Comparison of Alternative Mode1-Based Estimators for the Proportion of Housing Units Victimized by Crime During a Year

Charles H. Alexander, U.S. Census Bureau

I. INTFODUCTIDM AND SUMMAFY

This paper considers the problem of a random sample, for most of whose elements two random variables are observed. In some cases only one of the two variables is observed. The goal is to make certain inferences about the "population", without knowing for sure what reasonably may be assumed about the similarity of the completely observed and partially observed cases.

Specifically, a sample of housing units receive two interviews covering consecutive six-month time periods. The purpose is to estimate the proportion of units in the population which experienced some particular type of crime during the twelve-month period covered by the two interviews. The following results, given as proportions, were obtained for the crime of burglary from the U.S. National Crime Survey for interviews during 1980.

	Reported Burglary in Second Interview			
	No		Yes	
Reported	No	. 931499	. 032916	. 964415
Burglary in				
1st Interview	Yes	-031947	.003639	. 035586
		. 963446	. 036555	1.000001

Let "Group $A^{\text {" }}$ refer to this group of units with two completed interviews. The entries in this table will be denoted by PA(i,j): $i=0,1, j=0,1 \%$ where i pertains to the first interview and j to the second. The corresponding population proportions will be denoted by $\mathrm{m}_{\mathrm{A}}(\mathrm{i} ; \mathrm{j})$. Eased on these Group A housing units, for which two interviews were completed, it would be estimated that $1-p_{A}(0,0)=.068501$, or 6.7% of the units in the population were "touched by burglary" during a twelve-month period.

However, for some housing units in the sample, one of the two interviews may be missing. The interest is thens in what would have been reported on the other interview. For example, the following results were obtained for those units (Group c) whose first interview was missing.

The problem is to estimate $1-\pi_{c}(0,0)$ using information from Group A, but Eeeping in mind that Groups A and C may have different characteristics. Group E (those with missing second interview) is treated similarly.

This paper compares several approaches to this problem. Section II describes four alternative estimators which may be calculated using the known values shown in the above tables, based on alternative assumptions about the relationships between the groups. Gection III describes an alternative approach, which stems from the work of Eddy, et al (1981). Data are collected on the proportion of housing units which report crimes in each three-month quarter of the twelve-month period. The idea is to assume a specific family of probability distributions for the joint distribution of random variables which indicate victimization in each guarter. It is assumed that the distributions for Groups A, B, and C are members of the same familys but mey have different parameters. Maximum likelihood estimates of the "touched-by-crime" probability for the missing data groups are calculated under the assumed model. This approach not only uses more information, but permits a test of the model.

These model-based estimators can be very sencitive to serious lack of fit in the assumed model (Alexander and Roebuck (1983)) - Consequently it is important to test the fit of these models. In Sections IV, V, and VI, three of the models are tested for Group A and, to the extent possible, for Group C. In Section VII, the models are used to study the behavior of the simpler estimators of Section II, assuming that one of the models applies. Section VIII contains a discussion of the results.

The outline of this work was presented in Alexander and Roebuck (1983). The data for testing the fit of the various models have now been obtained from the NCS Fublic Use File at the University of Michigan. The models proposed earlier do not fit the data in certain important respects. This appears to be because the models have not taken into account certain response error patterns which are known to be present in the NCS survey data. This calls for further work. However, the results of Section VII indicate that some of the estimators in Section II may eventually prove to be slightly superior to the present published estimator.

The problem has special features as it applies to the NCS. The proportions in Table 1 are for a combination of six different twelve-month periods, with the first interviews taking place in the months of January to June 1980. (For example, the group with first interviews in January was also interviewed in July and the two interviews covered the period July 1979- June 1980.) As with the usual NCS estimated crime rates, the estimated proportions are calculated using weights equal to the unit*s inverse probability of selection, with various other adjustments. For these estimates, Group A consisted of about 43,000 units: Groups B and C contained about 11,000 and 13,000 respectively. Each of the latter groups contains about 2500 refusals or other noninterviews of eligible units. of the remaining cases, about 8500 in Group B are "outgoing" units which are getting their last scheduled interview and are about to be replaced by roughly 8500 "first bounded interview" units new to the survey, which are included in Group C. The remaining 2000 units in Group C are primarily those which missed an interview due to an experiment which ended in early 1980.

