Compensating for Missing Values and Invalid Responses
In Contingent Valuation Surveys
Richard T. Carson, University of California at Berkeley

Introduction

The benefits of programs aimed at improving
environmental quality are measured with increasing
frequency by contingent valuation {CV) surveys. These
CV surveys incorporate elements of public opinion
polls and marketing surveys, as well as a theoretical
framework based on modern welfare economics.! In
the simplest sense, CV surveys present a fairly com-
plex scenario in which a hypothetical market is set up
and respondents are asked the maximum amount of
money that they would be willing to pay in order to
obtain specified increases in the level of an environ-
mental amenity. The need for a survey instrument
that asks respondents these gquestions, in a manner
consistent with relevant economic theory, and, at the
same time, is understandable to respondents, gives
rise to a large number of potential non-sampling
errors (Carson and Mitchell, 1984a). The most easily
identified of these non-sampling errors (and we believe
potentially the most serious) is a large item non-
response rate for the WIP questions.

In this paper, we consider several different methods
of imputing values for the missing or unusable
responses to the WI'P questions in a recent survey on
WTP for national fresh water quality improvements
{Carson and Mitchell, 1984b). The methods include
imputation of the mean and median from imputation
classes defined in different ways: sequential and ran-
dom hot decks, maximum likelihood estimation, and
several variants of CART, a tree structured regression
and classification procedure {Breiman et al., 1984).
Our problem of imputing values for the missing and
invalid WTP responses is difficult since we are
interested in three statistics, the mean, the standard
error of the mean, and the median.

This paper is divided into six sections. The first
describes how the statistics of interest are used in
estimating the benefits of national water quality
improvements. The second section describes the
characteristics of the data set, which are relevant to
the missing value problem. The third section briefly
presents each of the imputation methods used. In the
fourth, we discuss those features of CART which may
be useful in imputing missing values, and which are
likely to be unfamiliar to the reader. The fifth section
presents the results of the different imputation exer-
cises. The final section includes a discussion of these
results and some concluding remarks.

1. Measuring Water Quality Benefits

A household’s maximum willingness to pay for an
improvement in water quality from an initial specified
level, gq. to a specified higher level, g,, is an economic
quantity known as compensating surplus. Since water
gquality is an amenity that may be enjoyed by everyone,
it is the sum of the public’s willingness to pay that
determines the demand side. As it is difficult, if not
impossible, to poll every household in the United
States, the standard practice of taking a sample sur-
vey is used.

For a specified change in water quality the desired
economic measure is:

H
J =Y wre, , v
i=1

R the number of respondents and M the number of
households that did not respond, then N = R + M. The
expectation of WTP is

E(WTP) = (R/ Ne)f: WTPp + (M/ Ne)f:}?WTPM (3)

i=1
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The bias of treating (R/ N?){WTPg) as E(WTP) is,
(M/ N WTPr — WTPy); (4)

where this bias is small if M is small or if WTPy is close
to WTPR.

2. A Description of the Data Set

The data set used in this paper is from a survey of
B13 households in the contiguous United States. The
survey queried respondents primarily about their use
of water based recreation, and their attitudes toward
water quality including their willingness to pay for
water quality improvements. The survey was con-
ducted by Opinion Research Corporation (ORC) of
Princeton, New Jersey, for Resources for the Future in
November and December of 1983. The sample was
drawn using a multistage areal probability design.

To compensate for differential response rates (for
the questionnaire as a whole), ORC supplied a set of
weights based on the 1980 Census in order to produce
sample statistics (assuming no item non-response)
representative of the non-institutionalized U.S. popu-
lation. However, as with most sample surveys, there is
both a non-response and an item non-response prob-
lem. Results from different methods of imputing
values for the item non-responses on willingness to
pay for water quality are given with, and without, the
ORC sample weights. One of the advantages of of
imputing values for the item non-response is that the

where H is the total number of households, and the
subscripts denoting the exact quality change g4 to g,
have been dropped to avoid notational clutter. Using a
sample survey, J can bé estimated by multiplying the
sample mean WTP from the survey by H:

I 1
J:HEZWTPi,

i=1
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where n is the number of households surveyed and
every household in the population of interest has an
equal chance of being one of the n households
responding to the survey. The standard error of the
sample mean for WIP can be used to form confidence
intervals around 7.

