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I INTRODUCTION 
This paper presents the variance estimators of 

proportions from weighted or unweighted data 
arising from cluster sample plans, when the 
denominator of proportion is known. The variance 
estimators discussed in this paper are summarized 
in Table 1. The three methods are applied to the 
data from four estimation plans. 

Often multistage cluster sampling methods are 
used in a large survey. For instance, National 
Health Interview Survey and other types of national 
surveys conducted by the National Center for Health 
Statist ics (NCHS) fa l l  in this category. 

The data collected in these surveys are usually 
inflated to show the estimate of the U.S. 
population. A weight or in f la t ion  factor is 
attached to each of sample persons in NCHS data 
tape. This weight is known as the inverse of his 
or her inclusion probabil i ty in the sample, 
representing a post-strat i f ied group to which this 
person belongs. The prime motive of this paper is 
to investigate the variance of such NCHS data. 

Section 2 discusses the variance for data from 
one- or two-stage cluster sample plan. Section 3 
introduces the variance for the data, not only 
clustered, but also weighted. Final ly, Section 4 
comments on these results and suggests further 
studies on this topic. 

Table 1 
12 Types of Variances presented in this paper 

Weighted sample 

One-stage 
c lus te red  

Two-stage 
c lus tered 

Or ig ina l  sample 

Two-s tage  O n e - s t a g e  
c l u s t e r e d  c l u s t e r e d  

var 1(ph ) l~ar 1(~h ) 

var2(Ph ) Ivar2(~h ) 
_ = 

var3(Ph) var3(~h ) 
= . :  

Model 1 vat l (p~)  vat I (9h ) 

Model 2 vat 2(ph ) vat 2(~h ) 
• . 

Design vat 3(ph ) vat 3(~h ) 

* Estimates of populat ion p ropo r t i on .  
Note that  l e t t e r  p is used for  c lus tered data 
and ~ fo r  data, weighted and c lus te red .  

2. VARIANCE ESTIMATOR FOR CLUSTERED DATA 
Assume that a sample of "a" psu's is 

selected from A psu's in the f i s r t  stage, 
and a sample of b i elements is selected from 

B i elements in the i - th selected psu for the 

second-stage sampling. I t  is assumed that 
the sampling is done randomly with replacement. 
The notations used for one-stage clustered sample 
data are shown in Table 2. 

For the estimation purpose, define Yijh = 1 

i f  the ( i , j ) - t h  element fa i ls  into the h-th 
category and Yijh = 0 otherwise. 

T a b l e  2 
Notat ions for  one-stage c lustered sample data 

Populat ion Sample 

Clus ter  • A a 

Element- B. b. 
1 1 

c lus te r "  i = 1 . . .  A i = 1 . . .  a 

elements" j = 1 . . .  Bi J = 1 . . .  b i 

c e l l s :  h = 1 . . ,  r 

A a 
a l l  counts" Y = ~ B i n = ~ b i 

i i 
a b. 

• * n ; ~ I  ce l l  counts Yh h = ". .~ Yi jh  
1 j 

ce l l  prop." ~h = Yh / Y Ph = nh / n 

ce l l  vector" , = ( ~ t ' "  ~r ) P = ( P l " "  Pr ) 

* The sums are ind ica ted by dropping the 
subsc r i p t .  

The basic parameters of i n te res t  is w 
(~ ~h = i and ~h > O) for  the r m u l t i v a r i a t e  

response ca tegor ies .  An unbiased est imate p for  i 
is given in Table 2 and i t s  variance is obtained 
as f o l l o w s .  