It is likely that Groups B and C differ from Group A and from each other. The new housing units getting their first bounded interview tend to report crime at a somewhat higher rate than the average unit, and units which are in for their final visit have a slightly lower rate. Units which have a refusal on one interview may have different characteristics than the population as a whole. In addition, some units in Group C, which were vacant or refused interview at the previous visit, will have a reference period which is not bourded by a previous interview, so that they may repart extra crimes which occurred before the six months of interest. Such unbounded interviews may alsy occur in Group A, when a household moves from a sample address and a new household moves in, but there are protably more unbounded units in Group C.

For simplicity of exposition, membership in Group A, E, or C is described as a fixed characteristic of each unit in the population. It may be more realistic to think of the group as a random characteristic, so that, for Example, $\pi_{a}(i, j)$ would be viewed as a conditional probability given membership in Group A. The approach taken in this paper is consistent with this view.

This paper ignores units which are noninterviews both times and also those which are interviewed one time, but at the other visit are found to be vacant or destroyed. These units must be taken
into account in the NCS estimation, but present a different kind of missing data problem than the one considered here.

The NCS is sponsored by the U.S. Eureau of Justice Statistics (BJS) and conducted by the U.S. Bureau of the Census. A public use file is maintained at the University of Michigan. The author wishes to thank Dr. Christopher Innes of the National Criminal Justice Data Archives at the University of Michigan and Marshall DeBerry of the Bureau of Justice Statistics (formerly at the Census Bureau) for their able assistance in obtaining the data in this paper from the NCS Fublic Use File.

II. FOUR ESTIMATORS FOR $\pi_{c}(0,0)$

Let $Z_{2}=0$ if no burglary on the first interview

$$
1 \text { otherwise }
$$

Let Z_{2} be defined similarly for the second interview.

Then $m_{A}\left(z_{1, z}\right)$ is the joint discrete probability function for Z_{2} and Z_{2}, given that one is dealing with a case in Group A.

The estimators will be defined as they apply to Group C. The application to Group A will be obvious. Some omitted details are contained in Alexander and Roebuck (1983).

1. Present Touched by Crime Estimator

$E 1=$

$$
\frac{1-P_{A}(0,0)}{\operatorname{PA}_{A}(\cdot, 1)} \cdot \operatorname{PC}(-, 1)=.07603
$$

$$
\begin{gathered}
\text { E1 uses } \frac{1-P_{a}(0,0)}{P_{A}(*, 1)} \text { to approximate } \\
\frac{1-\pi_{c}(0,0) .}{m_{c}(* 1)}
\end{gathered}
$$

It is consistent under the assumptions that

$$
\begin{aligned}
& \text { (2.1) } \frac{P_{c}\left\{Z_{1}=1\right\}}{P_{c}\left\{Z_{z}=1\right\}}=\frac{P_{A}\left\{Z_{1}=1\right\}}{F_{A}\left\{Z_{z}=1\right\}} \\
& (2.2) \\
& F_{C}\left\{Z_{1}=0: Z_{Z}=1\right\}=F_{A}\left\{Z_{1}=0: Z_{Z}=1\right\}
\end{aligned}
$$

2. Griffin's Estimator

$E 2=\operatorname{Pc}(-, 1)+P_{c}(=0) \cdot \mathrm{Pa}_{\mathrm{A}}(1,0)=.07239$

$$
p_{A}(*, 0)
$$

This estimator was suggested by Griffin (1981) and is based on the assumption that
(2. 3) $F_{A}\left\{Z_{1}=1: Z_{Z}=0\right\}=F_{A}\left\{Z_{2}=1: Z_{Z}=0\right\}$;
in which case it is consistent. Unlike E1, E2 is guaranteed to lie between zero and one.

Conditions (2.2) and (2.3) seem to be quite strong. In particular, in the special case that Z_{1} and Z_{z} are independent, then either condition implies that $F_{A}\left\{Z_{1}=1\right\}=F_{C}\left\{Z_{1}=1\right\}$, i.e., that Groups A and C have the same victimization probability for the first interview.

3. Equal Correlation Estimator

$$
\text { Define } T_{A}=\frac{p_{A}(1,-1)}{0_{0}(1,-1)} \text { and }
$$

let $r_{\text {A }}$ be the sample correlation between Z_{1} and Z_{2} for Group A. Then define

This estimator is consistent if (2.1) holds and the population correlations between Z_{x} and Z_{z} are the same for Groups A and C.

