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1 INTRODUCTION

This paper presents the variance estimators of
proportions from weighted or unweighted data
arising from cluster sample plans, when the
denominator of proportion is known. The variance
estimators discussed in this paper are summarized
in Table 1. The three methods are applied to the
data from four estimation plans.

Often multistage cluster sampling methods are
used in a large survey. For instance, National
Health Interview Survey and other types of national
surveys conducted by the National Center for Health
Statistics (NCHS) fall in this category.

The data collected in these surveys are usually
inflated to show the estimate of the U.S.
population. A weight or inflation factor is
attached to each of sampie persons in NCHS data
tape. This weight is known as the inverse of his
or her inclusion probability in the sample,
representing a post-stratified group to which this
person belongs. The prime motive of this paper is
to investigate the variance of such NCHS data.

Section 2 discusses the variance for data from
one- or two-stage cluster sample plan. Section 3
introduces the variance for the data, not only
clustered, but also weighted. Finally, Section 4
comments on these results and suggests further
studies on this topic.

Table 1
12 Types of Variances presented in this paper

Original sampte Weighted sample

One-stage|Two-stage|One-stage|Two-stage

Method |clusteredfclusterediclustered{clustered
Model 1 varl(p;) varl(ph) varl(ﬁh) varl(ﬁh)
Model 2 varz(ph) varz(ph) varz(ﬁh) varz(ﬁh)
Design vars(ph) var3(ph) vara(ﬁh) var3(ﬁh)

* Estimates of population proportion.
Note that letter p is used for clustered data
and n for data, weighted and clustered.

2. VARIANCE ESTIMATOR FOR CLUSTERED DATA
Assume that a sample of "a" psu's is
selected from A psu's in the fisrt stage,

and a sample of bi elements is selected from
Bi elements in the i-th selected psu for the

second-stage sampling. It is assumed that
the sampling is done randomly with replacement.
The notations used for one-stage clustered sample
data are shown in Table 2.

For the estimation purpose, define yijh =1

if the (i,j)-th element falls into the h-th
category and yijh = 0 otherwise.
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Table 2
Notations for one-stage clustered sample data

Population Sample
Cluster: A -
Element: Bi j
cluster: i=1l... A 1=1...a
elements: Jg=1... Bi j=1 b1
cells: h=1l...r
A a
all counts: y =7 B, n-= ¥ b,
i i
a bi
. * =
cell counts: Yi " X X Yijn
L]
cell prop.: LS Yh/ Y op, = " / n

cell vector: » =(m; ... wr) p =(py--- pr)

* The sums are indicated by dropping the
subscript.
The basic parameters of interest is =
(3 m, = 1andx > 0) for the r multivariate

response categories. An unbiased estimate p for =
is given in Table 2 and its variance is obtained
as follows.

Suppose P(y =1) = E(yijh) =Ty

if i+ i

ijh
Thh!
8. .,
E(Yijpe Yirgepe)q 10
0 if i
wh1f1
is the probability

ifi=4'y 3¢,

i', j=3" and h
i', 3 = j' and h
that yijh =

j# J', and all h and h'.

+#h'
= p'

#on

where Gihh'
=1 for i =1

ilj‘hl
Gihh' often depends on the size of cluster i and
categories h and h'.
can be shown that
) 1 a
E(pp)= = (nm* L 85pn0;

Using these conditions, it
(b,-1) + (n?~ n - G)nﬁ),

2
Gihhbi(bi’l) + (n%- n- G)nhwh.),

bl

1
E(Ph,Ph-)= _2 (
n

a
where G = § bi(b' -1).

1

p—

al. Model 1 results for one-stage clustered
sample data

Define Model 1 as follows. Suppose that there
exists a set of parameters [eihh') for

0 <84, $1and (84pp) with
B T * (1 - 8.nnt) w% for h = h'
Sinn' = (2.1)
(1 - eihh') T for h # h' ,



which is the probability that the one member

of a pair falls into cell h and the other in

cell h', when this pair came from the i-th cluster.
Here 8inn' is considered as a type of pairwise
intra- or inter-cluster homogeneities for the
members in the i-th cluster. In this model, we also

assume that eihh'= eihh = 1 for perfect correlation.