Suppose P(Yi jh = 1) = E ( Y i j h ) =  ~h and 

~h~h , i f  i ~ i '  

E(Y i jh ,  Y i ' j ' h '  ) aih h, i f  i = i ' ,  j ~ j ' ,  

0 i f  i = i ' ,  j = j '  and h ~ h' 
~h i f  i i ' ,  j j '  and h = h' 

where aihh, is the p r o b a b i l i t y  that  Y i jh  = 

= i for  i = i '  j ~ j ' ,  and a l l  h and h ' .  Yi ' j  'h '  
6ihh, of ten depends on the size of c lus te r  i and 

categor ies h and h ' .  Using these cond i t i ons ,  i t  
can be shown that  

i a 
E(p~)= n~-(n~h+ # 6 i hhb i ( b i - 1  ) + (n2- n -G )~R) ,  

1 a 
E(Ph,Ph,) :  ~ ({ 6 i h h b i ( b i - 1  ) + (n 2- n- Gl~hlTh, ) ,  

a 

where G = ~ b i (b i  - 1) .  
i 

al. Model I results for one-stage clustered 
sampl e data 

Define Model i as follows. Suppose that there 
ex is ts  a set of parameters (Oihh,)  fo r  

O_ < Oihh, < I and (6ibm,) wi th 

Oihh, ~h + (1 - Oihh,) ~ for  h = h' 

aihh,= (2.1) 

( i  - E)ihh,) ~h~h , for h ~ h' , 
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which is the p r o b a b i l i t y  tha t  the one member c lus te rs  of d i f f e r e n t  s i zes .  One may choose the 
of a pa i r  f a l l s  in to  ce l l  h and the other in model of a smal ler  value of 
ce l l  h ' ,  when th i s  pa i r  came from the i - t h  c l u s t e r ,  r r 
Here 0ih h, is considered as a type of pa i rwise ~ Z (Xhh, - X Phh,) 2 (2 .6)  
i n t r a -  or i n t e r - c l u s t e r  homogeneities fo r  the h h' 

X Phh' members in the i - t h  c l u s t e r .  In t h i s  model, we also 
assume that  0ihh ,= 0ih h = i fo r  per fec t  c o r r e l a t i o n ,  where Phh' is the p r o b a b i l i t y  Model I or 2. When 

i 
Using t h i s  d e f i n i t i o n  ( 2 . 1 ) ,  we can w r i t e  the 

var iance and covariance of p shown in Table 2 as 

~h ( I  - ~ h  ) (1 + 'Z 0 ihh '  b i (b i  - i )  ) 
varl  (Ph)= i , 

n n (2 .2)  
a 

- ~h~h ' ( I + ~ 0 ihh '  b i (b i  - I ) )  
c°vl  (Ph 'Ph' )= - - -= -  i 

n n 

bl. Model 2 results for one-stage c]ustered 
sampl e data 

Define Model 2 as 

dihh,=iPihh ~h(l - ~h) + ~ for h = h' (2.3) 

Pihh,J~h(1-  ~ h ) ~ h , ( 1 - ~ h , ) +  ~h~h , fo r  h*h' 

where we also consider the p o s i t i v e l y  co r re la ted  
data so tha t  0 < Pihh, <- I .  Pihh'  is the i n t r a -  

or i n t e r - c l u s t e r  homogeneity. (2.3) is the 
p r o b a b i l i t y  when Y i jh  = Y i j ' h  '= I occurs.  

I f  two members in the c l us te r  is p e r f e c t l y  
co r re l a ted ,  the happening of o f f -d iagona l  is 
imposs ib le ,  and thus the second row concurs 
the f i r s t  row and we can have only the diagonal 
elements, which add up to one. On the other hand 
i f  there is no c o r r e l a t i o n ,  the sum of the d ihh '  
over a l l  h and h' is also one. 

Note that  the f i r s t  row of Model i is the same 
as tha t  of Model 2. The l a t t e r  is more general 
since there is no need fo r  the assumption of 
0ihh ,= 0ih h = I fo r  perpec t ly  co r re la ted  da ta .  

One should note tha t  fo r  binomial data, the two 
models are equ i va len t .  