For the data in Section I, $T_{A}=.97349$ and $r_{\mathrm{a}}=.06725$, $50 \mathrm{ES}=.07589$

It is not necessarily the case that EJ is between zero and one. Fartly because of this, a similar estimator more appropriate to dichotomous random variables will be considered.

4. Equal Odde Fatio Estimator

Assume that the ratio of the odds that $Z_{1}=1$ relative to the odds that Z_{z} $=1$ is the same for Groups A and C, i.e.. that
(2.4) $\mathrm{D}_{\mathrm{A}}=\frac{\pi_{a}(1,-) / \pi_{a}(0,-)}{\pi_{A}(-, 1) / \pi_{A}(-, 0)}=\frac{\pi_{C}(1,-) / \pi_{C}\left(0_{,}-\right)}{\pi_{C}(\cdot, 1) / \pi_{C}(\cdot, 0)}=D_{C}$

Assume also that the following odds ratios are equal in the population:

Substituting the known sample quantities for Group A for the corresponding unknown quantities for Group C, it is possible to solve for an estimate of $m_{C}(0, O)$. For $\mathrm{OR}_{\mathrm{A}}=1$, the resulting equation is quadratic, whose solution in the interval (0,1) is

$$
E 4=1-\frac{E-\left(B^{2}-40 R_{A}\left(0 F_{A}-1\right) A_{C}(., 0)-\right)-E C}{2\left(0 F_{A}-1\right)}
$$

where $C=1-\frac{D_{A D C}(-1) / D_{c}(=, 0)}{}$ $1+D_{a p_{c}}(-1) p_{c}(-, 0)$
estimates moro, $)$ and
$B=1+(\operatorname{Pc}(-, 0)+C)\left(0 R_{A}-1\right)$.

In this example, $\mathrm{D}_{\mathrm{A}}=.97251$,
$\mathrm{OR} A=3.22350$, and $E 4=.07565$.
If $\mathrm{OR}=1$, then $\mathrm{E} 4=1-\mathrm{C} \cdot \mathrm{Pc}(-, 0)$.
It can be shown that $0<E 4<1$, provided that $0<\mathrm{OR}_{\mathrm{c}} \leqslant \mathrm{m}$.

The difficulty in choosing among these estimators is that the assumptions cannot directly be tested; the observations for Group C are incomplete. An indirect approach would be to partition the Group A sample into various demographic groups based on income, urban/rural location, race of householder, etc. If for some given type of crime, of A_{a} were about the same as OR_{c} for all these groups, this would lend some credence to (2.5), and similarly for the other assumptions. The data for such an analysis have not yet been tabulated. Further, the partial respondents may differ from complete repondents in unknown ways. An alternative approach to choosing among these estimators is discussed in Section VII.

III.ESTIMATOFS BASED ON MOFE DETATLED MODELS

Let $x_{1}, x_{2}, x_{3}, x_{4}$ be zero-one random variables denoting whether a given randomly selected housing unit reported a crime in each of the four consecutive three-month periods (quarters) covered by the unit"s two interviews. For example
$x_{1}=1$ if the unit reported a
burglary in the first
three months covered by
the first interview
o: otherwise.

For units in Group A all four random variables are observed. For those in Group C only x_{3} and x_{4} are observed.

The discrete joint probability function (pf) will be denoted by $f\left(x_{1}, x_{2}, x_{3}, x_{4} \theta_{A}\right)$ for Group A and analogously for Group C. The form of the function is assumed to be the same for both groupe, but the parameters may differ. The $p f$ of X_{3} and X_{4} for Group C will be written as $f\left(x_{3}, x_{4} ; \theta_{c}\right)$. The empirical probability function (epf) for Group A will be denoted by $f *\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$.

For each of the following models, \exists specific form for f will be chosen. A maximum likelihood estimator (mle) will be found for θ_{c} based on the epf $f *\left(x_{3}, x_{4}\right)$ The mle for the touched-by-crime probability is then 1 $f\left(0,0,0,0 ; e^{*}\right)$, where e^{*} is the mle for Gc. Additional details are presented in Alemander and Foebuck (1983).