Using this definition (2.1), we can write the
variance and covariance of p shown in Table 2 as
Tl =) (4 L Oy Bi(by - 1)y

varl(ph)= i

n n
a

T (1 + 2 %qnne i (0
1

COVl (ph :phl )= )
n n

bl. Model 2 results for one-stage clustered
sample data

Define Model 2 as )

— 1

®ihn ﬂh(l - wh) +omy for h = n

d. : (2.3)
ihh'

pihh./%h(l- ﬂh)wh.(l- nh.)+ T T for h#n'
where we also consider the positively correlated
data so that 0 < o, v < 1. pyp. is the intra-

or inter-cluster homogeneity. (2.3) is the
probability when yijh = yij'h'= 1 occurs.

If two members in the cluster is perfectly
correlated, the happening of off-diagonal is
impossible, and thus the second row concurs
the first row and we can have only the diagonal
elements, which add up to one. On the other hand
if there is no correlation, the sum of the dihh'

over all h and h' is also one.

Note that the first row of Model 1 is the same
as that of Model 2. The latter is more general
since there is no need for the assumption of
eihh‘= eihh = 1 for perpectly correlated data.

One should note that for binomial data, the two
models are equivalent.
Using Model 2, we can show

a
ﬂh(l - ﬂh)(l + 3 ®inn bi(bi - 1))

varz(ph)=‘____ i

n n

N (2.4)

T ¥ pihh'bi(bi - 1)

covz(ph,ph.)= N +Thh‘ i )
n n

where Pihn’ is the homogeneity parameters in
Model 2, and

T

o e

hh' —
‘ll'h’"hu
We may test the appropriateness of a model.
Let the number of total pairs be X and those in
cell (h,h') be Xhh' h, h' =1, ..., r, for all
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clusters of different sizes. One may choose the
model of a smaller value of

ror
).

h

) (Xpp - X phh.)2 (2.6)
h T T

X Phh'
where Phn’ is the probability Model 1 or 2. When
r parameters, r-1 of nh's and 6 in the model Phin

are replaced by their consistent estimates, the
statistic (2.6) may be tested with chi-squared
distribution with r2 - r - 1 degrees of freedom.

cl. A Design-Based estimator from one-stage
clustered sample data

We may also derive the variance and covariance
via the classical concepts applied to categorical
variables. Cochran (1967, pp300-310), Hansen,
Hurwitz, and Madow (1964, Vol. 2 pld44), and Kendall
and Stuart (1968, Vol 3 pl92) describe variance of
quantitative data arising from multistage sample
surveys.

In the following developments, no model is
assumed . The units are selected with equal
probabilities and elements by simple random sample.
For this particular sample plan, the variance
estimator for p is given by
A

~1-f 2 1 b2(1 - f,.) 2
vary(pp)= — ~ St — E 21 o4
ab? a? p? b
. (2.7)
Ao
- 1-f 1 b2(1 - f,.)
cova (pyapyi)= — - Stant o BT 21 Spqpp
ab a?h? b
nere 5= 1§ a b
where b= =J b, ,f, = —,f,. = -,
ai | 1 A 2i Bi
A , B,
v 2
2 - I iy - ) @ . L gn - Vi)
lh - —— — 2ih -
A-1 B, -1
B, Y. A
. h 1
Yoo =3 ys Vo= Jand ¥, =275 v,
ih i ijh ih B. h A i ih

An unbiased estimate of (2.7) is given by replacing
the parameters by unbiased sample estimates:

a b,
_m 2 1 -ERY ]
DGR T Yign = Myp)
52 = 1—-—'—‘—.—.-' B 52 = M
1h > >2ih »
a-1 . b. -1
;
b n. a
=yl = _ _ih = 1
Min T T Yigne MinT »and np == %0y
J b i a 1

Slhh' and SZihh' can be similarly obtained.
If fZi =1 for all i, that is bi = Bi’ (2.7)
becomes that appropriate the simple random
sampling of the psu's.

If f1 = 1, that is a = A, the formula is that

for proportional stratified random sampling, since
psu's may then be regarded as strata, all of which
are sampled. When f, and f, are negligible, (2.7)
becomes the with-replacement case.