The shape of the distribution of WIP is also of
interest since benefits {as well as costs) of improve-
ments in water quality may not be distributed uni-
formly among the public. The median, or more
correctly the median relative to the mean, is fre-
quently used as a single summary measure of the
shape of the distribution. For costs, familiar terms are
used: regressive (median greater than the mean), pro-
portional {median and mean equal), and progressive
{(median less than the mean). For benefits, the oppo-
site relations hold. The median also has a natural
interpretation in the context of a referendum, the real
world analogue of a contingent valuation survey, as
the highest flat tax that would be approved by the
voters.

Due to varying response rates to sample surveys,
the sample weights of 1/n from equation (2) are usu-
ally replaced with 1/w; where w; varies inversely with
the response rate of different types of households
indexed by i. If we let N correspond to the the number
of households in the original equal probability sample,

original sample weights can be used. We also present
results for reweighting the sample (without imputa-
tion) back to the original Census specifications.?

The variable for which missing values were imputed
is WIPTOT, the total sum of willingness to pay for three
marginal quality changes (unusable to boatable, boat-
able to fishable, fishable to swimmable).



The unusable WTPTOT responses can be divided into
four categories:

(1) Don't know/refused (87 respondents or 10% of
the respondents);

{2) Protest zeros {136 respondents or 17% of the
sample);3

gB) Failed edit for WIPTOT larger than .05*ncome
16 respondents or 2% of the sample); or

(4) Failed edit for low WTPTOT which was incon-
sistent with income and other respenses (9 respon-
dents or 1% of the sample). The variables used in
the analysis to follow are defined in Table 2.1.

3. An Overview of the Imputation Method Used

The choice of imputation classes is usually the most
difficult and influential decision to be made in imput-
ing values for missing responses. We used six different
ways to define imputation classes. Each of these forms
a series of three to four imputation exercises. They
are defined in the two tables ?3.1 and 3.2) below.

Table 3.1
Imputation Class Definitions

G1 Series: Eight imputation classes defined by the
combinations of three variables [AGE < 45; EDUC <

college graduate; USERD=1,0].

G2 Series: Eight imputation classes defined by the
combinations of four income categories [income <
15 thousand; 15> income < 30; 30 = income < 45;
45 > income ] and USERD.

CR Series: two imputation classes defined by CART
using WTPTOT as the dependent variable and sum of
squared deviations as the loss function.

CRA Series: four imputation classes defined by CART
using WTPTOT as the dependent variable and the
sum of least absolute deviations as the loss func-
tion.

CL Series: six imputation classes defined by CART
using log{WTPTOT) as the dependent variable and
sum of squared deviations as the loss function.

CC Series: seventeen imputation classes defined by
CART using a 6 categorized (labeled 1, 2, 3, 4, 5, 6)
version of WTPTOT as the dependent variable,
ordered twoing as the classification criteria, and a
cost criteria of the form i - j where i was the correct
class and j was the class the observation was
classified as being. The classes in order were [1: O-
25; 2: 26-T4; 3: 75-149; 4: 150-249; 5: 250-499; 6:
500+]. The divisions correspond roughly to equal
percentiles of the distribution and natural breaks
in the data.

Table 3.2
Imputation Type

M: Mean WIPTOT of the imputation class assigned to
all observations within that class having missing
WTPTOT values.

D: Median WIPTOT of the imputation class assigned to
all opservation within that class having missing
WTPTOT values.

S: Observations ordered sequentially within imputa-
tion class by Census region and sampling point.
Missing WTPTOT values were replaced sequentially
by last usable WIPTOT response. No limit was
imposed on the number of times an observation
could denoted its WTPTOT value. Sequential imputa-
tion assumes that there is positive spatial correla-
tion between observations. While possible sequen-
tial variants using the CART procedure were not
used.

R: Missing WTP values with in the imputation class are
replaced with a valid WTPTOT value chosen ran-
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domly (with replacement) from those observations
in the imputation class having valid WI'PTOT values.
An observations could donate its value up to five
time.

In addition, three variants of the EM algorithm are
used. The EM algorithm is an interrative maximum
likelihood procedure (Orchard and Woodbury, 1972;
Dempster, Laird, and Rubin, 1977). EM1 estimated
values for the missing WIPTOT responses. EM1C is the
same as EM1 except that any missing values estimated
to be less than zero are set to zero. EM2 estimates
values for the the log of WTPTOT of the missing
responses, and then takes the the antilog of that
response to obtain an estimate of WIPTOT. Al of the
EM imputations assume normality and a squared error
loss function.