5. Independent Bernoulli Model

(उ. 1) $f\left(x_{1}, x_{2}, x_{s}, x_{4} ; p\right)=p^{x \times(1-p)^{4-E x}}$
The parameter P represents the probability that the selected unit is victimized in a given quarter.
$E=1-f\left(0,0,0, O i p^{*}\right)=1-\left(1-p^{*}\right)^{4}$,
where the mle p^{*} is the estimated expected value of $\left(X_{3}+X_{4}\right) / 2$ for Group C. i=e.,
$P^{*}=.5(f *(0,1)+f *(1,0))+f *(1,1)=$

6. Markov model

This model assumes that the probatility of a victimization in a given quarter depends only on whether there was a victimization in the previous quarter. These probabilities ares
$F: X_{i}=1: X_{1-1}=03=F O$
$F\left\{X_{1}=1: X_{1-1}=1\right\}=F 1$, for $i=2,3,4$.
Assuming that $F\left\{X_{i}=1\right\}=F^{\circ}$ for all i, then
$F\left\{x_{1}=1\right\}=F=F O \cdot(1-F)+F 1-F, 50$

$$
P=P O /(1+P O-F 1)
$$

The pf $f\left(x_{1,}, x_{2}, x_{3}, x_{4} \mid F \cdot O, F i\right)$ is easily determined, and leads to the estimator
$E S=1-\left(1-F^{*}\right)=\left(1-F^{*}\right)^{3}$.
The mles are calculated as follows.

```
    FO* = (f*(1,0)+f*(0,1))/(f*(1,0)+f*(0,1)+2f*(0,o))
(6.1)
    F1* = (f*(1,1)+FO*.f*(1,1))/(f*(1,1)+F0*.(1-f*(1,1))).
```

7. Beta-binomial Model

For the selected $H U$ in Group A, the ioint distribution of $X_{1}, X_{2}, X_{3}, X_{4} \quad i s$ assumed to be the same independent Bernoulli distribution defined above, except that p is now assumed to be a random variable having a beta distribution with parameters x_{A} and Ía. The likelihood function is obtained by taking the expectation of (उ.1) with respect to p.
For Group C

where p has a beta distribution with parameters α_{c} and β_{c}.

For either Group A or Graup C the mles for this model must be obtained by numerical maximization of the likelihood furction. This model is similar to Model 5 for any given housing unit, but allows
different units to have different victimization probabilities.

Besides using more information than the simpler estimators of Section II, these more detailed models have the advantage that the model can be tested for fit, both for Group A and for the available data from Group C. The main practical drawback occurs when no closed form expression is available for the m1es.

It is, of course, essential to examine the fit of the models before using the estimator based on the model. Alexander and Roebuck (1983) give examples illustrating that use of the wrong models lamong others, using ES or Es when the data come from the beta-binomial model) can lead to substantially worse results than the simpler estimators E1, E2, and E3.
IV. FIT OF THE MODELS FOR THE COMFLETE
DATA

Table 4 shows the actual.epf $f *\left(x_{2}, x_{2}, x_{3}, x_{4}\right)$ for the crime of burglary (with an approximate 95% confidence interval), along with the maximum likelihood estimates of the pf for models 5, 6. and 7. Several discrepancies are apparent between the epf and the models. In all these models, the events 0001 and 1000 have the same probability, as do 0100 and 0010 . However, in the epf, the event "ooot or o100" occurs about 50\% more frequently than "1000 or 0010". This difference is probably due to a well known NCS "recency effect" (see Kobilarcik, et al (1983)), the effect that a greater proportion of crimes are reported during the three months immediately preceding the interview than in the earliest three months of the reference period. This is presumably due to some form of fesponse error.

All three models miss the pattern for the events with $\mathrm{m}_{\mathrm{i}}=2$. The events OOI1 and 1100 each have much higher actual frequency than does 0110 . All the models assign Foughly equal probabilities to these three events.
There are other
discrepancies for Model 6 . For example, the events 0111 and 1110 have a combined frequency of .00023s. slightly higher than the abserved oooz70 for the union of the events 1011 and 1101 . For the estimated pf for model 6, the corresponding probabilities are . 000112 and $=000036$. This difference does not have an obvious explanation in terms of the recency effect, but it may not be valid because of the large standard errors on these estimates.