The second term of (2.7) can be written in terms



of proportions (Cochran, 1967 p248). The variance
can also be expressed in terms of usual
correlation coefficient p. It can be shown this
resulting variance takes the same form as that of
model-based results shown in (2.3) except for
constant factor (Cochran, 1967 p242).

a2. Model 1 results for two-stage clustered
sample data

We will use the notations shown in Table 3
for two stage cluster sample situations.

Suppose that the sampling of units is done
with equal probabilities and that of elements by
simple random sample with replacement.

Define yijkh =1 if the (i,j,k)-th element

falls into the h-th response category and = 0
otherwise.

Table 3

Notations for two-stage clustered sample data
Population Sample
1st-stage A a clusters
2nd-stage * Bi bi clusters
element Mij mij elements
Subscripts
1st-stage i=1... A i=1...a
2nd-stage* j = 1... Bi j=1l... bi
elements k =.1.. .o k= 1loo.m, .
1] 1]

cells h=1...r

A Bi a bi
all counts: Y =Y § M., n= vy m,

i M ig M

a bim1j
cell counts: Y n,= DA Yijkn
igk

cell prop.: = Yh/ Y Ph = My / n
cell vector: = =(my ... nr) P =(py--- pr)

* These are used for elements in one-stage
case.

Suppose that P(yijkh = 1) = “h, and
e T
E(y.,kh .. . ) sphh' ifoi=i', j#j' (2.8)
i3 s ]Ijl Tt X o N, .
6shh' if i=i', j=j', k#k
™ if i=i', j=3j', k=k'

where § is the probability when yijkh= yij'k'h'= 1

occurs for the various combinations of subscripts.
Then, it can be shown that

1
E(p})= ;é(y“h+ Foqpnt (H-F)8ppnt (n®- n - H)ng)

1 ) (2.9)
E(ppPp )= ;é(Fsshh‘+ (H-F)8 e+ (0% n= Hmpmp ),
a bi a
where F = Z X mij(mij - 1), and H = ? bi(bi - 1).
i i

We may use Model 1 twice first for the members

503

in the segment and secondly for those in the psu
excluding those pairs already counted as a segment
pair so that any one pair can not be counted twice.

Specifically, write the pairwise probability
of the members in the psu as

+ (1 - ep)nﬁ for h = h'

s ) Onh
phh' .
(1 - ep)ﬂhwh. for h # h' |

where ©

(2.10)

=9 .. 0 _ 1is an average of
p pihh p
homogeneities for the members over all psu's and
categories with 0 <8 < 1, and the pairwise
probability for the members in the segment as

2 = n!
+(L-e)rd for h =h

S ¢
_4 sh
$shh —{
(1 - es)ﬂhﬂh. for h # h' ,

where-es =8

(2.11)

sijhn' es is an average of
homogeneities for the members in the segment over
all segments and categories with 0 5—95 < 1.

Using these definitions for sshh' and sphh"
the variance and covariance of p is given by

Floo H-F

"l - ) (s 0 ) .
Y y y
- F H-F
h 8
covy (pyy 5Py )= —Lh * )

(p, )=
Yan P (2.12)

(1 + eS J— p,____.;

Y Y

b2. Model 2 results for two-stage clustered
sample data

Model 2 given in (2.3) can also be applied to
the first and second stage clusters and we can
write the pairwise probability for members in psu
as

P ohh m (1 - w ) +x2 for h=h'

At

(2.13)

pphh./ﬂh(l-ﬂhyﬂh.(l-ﬂh.)+ TrhTrh.fOP h#h',

where pphh' is the pairwise intra- or inter-

cluster homogeneity for the members in the
psu with condition, 0 5»°phh' < 1, and that for
the members in the segment as
- 2 = p'
pShh Wh(l Tl'h) + Tl'h for h h

d (2.14)

shh'

pshh./nh(T-wh)wh.(l-wh.)*' ﬂhnh.for‘ h#+h'.
where Pshn' is the pairwise inter- or intra-

cluster homogeneity for the members in the
segment with the condition of 0 <pg 0 < 1.