The G1 and G2 series imputation classes motivated
by results from a prior national survey on willingness
to pay for water quality (Mitchell and Carson, 1981).
The G1 imputations avoid problems with the missing
values on INCOME since valid values are, with minor
exceptions, always available for AGE, EDUC, and
USERD. Further AGE and EDUC have sizable correla-
tions with income which both theory and available
empirical evidence suggest to be the best predictor of
WTPTOT. The GR2 series uses the Gl values when
income is missing in order to emphasis any differences
between the two series. Defining imputation classes
with CART is discussed in the next section.

The S and the R variants of the Gl and G2 series
represent the most the most popular forms of the hot
deck.* The mean of the imputation class is perhaps the
most commonly used method of imputing missing
values. The median is also used here because we are
interested in the median value of the sample WIPTOT
and because it has a number of desirable robust pro-
perties in many situation. In non-symmetric distribu-
tions, the case here, the mean and the median are
estimators of different locations and hence can not be
compared on an efficiency basis. In our case, statisti-
cal test tended to reject both symmetry and normality.
Lognormality could not be rejected if fairly coarse
grouping effects were allowed at values such as 25 and
100 dollars.

Calculating the three statistics of interest for
WIPTOT (the mean, the standard error of the mean,
and the median) are fairly straightforward. However,
the estimated standard error of the mean of WIPTOT,
V(1/n)s? after imputing values for the missing
WTPTOT responses, systematically underestimates the
true standard error. Kalton and Kasprzky (1982) give
an approximate correction formula for the standard
error of the mean based on V(1+])/r)0? where r is
the number of non-imputed WTPTOT values, ¢? is the
true estimated variance, and I is the proportionate
increase in variance arising from the imputation vari-
ance. This formula corrects for two sources of bias
arising from the use of the standard error of the mean
estimated from the sample after imputing the missing
values. The first correction is to multiply by the factor
n/r, because the estimate is in actually based only on
r observations. For deterministic imputations (M, D,
and the EM estimates) I equals zero, but s?, the
observed variance, underestimates ¢° by a factor of
[(r-1)/(n-1)]. For stochastic imputationzprocedures (s
and R), s? is an unbiased estimate of ¢%, but I equals
[(m/n){1 - (m/n))] where m is the number of imputed
WTPTOT values. This correction formula is derived
under the assumption that the values are missing at
random {within imputation class) and ii.d. within those
imputation classes. Large sample assumptions are
also made for the stochastic imputation procedures,
and, hence, the estimates of the corrected standard
error of the mean given in Tables 5.1 and 5.2, should
be considered very rough the process generating the
missing values is unknown.



Although we do not know what the true values for
the missing WIPTOT responses are, we do have some
fairly strong priors based upon past findings {Mitchell
and Carson, 1981) and from other evidence available in
the present survey. The respondents giving "don't
knows,” or refusing to answer the WIPTOT question
(and to a lesser degree those registering protest
zeros) tend to be older, less educated and non-water
recreators--all characteristics having sizable negative
correlations with WI'PTOT. Protest zeros also tend to
be associated with negative attitudes toward expendi-
tures on most public goods except fighting crime. The
WTPTOT responses, set to missing for being to high, are

all from respondents with very low incomes while those
few observations set to missing for being too low
resemble protest zeros. All of these factors suggest
that the true mean WITPTOT should be lower than it is
without imputing values for the missing observations.
A large number of the respondents with invalid WTPTQOT
responses also exhibited a pervasive pattern of item
non-response on other questions, particularly those
dealing with attitudes toward, and knowledge, about
water quality. This suggests that the standard error of
mean WTPTOT should if anything be increased. Our
prior on the median is less clear but we would be
suspicious of any imputation procedure that resulted
in a sizable shift, particularly an increase.