It is apparent that these models fail to describe important features of
the enf．It is necessary to make an adjustment for the recency effect and perhaps to examife ajditional models． In spite of these discrepancies，Mpdel 7 gives a very close approximation to the observed＂touched by turglary＂ proportion（．0685）．This will be discussed further in Sections V－VII．

To summarize the lack of fit of the three models，a version of the chi－square goodness of fit statistic（times a constant）has been included in Table 7 ，namely， $\left.x^{2}=\Sigma(10-E) \geqslant / E\right)$,
where 0 represents the observed proportion in a＂cell＂and E represents the＂expected＂proportion calculated under the model，using the mle values of the parameters．（The case when $O=E=0$ for model 5 is replaced by zero．）Th values for Models percentage of the value for Model 5 ．Model 5 is used as a percentage of the value for Model 5 ．Model 5 is used as
baseline，because the other two Models may be viewed as baseline，because the other two Models may be viewed as
generalizations of Model 5 and thus can be expected ta have generalizations of Model 5 and thus can be expected to have better fit．Model 5 is a special case of Model by with fo $=$
Pi．It can be shown that Model 5 is a limiting case of Model P1．It can be shown that Model 5 is a limiting case of Mode
7 ，with α and β approaching infinity kepping $\alpha(\alpha+\beta)=p$ ， where p is a constant between zero and one．
v．THE PROBLEM OF TESTING THE MODEL FOR FIT
This section considers more carefully the question of testing the fit of the data ta the hypothesized di三tribution．A distinction now will be made between the nypothesized family of pfs $f\left(x_{1}, x_{z}, x_{3}, \%_{A} ; \dot{g}\right)$ and the true but urknown family $n\left(x_{1}, x_{z}, x_{3}, x_{n} \|^{\prime}\right)$ ．The assumption that＂the same model fits Groups A and $C^{\prime \prime}$ then means that there is some unknown distribution $h\left(x_{1}, x_{2}, x_{3}, x_{n}: \tau_{A}\right)$ which is the true pf for Group A and，if Ta is replaced by Te or Tr，is the pf for Groups E and C respectively．The existence o such a family h is assumed throughout our discussion It is unfortunately not enough to show that the rypothesized familyf fits the data for Group A．Even if it is true that for some value $\theta_{A}, f\left(x_{1}, x_{2}, x_{3}, x_{4}: \theta_{A}\right)=$
 What really needs to be demonstrated is that
（5．1）for every paraneter value τ ，there existe a value θ such that $f\left(x_{1}, x_{2}, x_{3}, x_{4}: 6\right)=h\left(x_{1}, x_{2}, x_{3}, x_{4}: T\right)$ ，for all $x_{1}, \mathrm{~K}_{2}, \mathrm{n}_{3}, \mathrm{~K}_{4}$
10f course，it would be sufficient for this to be true only for $\tau=\tau_{A}$ ，τ_{B}, T_{c} ，but since τ_{e} and τ_{e} are unknown， the more oeneral proposition must be addreseed．）

The＂test＂of such a sweeping proposition cannot be purely statistical．Dne approach would be to test statistically whether the family f fits the data for group A and then to consider the extent to which model f corresponds to a plauEible explanation of the phenomenon of interest．As has tean seen，the models considered atove show substantial lack of fit for Group A ．In addition，each model fail三to descrine sofe well documented features of iNCS crimes Eeratise of the NCS recency effect and the known seasonality of crime，it is not to te expected that $F\left(X_{1}=1\right)$ is the same for all i，as all these models require．Additionaly，the Usual putlished NCS victimization statistics show that the protability of victimization varies dramatically depending on the urban／rural status of the housing unit，the ages of the occupants，etc．Models and 5 ascume that different urits have identical probabilities．（nodel allows this probatility to vary．）There are undoubtedly situations in which the occurren＝e of a erime at a given housing unit afferts behavior（of victim or offender）in Euch a way as to change the probability of victimization in subsequent quarters，although there is little evidence regarding the extent of this effect for the NCs．Models 5 and 7 ailow ro such dependence for a given housing unit，althougt itodel 6 dces．Thus the present models fail according to this approach．It does not seem Iifely that，even with better madels，a simple model can be justified a priori as a complete explanation of the distribution of crime．

Another epproach to this problem corresponas to assuming that for different types of crime（or for erime rates for different demographic groups），the pf is also described by $h\left(x_{x}, x_{2}, h_{3}, x_{A} i y\right)$ ，where T depends on the type of crime and the denographic group．Under this assumbtion， variety of crimes and demographic groups，then this would tend to support the assertion that more onenerally（5．1）is true，so that the family f would fit Groups E and C ．