Using these probabilities, we can write the
variance and covariance of unbiased estimate p as

w, (1 - m,)
varz(ph)=—ll— D1+ ogpn §»+ Pphh ﬂii)
y
(2.15)
-T
hh (4T (o F+p HF))
covy (pppp )= hn' shh'  phh'T



where o and p are the pairwise intra-cluster

shh phh
homogeneities in the psu's and segments,
respectilvely; similarly, Pshh' and pphh. are for

the inter-cluster homogeneities; (2.12) differs
from (2.15) only by Thh' shown in (2.5).

c2. A design-based estimator for two-stage
clustered sample data
The units are selected with equal probabilities

in each stage and elements by simple random sample.

Then
A
~as(l - fy) 1 2
vary (p, )= Sth ¥ — Z bi(1 - f23) SHin
n?a n?
1 2 by 2
+ 7 Z mij(l - fBij) S31jh i (2.16)
n2 vV J
A A G
where s2, = ! 5 (V.- 3 % Vin )2,
lh  +—— % 371 ih &
A-1 i=1 i A
B. B. o
1 i G im,.Y.
s2. = vUm o= 3 Migting2,
2ih Bi- T j-=1 ij ijh 3 Bi
M. .
2 1 i v 2
S3ijh T Mk Yign)®,
.- 1 k=1
1]
Y. Y. .
y. = ih y. = _1dh
Yih' Bi , and Yijh_ Mij .
cov3(ph,ph.) can be similarly obtained.
If Bi =B, bi = b, Mij = M, and mij = m, then
N = ANM and n = abm and {(2.16) reduces to a

simpier form.
An unbiased estimate of (2.16) is obtained from
replacing the parameters with unbiased sample
estimates:
G A
Yin® b

B 1 M

Yy, and y..,= ——-F Cy.oo-
. b7k ijh : ijkh
il mis k

The estmate of proportion and its variancg for

one-stage cluster can be obtained by replacing

aby l, bbya, mbyb,]Jbyi, k'by j, fy by 1,

f21 by fy, f3ij by ij’ and deleting the

subscript 1.

3. VARIANCE ESTIMATORS FOR CLUSTERED AND WEIGHTED
SAMPLE DATA

Here we consider the weighted data instead.
The individual weights are known and approximately
the inverse of probability to include this person
in the sample, often representing the post-
stratified group to which he belongs.

Table 4
Notations for one-stage weighted data
Population Weighted data

A a bi
all counts: Y=7B, y=73 7 w

L7 AN

i i

a bi

cell counts: Y, yh=§ § W5 Yign
cell prop.: ™ Yh/ Y L yh/ y
cell vector: m =(my ... ) « =(Aypeee 7))
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Let the weight be the inverse of its selection

probability Eij for the (i,j)-th element. Denote
its weight by wij =1/ Eij' It can be shown that

the variance and covariance of = are given by

)= P 7 (83pp=72)
var(n, )= m (1w, )Y Towd Y T ww (8L e
h y2 h h i i i%j ijhij'tihh Th
ab,
~ - 1 i (3.1)
covim, , m,0)= — J-m 7,5 § Wi,
h h y2 h"h i ij

a b,
T 3w W (8 ey )
i 53 ij7ij'  ihh' Th'h

~O

+
[

al'. Model 1 results for oen-stage clustered and
weighted sample data
Replacing 8ihn with Model 1 shown in (2.1),

(3.1) reduces to

. T (1 - G
vy = )
y y (3.2)
A A mew G )
covl(nh,wh.) = - _llll _Jﬂl R
Y
a bi a bi )
where G, =Y 6.,V w.o.w. .t T wi..
hh i ihh jei" ijUigt oy i ij

When the sampling of units is done with equal
probabilities and that of the elements by simple

random sample, wij = ABi/abi. Under this

particular survey plan, we can express th. as

& a2g2
T AL R CC R VS O (3.3)
! azbi

bl'. Model 2 results for one-stage clustered and
weighted sample data
Replacing Gihh' with Model 2 shown in (2.3),

(3.1) reduces to

{1l -n)6
h h’ “hh ,
varz(ph) = e s
o (3.4)
-mw, G
h"h  “hh'
COVz(Phaphl) = — —
Y Y
a bi a bi )
where G =Y oo VoW w YT W,
hh 3 ihh J# ijiij i ij
g bi a bi )
G, =T v VYoo § wow.. v Y WA,
hh hh® o “ihh Jegr WU % ij

and Thh' is given in (2.5). th and th. can be
reduced to simpler froms as done in (3.3).

cl'. A design-based estimator for one-stage
clustered and estimated data
In the following developments, we use the
notations given in Tables 2 and 4 and no model
assumptions are made.
When units are selected with equal probabilities
and elements by simple random sample, wij= ABi/abi.