4. A Digression on CART

CART (Breiman et al. , 1984) is a set of recursive
partitioning procedures which are similar in many
respects to the Michigan AID/SEARCH program, which
has been used successfully in the past to define impu-
tation classes (Kalton, 1983; Chapman, 1983). While
the algorithms underlying CART represent an improve-
ment over existing routines in terms of speed and
efficiency, we concentrate here on two new features of
CART: surrogate splits, and techniques for determin-
ing the optimal number of imputation classes to
define.®

After locating the predictor split that best minim-
izes the loss function, CART will search out surrogate
splits. Surrogate splits are splits on other variables
that best approximate the best predictor split. This is
a useful feature, if, as is typically the case, the predic-
tor variables also have a significant number of missing
values. A measure similar to a correlation coefficient
is available which indicates how much better the
surrogate split is at mimicking the best predictor split
than sending the cases with missing values down the
tree in the same direction as the majority of the cases
in that node were sent. The output for the first split of
the CL series is reproduced in figure 4.1. Note that
competitor splits, the "'next best" splits at minimizing
the loss function, are also available and in general the
same splits.®

Perhaps the major problem with the Michigan
AID/SEARCH program is the difficulty in deciding when
to stop growing the tree. This problem is generic to
any recursive partition scheme because they give
mauch too optimistic estimates of how well they predict
in anything but very large data sets. Standard statist-
ical test of variance explained tend to be misleading.
It is worth quoting Kalton (109; 1983) at length here on
using AID/SEARCH to define imputation classes:

In practice there is usually little information
to guide the choice of imputation classes to
satisfy the missing at random assumption,
and therefore attention is mainly focussed on
forming classes within which the potential
donors are as homogeneous as possible with
regard to the survey variable being con-
sidered. The general principle is then to
form imputation classes that minimize the
variance of the survey variable within classes,
or equivalently that maximize the variance
between classes. This is the principle behind
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the SEARCH/AID technique used for deter-
mining the imputation classes in the last sec-
tion. In general the SEARCH technique seems
a valuable tool for guiding the choice of
imputation classes. However, since the tech-
nique capitalizes on chance patterns in the
data, it should be applied with caution.

This ability of recursive partitioning programs to find
meaning in random data (Einhorn, 1972) has lead
many survey researchers to reject techniques like AID.
CART embodies a solution to this problem.

Breiman et al. (1984) after unsuccessful attempts
to find optimal rules for stopping the growth of a tree
found that the solution lay not in stopping the growth
of a tree but in how to "prune off” the lower tree nodes
after the tree had "grown" as large as it could.” In very
large data sets this can be done by dividing the data
into two groups, a learning set and a test set. The
learning set is used to grow a very large tree and is
then used to predict the values of the dependent vari-
able of the test set and the squared error {or other
loss function) at each node. In general this loss func-
tion will decrease with the number of nodes up to some
point, remain flat for a while and then increase as the
number of tree nodes gets larger.® The first section of
this traced out loss function corresponds to true pred-
ictability, while the second and third parts correspond
to false prediction due to over fitting in the learning
set. The tree grown by the learning set can be pruned
upward eliminating nodes until the squared error in
predicting the test set observations begins to increase.

Unfortunately, most data sets are not sufficiently
large to use the test set methodology for pruning and
estimation of the true explanatory power of the pred-
ictor tree. For data sets the size of most regular sur-
veys (200-2000 observations), it is possible to use v-
fold cross-validation to determine how many nodes
should be pruned off the tree. This can be done by
growing v trees each of which omits N/v percent of the
data. Each of the v cross validation trees is used to
predict the observations that were not used in growing

that tree. The error sum of squares {(or other loss cri-
teria) from predicting the out of sample observation
by each of the v cross-validation trees is averaged at
each tree size to determine how large the main tree
should be. The tree sequence output from the CL CART
run is shown in figure 4.2. Relative error under a
squared error loss function is equivalent to 1-F?.
Note the U-shaped relative error curve from the
cross-validation trees while the relative error indi-
cated by the main tree (resubstitution) continues to
decrease as the number of nodes increased. Breiman
et al. (1984) found on the basis of Monte Carlo experi-
ments that v=10 was appropriate for most purposes
and that is what we used to grow and prune the trees
in figure 4.3.

The CART trees used to define the imputation
classes for the CR, CRA, CL, and CC imputations are
shown in figure 4.3. Each of these CART estimations
uses either a different form of the dependent variable
or different loss functions. The CR CART estimation
uses WTPTOT and least squares and produces two
imputation classes. The problem with the CR estima-
tion is that it dominated by trying to explain the vari-
ance of several large WIPTOT observations and for this
reason produces a very unbalanced split. The CRA
estimation still used WTPTOT as the dependent variable
but minimizes the sum of squared deviations instead.
This criteria produces a much more balanced set of
imputation classes since it does not put as much
weight on the large WIPTOT observations. The CL esti-
mation uses the log of WIPTOT as the dependent vari-
able which further increases the importance of
explaining the small and medium WTPTOT observations
which are those which we most likely need to be able
to predict and separate. The CL estimation produces 6



imputation classes. Another type of prediction rule
which gives equal or greater weight to different parts
of the data set can be used by assigning different
ranges of WIPTOT to a series of ordered classes as the
CC CART estimation does.? The CC estimation produces
17 imputation class and uses a much larger number of
the variables than the other CART estimates which are
based primarily on income.