Theoretically，in order for the model to yield a consistent estimator of $h(0,0,0,0,7)$ from the Group A data it is not essential that the assumed family ffit for all
 Let the possible values of T be denoted by to，ti，．．．．tr． where $k=15,1 e t t i n g t_{0}=T(0,0,0,0)$ ．Let

where the summations range over all values of $\% x, x z, x a, i a$
 satisties the necessary reguiarity conditions for the mle e＊ to exist and be a consistent estimator of θ ，if the familiy were the true model．Let f_{T} aiso satisfy these conditions． Assume also that if θ^{\prime} is any consistent estimetor of θ ，
then $f\left(0,0,0,0: \theta^{\circ}\right)$ is a consistent estimator of
$f(0,0,0,0 ; \theta)$ ．（This is true for all the families f di三cussed in this paper．
PROFOSITION：If for every parameter
value τ ，there exists a parameter value
－such that
（i）$f_{T}\left(t_{k}: \theta\right)=n_{T}\left(t_{k}: r\right)$ ．
（ii）$f(0,0,0,0 ; \theta)=h(0,0,0,0 \mid \tau)$ ，
then whatever the true value of $\gamma, f(0,0,0,0: 0 *)$ is a
consigtent estimator of $\mathrm{n}_{1}(0,0,0,01 \tau)$ ．（If $T\left(\%_{1}, x_{z}, \%_{3}, x_{4}\right)=$ to only when $x_{1}=x_{2}=r_{x}=x_{4}=0$ ，then condition（ii）is redundant．）
Froof：Condition（i）implies that for 三ome value G_{a} ，
$f_{r}\left(t: \theta_{A}\right)$ is the true of for $T\left(x_{1}, x_{2}, x_{3}, x_{A}\right)$ ．Then the mle θ^{*} calculated based on the epf of $\mathrm{T}\left(\mathrm{x}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{X}_{4}\right)$ is a consistent estimator of ϑ ，viewed as a parameter of fr． suffi ient statistic this sane value θ＊is tro sulfulated as is the mle calculated as a parame
 consistent estimator of θ ，even though the true pt is h,
f．Therefore $f(0,0,0,0 ; \theta *$ is a consistent estimator of $f-$ Therefore $f\left(0,0,0,0 ; \theta^{*}\right)$ is a
$f(0,0,0,0 ; \theta)=h(0,0,0,0 i \tau)$. UED

Note that it is not necessarily the case that
$f\left(0,0,0,0 ; \theta^{*}\right)$ is a maximum likelihocd estimator of
$f\left(0,0,0,0 ; \theta^{*}\right)$ is a maximum likelihood estimator of
$\mathrm{h}(0,0,0,0$ ；；it must further be assumed that T is also $h(0,0,0,0!$ ；it must further
sufficient for the family h．

This proposition may explain why Model 7 gave a ecod estimate for the＂qouched by burglary＂rate．The statistic EKi is a minimal sufficient statistic for（ α, \hat{C} ）under Model 7．The fit of the model to the empirical distribution of this statistic is comparatively good，and condition in applies．Fy contrast，the same statistic is a minimal sufficient statistic for Model 5 ，but Table 5 shows that the tit of the likelihood function under this model to the epf of the statistic is relatively poor．

A minimal sufficient statistic for po and Pl under model b is given by
$5(0000)=1$
$S(1000)=5(0001)=2 \quad S(0110)=6$
$S(0100)=5(0001)=2 \quad s(1001)=7$
$5(0100)=5(0010)=3 \quad 5(1110)=5(0111)=0$
$5(1: 00)=5(00: 1)=4$
$3(0101)=3(1010)=5$
$5(1101)=5(1011)=0$
Table of shows the distribution of this statistic．Note that the major diseredancies involve $S=4, \Xi, 5,7, 日$ ，the values for Which E；$=$ ？
The practical utility of the above oroposition is imitad．
 for the dievibution af a minimel suficient statistic，the lack of fit for the complete distribution $i=$ disturting．It Euggests that the model does not accurately reflect the phersomenon beirg measured．In addition it is difficult ta test assumption（ii）．The fact that the mle for $f(0,0,0,0 ; 0)$ is close to $f(0,0,0,0)$ does not necessarily eupport（ii）； see the discussion of Model 6 in the next Sention．

II FIT TO THE INCOMFLETE DATA
For eroup C ，the epf of X_{s} and x_{4} are given in Table 7. alorig with the mles of the pfs for the three models．figair there is evidence of a leck of fit，for the events of and 10．due to the recency effect．