Then, an unbiased estimate for population
proportion is given by

A2 Bi bi
) Yiin
L N I (3.5)
h R
forh =1, ..., r, with
A
s~ 1l-f o 1 B2(1 - f,.)
vary (ny )= —— Sin* T 217 S3in
aB? ahB? b,
(3.6)
where f; =a / A, f,. = b, /B,
A ) B;
_ ¥ v/ 2
DEUTER® T Mg - Vin)
2 o > g2 = 3 >
1h "1 2ih
B, -1
1
B. Y. A
_oi o ih s _ 1
in =5 Yigne Yop 7o and T = D0y,
J B Al

The unbiased estimate of (3.6) can be obtained from
reptacing the parameters with sample estimates:

a . b,
c 2 i = 2
T8y i - ¥) T Wign = ¥ip)
a-1 2 by - 1
- Yin - Yy -1
Yip == ¥, = —,and y. =— J B.y.;
ih b h a ih a § 1 ih

i
and similarly for cova(;h,;h.).

a2'. Model 1 result for two-stage clustered and
weighted sample data
The one-stage case previously discussed can
edsily be extended to two-stage situation.
The notations used in this section are shown
in Tables 3 and 5.
Let wijk = l/gijk be the weight for the

(i,j,k)-th element, where Eijk is the inclusion
probability of this element in the sample.
Table 5

Notations for two-stage weighted data
Population Weighted data

A Bi a bimij
all counts: Y =) J' M. y=7 7 Wiik
ijg W ijk
a bimiJ
cell counts: Y, ) Wi5 Yiikh
ijk
cell prop.: = Yh/ Y LI yh/ y

cell vector: ® =(m; ... w
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The variance estimator for = is given by

(A 1 a bi mij )
var(s, ) = — (1 =7 )V 7 ¥ w2,
h y2 h h i3 o ijk
2y & 9143
+ (8. =12 TV Y Y vl w,
ishh h i ke ijk ijk
) a bi mij
+ (8, o mw2) Y Y VY W W
TPhh h -i\j#le#Kl 1Jk 1] k
A A 1 a b, m (3.7)
covim mp )= — b= mom o TV VY w2,
h*>"h yz[. h"h ik ijk
a bi m1.J
+ (8, voememea ) YTV WL WL
ishh h'h i ke ijk ik
( a bi miJ
+ (8, e ) Y Y Y WL W
iphh h'h i jej'eec’ ijkmij'k

When Gishh' and 61phh' are replaced by

(2.10) and (2.11), the Model 1 result of (3.7)
is given by

CRRLILY |5 LTI & AT
vary (m )=—————}) ¥ m, .w$.+ 8 m, . (m; . ~1)w4 .
h y2 i ijoig s 3 j ijrid ij
a b, m,
+ 6 7 50 ¥H i Mo
P J*#J' k=zk' 4
T, w0 ja by (3.8)
. h "h 1 2
covy (w nh.)— - — IV ¥ m,. Wi,
h yz i ij ij
a bi a bi mij
+o VY m(mi-Dwow v o T T VY owolow,
s’ 3 gy N e §£3' er ij "ij
where es esijhh' and ep = epihh"
If wijk W, mij= m, and b1= b, (3.8) reduces to
varl(;h)— f_f} - Ty w(1+es(m-1)+ep m(b-1))

y (3.9)
covl(wh,wh.)= T Th! w(1+es(m-1)+epm(b-1))

y
where w is the weighting effects and 1 + es(m - 1)
+ epm(b - 1)
cluster sample plan. When units are selected with

is the design effect from two-stage

equal probabilities, and the elements by simple

random sample, we may write wijk= ABiMjk/abinﬁk’

which in turn gives a simple form of (3.7).