5. Results

Table 5.1 displays the results of each of the imputa-
tion exercise without using the sample weights. Table
5.2 displays the results of the same imputation exer-
cises using the sample weights, !°

6. Discussion and Concluding Remarks

There is uniformity in the results of the imputation
exercises to the extent that they all suggest that mean
WTPTOT without correcting for the non-response to
the survey and item non-response to the WIPTOT ques-
tion is biased upward. Using the weighted results of
Table 5.2, this bias ranges from thirty to sixty dollars.
These amounts that translate into a reduction of 2.5 to
5.5 billion dollars in the estimates of the public’s wil-
lingness to pay for water quality programs.

There is also fairly uniform agreement that imput-
ing the mean value of the imputation class distorts the
median while imputing the median distorts the mean.!!
The correlation between any of the procedures that
impute either the mean or median is generally fairly
high. All of the random imputations produce data sets
with much better distributional properties than any of
the systematic imputations, !?

It is troublesome that the two applications of the
EM algorithm produce such different results.!® Of
these two estimates EM2 is probably preferred since
the distribution of WIPTOT is fairly close to log normal
and because of the large number of negative estimates
produced by EM1. The data set used, however, is any-
thing but clean and well behaved, which diminishes our
enthusiasm for the maximum likelihood approach.

Two of the series using CART defined imputation
classes, CR and CRA, do not perform particularly well.
This was to be expected because of the difficulties in
explaining WIPTOT in its untransformed form. It is
interesting to note that these two imputation series
look very much like the G2 series. This is due to the
fact that income was the primary determinant of the
imputation classes in all three series. The CL and CC
imputation classes produce similar results although
the correlations between these imputations are only
around .5 in the deterministic M and D cases.

The CLR and CCR imputations appear to be of the
highest quality. They both have similar and reason-
able means, standard errors of the mean, and medians.
The distribution of WTPTOT after the imputations looks
fairly smooth with none of the spikes associated with
the deterministic methods. The better "apparent”
success of these two imputation methods attests to
the need to consider the range in which the missing
values are likely to fall when considering how those
values should be imputed.!* The mean values of the
CLR and CCR imputations suggest that the reduction in
the estimate of the public's willingness to pay for
water quality programs should be approximately three
billion dollars. This is a reduction in the estimated
total willingness to pay of the American public for
water quality improvements from 22 billion dollars to
19 billion dollars.

Footnotes

1/The welfare economic theory behind CV is
covered in Freeman {1979), Just, Hueth, and Schmitz
(1982), and Mitchell and Carson (1984). A classic
example of a CV survey is Randall et al. (1974).
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2/Reweighting is not in general an appropriate
imputation method if there are missing values on a
number of different variables of interest.

3/Protest zeros occur when the respondent is not
willing to pay anything because they feel the govern-
ment waste money and should not be given any more,
that it should be possible to raise water quality
without paying for it, or that industry should pay the
cost since they were responsible.

4/There is no generally agreed upon definition of a
hot deck {(Panel on Incomplete Data, 1983) and the
term has come to generically stand for any technique
in which missing values are replaced with values of
observations from the current sample. The sequential
hot deck described by Bailar and Bailar (1978) was
used.

5/CART also has a number of useful features not
discussed in this paper which may be of interest to the
reader. These include node sub-sampling techniques
for large data sets, a variety of classification rules and
loss functions, measures of variable importance and
tree complexity, and linear combinations of predictor
variables. In addition, the book by Breiman ef al.
{1984) presents a number of useful proofs on the sta-
tistical properties of CART as non parametric regres-
sion and classification techniques.

68/Surrogate splits with a high degree of association
which are also competitor splits indicate stability in
the model and switching back and forth between close
surrogates in different data sets does not indicate ins-
tability.

7/Unique pruning schemes require the defining of
the notion of tree complexity. The implications of
different definitions of tree complexity are discussed
at length by Breiman ef al. (1984).

8/The same general U shaped curve holds for the
addition of variables in an ordinary regression frame-
work. See Breiman and Freedman {1983) for a discus-
sion.

