I, Y2 = 0) • 

Ip  Prob(Xl= a, X2= b) )I 

rob(Xl= a, X2= a)+Prob(Xi= a, X 2 b + 

n Prob(Y 1= 0, Y2 =0) Prob(X 1 =a, X 2-b)  

=nProb(X l = a , x  2=b) 

QED 

The theorem is extended to longitudinal records of 
any length by adding the appropriate terms to 
equation (3). 

THE EXPECTED NUMBER OF INCORRECT 
IMPUTATIONS 

Longitudinal data by itself may not always be 
sufficient to accurately impute missing data. The 
amount of information available longitudinally can be 
measured by estimating the expected number of 
incorrect imputations. Consider the longitudinal 
record for the monthly receipt of wages and salaries, 

X = (0,0,0,0,0,0,0,0,0,0,0,2), (6) 

where X t = 0 indicates receipt and X t = 2 (t-1,...,12) 
indicates missing data. The probability 

Prob(X12 = 1 [ X1 = 0,-.-,Xll = 0) 

is estimated from the completely reported cases as 
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8/1236 = 0.0065. This probability is independent of but 
equal to the probability of imputing X I~ = 1. 
Consequently, the probability that X19 = 1 is Imputed 
and is correct is (0.0065) z. Similiarly, the probal~ility 
that X12 = 0 is imputed and is correct is (0.9935). It 
follows-that the estimated probability of an incorrect 
imputation for the longitudinal record (6) is 

1 - (0.0065) 2 + (0.9935) 2 = 0.0013. 

Since, there are seventeen individuals in the file with 
this longitudinal record, it follows that the estimated 
number of incorrect imputations is 17(0.013) = 0.22. 

The need to include demographic information 
would be indicated by an estimated number of 
incorrect imputations greater than some 
predetermined value. Consider again the longitudinal 
record for the monthly receipt of wages and salaries, 

X = (0,0,0,0,0,0,0,2,2,2,0,0). 

Thirty-eight persons in rotation group A had this 
pattern. Using the probabilities given in (i), the 
estimated expected number of incorrect imputation is 

38(1-0.98252 - 0.00882 - 0.00352 - 0.00262 - 0.00182 - 

0.00092 ) = 1.25. 

Here, we want to use demographic information to 
choose the most appropriate donor pattern. One 
approach is to include associated survey items as 
elements in the longitudinal record. For example, to 
impute the monthly receipt of wages and salaries, we 
can include in the longitudinal records survey items 
indicating seasonal or part time workers. A logistic 
model may also be useful, especially when the data are 
sparse. Letting the polychotomous variable Y 
represent the available donor patterns, we can regress 
Y on concomitant data, represented by the vector X. 
Based on the concomitant information, the probability 
of pattern h for the i th longitudinal record is 

Prob(Y i = h) - 

BhX i 
e 

1 + e 
B h X i 

The pattern selected for imputation can be the one 
with the highest probability, or the decision can be 
based on a random number generated between zero and 
one. 

CODING PATTERNS 
The responses on any longitudinal record can be 

summarized as a single number.  Consider the 
longitudinal record 

X = (0,0,0,0,0,0,1,1,1,2,2,2), 

representing the receipt of wages and salaries from 
January (X 1) to December (X12). This pattern can be 
represented in base ten as 

377=(2x30)+(2x3 I )+(2x32)+33+34+35.  

In general, any pattern in an annual file of monthly 
categorical data can be represented by the polynomial 

12 
P£ = > c k B k-I 

k=l 

Each pattern has a unique base ten representation, 
because the transformation is one-to-one and onto, the 
index k represents the months in the longitudinal file 
in reverse order. That is, k=l represents December, 
k=2 represents November, and so on. The coefficients ~ 
c k represent the monthly values of the item. The 
letter B represents the appropriate base. Typically, 
the base is one more that the highest coefficent (Ck). 

Coding the longitudinal record patterns as base ten 
numbers operationally simplifies the imputation 
process. Consider the longitudinal record 

X = (0,0,0,0,0,0,0,0,0,2,2,2), 

indicating the receipt of wages and salaries in each 
month from January thru De+q.ember. The receipt of 
wages and salaries in the t TM month is denoted by 
X t -  0, and a missing monthly item is denoted by 
X t = 2. This pattern is represented in base ten by the 
number 26. Because the transformation to base ten is 
unique, all individuals in the data file with the value 26 
for their pattern have reported the receipt of wages 
and salaries from January to September, but did not 
respond to the item from October to December. 

Donor patterns from the cases, reporting values in 
every month, are identified by subtraction. For 
example, the donor pattern. 

(XI0 = 0, Xll = 0, X12 = 0) 

is identified by subtracting the base three number 222 
from the longitudinal pattern 

000000000222 
-222 

000000000000 

The equivalent operation could also be done in base 
ten. Noting that 222 is represented in base ten by 26, 
the donor pattern (X 9 = 0, Xl• = 0, XI1 = 0) is the base 
three representation of (26-~26) = ft. Similiarly, all 
possible donor patterns i.e., 000 thru 111 and found by 
subtracting from 26 the corresponding base ten 
numbers 26 through 0. 

APPLICATIONS AND EXTENSIONS OF THE METHOD 
Limitations on the number of pages available in 

these proceedings preclude a complete discussion of 
our research on longitudinal item imputation. A more 
extensive description, especially as it applies to the 
Survey of Income and Program Participation, can be 
found in Samuhel and Huggins (1984). 
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