b2'. Model 2 results for two-stage clustered and
weighted sample data )
Reptacing Sishh' and 6iphh‘ with (2.13) and

(2.14), respectively, (3.7) reduces to



wh(l - nh)

3

- a bi m .
vary (m, )= ———eee yylgnd w%,k +
y2 id « J
a b, m, a m; ..,
iij 1 ¢13)
P DR vt Y VY Wo o Waoiinls
55 J k! 1Jk 13k P J# 3 'kec! 13kT13 K
-~ ™™ {a by m.
CovZ("h’"h')= — Py Yy W%Jk + (3.10)
y2 i J kK
a b1m1J 133
4] Z z z |T |+D 2 y }‘ W. |T i
83 § cee! TJk ijk' hh P; it e 1Jk ij'k' "hn
where Thh' is given in (2.5). If wijk are replaced
by ABiMiJ/ abimij’ (3.10) can be simplified as done
in (3.3).

c2'. A design-based estimator for two-stage
clustered and estimated data
Kendall and Stuart (1968 Vol 3 pl190) show
the variance for quantitative data.
If the sampling is done with equal
probabilities for each stages and with simple

random sample for elements,

expressed as

the weight can be

w.., = AB.M../ab.m,
ijk itig ity
An unbiased estimate of population proportion
is given by
a 28505 Mymy
— 1 —1 =7y
: ijkh
- a i bi Jomgg k
T, = J with
h
Y
2 A L2
" A1 - fy s2 4 A ) Bi(l - fZi) 2.
var3(nh)- - ith =~ — - § 21ih
Y2 a Y23 b,
b.
A 2B, i M (1 -f..)
S
B T e e AL
Yca b1 i
J (3.11)
where Y is given Table 5,
2 ? 2 2 1 ?i( v o2
$2 = (Y )2, S5 = —— V(Y. =Y. )%,
Il =1 ih” h 2ih B.-1 J= ijh “ih
M. .
1 ij g 2
2. = YL YL L)
3ijh ﬁ:ETT k=1 ijkh "ijh

An unbiased estimate of (3.11) is obtained.from
replacing the parameters with unbiased estimates:

2 . 1 v 1 by 2
s =Y (B, Jur - 27 8.7..)2,
ih a -1 i=11 ih ai | in
b. b
O | i = 1 ¢iy =
s T 9OMys- D Y MLy
2ih =T el 137 13h b, 1371jh
m., .
= 1 1J v
$31jh Y Wikn Yige)®s
m, .~ 1 k=1
1]
1 b 1 .
1
= o V', and y.. = — -3 s
bi ] ijh ijh mij K ijkh
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Similarly, cov3(ﬁh,£h,) can be obtained.

If Bi =B, bi = b, MiJ = M, mij =m, (3.11)
reduces to a simpler from.

The estimate of proportion and its variance
for one-stage cluster case can be obtained by
setting A = a = 1 and replacing Bi by A, bi by a,
Mij by by by 1, fou by fi, fapp by fpy,

J by i, k by j, and deleting i.

Other sampling plans can easily be reflected in
the variance form. Kendall and Stuart (1968,
vol.3 pl98) show a general form of such variance
for quantitative data.

4 COMMENTS

A1l model-based variance estimators show a
common form of variance and covariance, that is
the variance of muitinomial variates multiplied
by the factor G. G is design effects for
unweighted data. For clustered and weighted data,
it combines the design effect with that of weight.
The four design-based estimators for proportions
can be comparable with the corresponding model-
based results when the latters are properly
adjusted for particular features of design.

Above results from the three approaches can also
be compared with those from other methods, such as
BRR, Jackknife, Bootstrap, Linear approximation,
and Williams method, through the simulation or
other algebraic solutions.

One of the two approaches may be used to test
appropriateness for the use of a model. One is
shown in (2.6) and the other may be accomplished
by comparing the result from the model assumption
to that arising from design-based (no-model)
estimator.

Further studies on these and other types of
proportions are needed to fully understand the
characteristics of these variances, including
numerical examples as well as their asymptotic
properties.
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