9/We also hypothesis that while whether a respon-
dent says 15 or 20 dollars is largely random the
difference between say 25 and 30 is not since 25 is a
natural dividing line.

10/Miscellaneous notes on Tables 5.1 and 5.2.
Twenty one imputed values on G113 failed an edit
(WTPTOT > .05*income) were replaced by the closest
prior value which would pass the edit. Twenty eight
imputed values on GIR failed failed the subseguent
edit and new random values were drawn. A constraint
that an observation could donate its value 5 times for
the R imputations was never binding. Nine was the
maximum number of times an observation donated its
value in the S imputations. Thirty negative EM1 esti-
mates of WIPTOT (smallest, -333) were set to zero for
EM1C. The medians in Table 5.2 were calculated by
treating the weights as integer frequencies.

11/EM1 and EM1C also distort the median while EM2
appears to distorts the mean, although this is less
clear. Three of the four cases in which CART was used
to define the imputation classes, CRA, CL, and CC
appear to produce less distortion.

12/However, G1S, G1R, G2S, and the G2R imputa-
tions appear to underestimate the standard error of
the mean.

13/R. Little has suggested that a correction needs
to be made for a downward bias in the antilog
transformation used with the EM2 procedure.

14/0ne obvious directior for future research would
be to systematically "punch holes” in a data set with
similar distributional properties and problems and
then impute values for those variables set to missing.
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Figure 4.1

The First CART Split for the CL Series

* node 1 was split on variable income
L a case goes left if income .le. 1.50e+02
LA improvement = Y.4e+0S (c. t. = 2.4e+08)
L] 1
* » node cases average standard dev.
A 1 550 0.46e+04 0.15e+04
. 2 213 0.38e+04 0.14e+04
. 4 337 0.51e+04 0.13e+04
213 337
* * surrogate split assoc improve.
* » 1 age r 6.35e+01 0.25 2.4e+05
* » 2 yistate r 6.25e+01 0.19 2.2e+05
.. L 3 educ s 2.50e+00 0.18 1.5e+05
* hd * * 4 pooloc r 1.50e+00 0.14 2.0e+05
LI oy s S csize 3 3.50e+00 0.06 3. 4e+0l
LI L 6 userd s 1.50e+00 0.05 1.0e+05
.. L 7 pollute r 3.50e+00 0.02 9.8e+03
* *
competitor split improve.
1 age 6.25e+01 2.4e+05
2 yistate 5.85e+01 2.2e405
3 pooloc 1.50e+00 2.0e+05
4 educ 2.50e+00 1.5e+05
S shore 1 1.4e+05
Figure 4,2

Cross-Validation Tree Sequence for CL Cart Estimation

terminal cross~validated resubstitution complexity
nodes relative error relative error parameter