Note that Model of fits nearly perfectly the
distribution for 00 and 11 in Table 7．It is easy to show that nearly perfect fit holds in this case regardiess cif the obenved values，so that this is not really a test of fit． Irdeed，substituting the expressicns for Fow ard Fi＊front （S．1）into the pf for Model o，one obtains as the mle for $f(0,0)$ ．
$f *(0,0) /(1+(f *(1,1)) \geq /(1-f *(1,1)\}$
whichis very close to $f=(0,0)$ if $f *(1,1)$ is mmall．
Similarly the mle for $f(1,1)$ is
f＊（1，1）$(1-f *(1,1))$ ，
which is close to $f^{*}(1,1)$ if $f *(1,1)$ is small．
Gomething similar may happen with Model 7 ；however，analysis of the pf is much more difficult．

A result similar to the froposition in the last section could be prover for Eroup C ，with $T\left(x, 3, x_{4}\right)$ being a
sufficient sitatistic bafed only on the observations of x_{3} which is exactly as before，seems to be impossible to check． since $f *(0,0,0,0)$ is not observed for Group c ．

UII．COMFAFISON OF THE SIMFLE ESTIMATOFS iNDER THFEE MODELS

One way of comparing tie estimators of Section il is to see how well they would perform if the population fit one of the models in Seation Ill．Trying che simple estimators ander variety of modele gives some idea of trieir robustness．However，siref these models clearly need（at least）a correction for khown responce error，this analysis will be of more interest when bether－fitting fiodels are found．

Eased on the parameter sstimetes for Groups A and C ，if the populations exactiy fit the madels，then the populations would have the following charsetertstics，corregroncing to C would not be observed．MODEL $=$

MODEL 7

	Group	A		Group C	
． 931515	． 032197	． 963715	． 925712	．033506	． 95940
． 032189	． 004086	．036285			
			． 033506	． 007075	． 040402
． 763715	． 036285	1.000000	． 959418	． 040582	1.000000

Using the given results for Group A and the observable value pe（－，1），the four estimators from Section I can be Calculated and compared to the actual value $1-\pi c(0,0)$ which is implied by the model with the assumed parameters．The results（with \％orror＝ 100 （E－Actual）／Actual）are as ＇foll Jws．

\section*{| M |
| :--- |
| 0 |
| \square |}

TAELE Z
Estimated＂touched by burglary＂proportions ＂Actual＂Assuming different models for the population \＃5．0826 $.0823(0.3 \%) .0777(-5.9 \%) .0826(0.0 \% \%$ ．0525（－0．0\％） \＃7．0741 ．0766（3．4\％） $.0724(-2.0 \%) .0787(1.07) .0787(0.9 \%)$

For these three models for burglary，estimators es and ed do slightly better than the present published estimator El，and do sutastantially better than E2 for Modals 5 ar．d 6 ，but worse for Model 7．This analysis needs to be repeated for other crimes and，especially，for models which give a better fit to the Group A data，to make it Eufficiently conclusive to warrant changing the form of the published estimator

VIII．DISCUSSION OF THE RESULTS
Model 7 appears to fit the best of the three models considered．However，the main conclusion of this paper is that none of the proposed model fits without a modification to take into account the recency effect．In a different kind of analysis，the lack of fit of Model 6 was also chserved 1π Griffin（1983）．

The next step in the fesearch is to attempt to develog odele which do not recuire $F\left(x_{x}=1\right)$ to be the same for $i=$ 1，2，3．4．An additional nodel from Alexancer and Fopeuct （1993）．the＂independent with additional victimization＂ model，has not been considersd for reasons of space．this model also requires $F\left(x_{1}=1\right)$ to be constant，but may be

The immediate goal of this researctis to find a noasl which fite well for ali the crime Gateqories of interast， and to use this model to select one of the si\％closed－form Estimators（E1－E4 and the Group C mles for Models 5 and b）．It is probably desirable to apply the missing－data adjustment separately for different subgroups of the sample． For this purpose，it will be necessary to repeat the analysis for different sumgroups．

The results of Table 3 are of some immediate interest． The present estimator（E1）hass a relatively small bias under the three models．（The bias is only for the incomplete cases，which in any given month are at most about one－fourth of the sample．）Thus there is no strony reason to replace El by the mle under any of the selected models，since Ei does fairly well under the assumptions upon which sucti an alternative estimator would be based．

The data in this paper should be viewed as preliminary． The numerical likelihood calculations need further scrutiny， especially for Model 8 ，whose maximum likelihood appears to especially for Model ${ }^{\text {b，whose maximum likelihood ap }}$ ，widge＂in the function．（The mles were
calculated in UNIVAC single precision arithmetic，using the IMSL subroutine ZXMWD．The maximum was checked using single precision on an IEM personal computer，by inspecting single precision on an IGM personal computer，
the likelihood at a gria of parameter values．）
the The＂Actual＂values in Table 4 were calculated using the NCS＂finel＂desigra－based weights．The main effect of chese weights is due to a correction for instances of subsampling in the field，and to a＂post－stratification＂ adjustment bringing the weighted age－race－sex distribution of the full sample into agreement with independent estimates for the population．However，the weights also include noninterview adjsutments which are not appropriate for application to Group A in our present problem．It was not
possible to reweight the Group A casen separately for this analysis．This is felt to make little fifference to the results；indeed，almost identical results were ottained using unweighted results for burglary．

The approwimete standard errors in Table 4 are calculated usifg a design effect appropriate to the usual NCS estimates．The appropriateness of this design，effect for this purpose has not been tested．

TABLE 4
Fit of the Models to the Data

Tables 4，5，and 6 are based on the following values for the mles for Group A ．
Model 5：$p=.018706$
Madel 6： $\mathrm{FO}=.017907, F 1=.056625$
Model 7：$x=.422101, f=22.1416$
TAELE 5
Fit of the Models to the Distribution it of the Modsls to the

$E x_{1}$	Actulal	of Model	or Group A Model 6	Model 7
Q	． 931497	． 927247	． 929592	． 931515
1	． 062682	． 070704	． 066466	．062556
2	． 005315	． 002022	． 003792	． 005526
3	． 000505	． 000024	． 000148	－000384
4	． 000000	．000000	.000005	． 000015

TABLE G
Fit of the modele to the Distribution of the Minimal Sufficient Statistic sifor Mocel os

Actual	Model 5	Model 6	Model？
． 751497	． 927249	． 72759	． 931515
．03525a	． 035552	． 033700	． 031278
． 029424	． 035353	． 052566	． 031279
． 002181	． 000674	． 001952	． 001842
． 001764	． 000674	． 000594	． 001842
． 000551	． 000337	． 000937	． 000921
． 000817	． 000537	． 0003.09	． 000921
． 000235	． 000012	． 000112	． 000192
． 000270	． 000012	． 000036	.000292
． 000000	.000000	． 000003	． 000015

TABLE 7
Fit of the models to the distribution of X_{3} and X_{4} for Group C

$\mathrm{x}_{3} \mathrm{Na}_{2}$	Actual	Model 5	Model 6	Model 7
00	． 959426	． 757832	． 959424	． 95.7418
10	． 015512	． 020857	． 019252	． 01924 ？
O：	．023012	．620es 7	． 017262	． 019247
11	． 00204%	． 000454	． 0020 ES	． 002094

Taile 7 is based on the fallewing values of the \boldsymbol{m} les for Group E．
Model E：$p=.02121$
Model b： $\mathrm{Pa}=.019 \leqslant 31, P 1=.09632 \mathrm{~S}$
Moder 7：$x=.250632,2=2.4037$

Fiefererices

（1）Eddy，W．F．，S．E．Fienterg，aise D．L．Griffin（1991）
＂Some First Attempts at Estimating Victifization Frevalence in a Rotating Panel Survey＂．Technical Report No． 220, in a rotating Sanel Survey，farnegie－Mellon University， Department of S
September 1981.
（2）Alexander，Charles H ．and Michael J．Foebuck（1983） ＂National Crime Survey，Empirical and Model－Eased Estimators for the Proportion of Households Victimized in a Year，＂Froceedings of the American Statistical Assoniation Survey Research Methods Section．
（3）Griffin，D．L．（19日1）＂Discussion of Several Estimators of the Froportion of Households Victimized in a Year，＂ Working Memor andum NCS－3，Departmert of Statistics， Carnegie－Mellon University，June 1981.
（4）Griffin，D．L．（1993）＂Estimation of Victimization Frevalence using Data from the National Crime Survey，＂ umpublished Fhd．dissertation，Carnegie－Mellon University，August 1983.
（5）Kiobilarcik，Edward L．，Charles H．Alexander，Rajendra F． Singh，and Gary M．Shapiro，（1993）＂Alternative Fefer ence Feriods for the National Crime Survey，
Froceedings of the American Statistical A三E日ciation Survey Besearch Methods Section．