1 31 0.82 +/- 0.049 0.43 0.650e+07
2 30 0.80 +/- 0.047 0.4y 0.733e+07
3 28 0,79 +/- 0.047 0.45 0.774e+07
L 26 0.81 +/- 0,0U6 0.46 0.842e+07
5 25 0,81 +/- 0.0U6 .47 0.873e+07
6 23 0.80 +/- 0.046 0.48 0.884e+07
7 20 0.79 +/- 0.043 0.51% 0.937e+07
8 19 0.78 +/- 0.043 0.52 0.100e+08
9 18 0.76 +/- 0.040 0.52 0.101e+08
10 17 0.76 +/- 0,040 0.53 0.112e+08
11 1% 0.76  +/- 0.040 0.56 0.117e+08
12 10 0.73 +/« 0.037 0.60 0.1198+08
13 9 0.72 +/- 0.033 0.62 0.164e+08
AL 7 0.72 +/- 0.03% 0.65 0.1860+08
15% 6 0.72 +/- 0.031 0.66 0.203e+08
1% 5 0.73  +/- 0.030 0.68 0.217e+08
7 4 0.77 +/- 0,029 0.71 0.294e+08
18 3 0.77 +/- 0.027 0.73 0.360e+08
19 2 0.84 +/- 0.026 0.81 0.856e+08
20 1 1.00 +/- 0, 1.00 0.236e+09
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Figures 4,3 a, b, ¢, d 4. (ce)
CART Trees for CR, CRA, CL, and CC Series
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Table 5.2
Table 5.1
Weighted Means, Standard Errors, and Medians
Unweighted Means, Standard Errors, and Medians
Imputation MEAN STAN. ERROR CORRECTED Median Table 5.3
Imputation MEAN STAN. ERROR CORRECTED Median Method WIPTOT MEAN WTPTOT S.E.M. WIPTOT  WTPTOT
Meghod WIPTOT MEAN WTPTOT S.E.M. WIPTOT  WIPTOT Correlation Between Imputed Values
None 255.73 25.76 - 110
None 275.20 25.29 - 120 Rewelghted 254.37 28.99 - 110 Variables EM! EM2 GIM GID G'S GIR G2M G2D G2 G2R
GIM 261.47 17.66 25.43 160 GIM 245,51 17.99 25.91% 150 EM2 .72
1D 226.07 17.80 25.63 140 G1D 209.92 18.14 26.12 120 o BN
G1s 243.72 18,44 24.36 100 G1s 228.14 18.89 24,95 100 s Y
GIR 248,48 18.60 25.57 105 GI1R 231.83 19.06 25,17 100 1R 30 15 20 11 .06
G2M .78 .55 .39 .31 .25 .39
GoM 260.35 17.93 25.82 142 G2M 242.30 18,30 26.35 130 G2p .76 .53 .35 .34 .23 .38 .96
G2D 232,20 17.50 25.20 125 G2D 217.98 18.08 26.03 12 G2s .35 .26 .18 .17 .32 .18 46 k2
G2s 251,11 18.32 24.20 120 625 235.62 18.79 24,82 110 R I A RIS M s
G2R 246.55 18.33 21,21 100 G2R 230.06 18,71 ah.m 100 CRD 61 .60 .08 .07 .10 .29 .73 .T4 .27 .3%
CRR .06 .05 -.02 -.02 .07 .00 .10 .09 .02 .00
EM1 251 47 18.08 26.03 141 EM1 232.83 18,49 26.63 130 CRAM .76 .58 .25 .24 .25 .40 .93 .92 .44 48
EM1C 254,37 18.01 25,94 11 EM1C 236.58 18,40 26.50 130 CRAD 160 .57 .27 .27 .26 LMY 93 92 .uz .50
4 .51 18.8 27.1% 8 CRAR .35 .29 .12 .09 .04 .35 .39 .39 .24 .23
EM2 221.65 18.49 26.63 9 EM2 209.5 7 T ? M S8 .57 .27 .27 .21 .40 .95 .92 .M6 .8
. cLD .78 .56 .28 .28 .27 .40 .94 .9% .4 .18
CRM 264,41 17.89 25.76 200 CRM 2u8.17 18.21 26.22 200 CLR 48 (Mg 09 .08 .10 .29 .55 .52 .27 .33
CRD 230.07 17.85 25.71 103 CRD 213,95 18.18 26.18 103 ceM .63 .39 .29 .33 .24 .20 .52 .53 .28 .39
CRR 266.90 19.87 26.24 120 CRR 254,55 21.36 28.21 110 cCp .58 .40 .31 .33 .24 17 .47 .49 .20 .37
CcCR .28 .12 .98 .21 .07 .07 .27 .27 .20 .M
1 .51 1
CRAM ggggg :ggg gggg ::g g::g g?ggg 1332 gg 27 18; Variables CRM CRD CRR CRAM CRAD CRAR CLM CLD CLR COM CCD
CRAD . . . . . .
CRAR 249 .49 18,63 24,61 110 CRAR 232.62 19,14 25.28 100 CRD 1.00
CRR .19 .19
258.64 18.03 25.97 150 cLM 240,77 18.41 26.51 105 CRAM 84 .84 13
o 235,61 e 25.73 150 cLp 218.67 18.22 26.21 105 Cup w0 iz oge
CLR 255,86 19.19 25.35 110 CLR 237.61 19.64 25.95 100 oM 8 .81 .14 .97 .97 .4
CcLD 79 .79 .15 .96 .96 .H4 .99
ccM 253.12 17.88 25.76 144 CCM 237.21 18.26 26.30 125 CLR .56 .56 .06 .59 .58 .1 .59 .59
ccD 226.94 17.89 25.76 100 cCh 210.95 18.25 26.28 100 ccH .22 .22 .00 .48 .53 .19 .54 .57 .30

oR 556.78 19.09 25.22 100 CCR 242.16 1981 26,17 100 ccp .21 .21 .00 .43 4T .19 .48 .50 .24 .91