Using Model 2, we can show 
a 

~h ( I  - ~ h  ) ( I  + ~ Pihh' b i (b i  - I )  ) 
vat2 (Ph)= i 

n n 
a (2.4)  

_ ~h~h , ~ Pihh,bi(bi - I) 
c°v2(Ph'Ph'  )= ( I  +Thh, i ) 

n n 

where Pihh' is the homogeneity parameters in 

Model 2, and 

Ii -~h ) ( l - ~ h '  ) (2.5)  Thh, = • 

~h~h , 
We may t es t  the appropr iateness of a model. 

Let the number of t o ta l  pai rs be X and those in 
ce l l  ( h , h ' )  be Xhh, h, h' = I . . . . .  r ,  fo r  a l l  

r parameters, r-1 of ~h s and 0 in the model Phh' 

are replaced by t h e i r  cons is ten t  est imates,  the 
s t a t i s t i c  (2.6)  may be tested wi th chi-squared 
d i s t r i b u t i o n  wi th r 2 - r - I degrees of freedom. 

cl .  A Design-Based estimator from one-stage 
clustered sample data 

We may also derive the variance and covariance 
via the classical concepts applied to categorical 
variables. Cochran (1967, pp300-310), Hansen, 
Hurwitz~ and Madow (1964, Vol. 2 p144), and Kendall 
and Stuart (1968, Vol 3 p192)describe variance of 
quantitative data arising from multistage sample 
surveys. 

In the following developments, no model is 
assumed. The units are selected with equal 
probabilities and elements by simple random sample. 
For this particular sample plan, the variance 
estimator for p is given by 

- 1 -  f I 
var3(Ph ) S~h 

aG 2 

" 1 - f l  S 

c°v3 (Ph 'Ph ' )  a62 

a 
where S = i ~. bi ' f l  = 

a i 

A 
_ )2 

Z (Yih ?h 
S~h_ = i 

A -  1 

I A 2(1 _ f ) 
bi 2 i  h 

a 2 132 i b i 
- ( 2 . 7 )  

,+ I A 2 ( 1 _  f2 ) 
Zhh . . . . .  ~ b i i S2ihh, 

a262 i b. 
1 

a b 
1 

- '  f2 i  . . . .  ' 
A B 

1 

B . 
Tl(Yij h - ?ih )2 

s i,= J 
B .  - 1 

1 

B Yih - 1 A 

Yih = zlj Y i j h '  ?ih - B. , and Yh = A .~ Yih " 
1 

An unbiased est imate of (2.7)  is given by rep lac ing 
the parameters by unbiased sample est imates- 

a b. 
(b i nih - ~h )2 ~l(Yij h - nih )2 

s 2 i ~ih-- j lh = , s 

a -  i . b i - i 

b. nih 1 ~ 
n_..ih = JT'lyijh'" nih= b. , and nh = -  l" nih"  

1 a 

Slh h, and S2ihh, can be s i m i l a r l y  obta ined.  

I f  f2i  = 1 f o r  a l l  i ,  tha t  is b i = B i ,  (2.7) 

becomes tha t  appropr ia te  the simple random 
sampling of the psu 's .  

I f  f l  = I ,  tha t  is a = A, the formula is tha t  

fo r  p ropor t iona l  s t r a t i f i e d  random sampling, since 
psu's may then be regarded as s t r a t a ,  a l l  of which 
are sampled. When f l  and f2 are n e g l i g i b l e ,  (2.7)  
becomes the wi th- rep lacement  case. 

The second term of (2.7)  can be w r i t t e n  in terms 
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of propor t ions (Cochran, 1967 p248). The variance 
can also be expressed in terms of usual 
c o r r e l a t i o n  c o e f f i c i e n t  p.  I t  can be shown th i s  
resu l t i ng  variance takes the same form as that  of 
model-based resu l t s  shown in (2.3) except fo r  
constant f ac to r  (Cochran, 1967 p242). 

a2. Model I results for two-stage clustered 
sample data 

We wil l  use the notations shown in Table 3 
for two stage cluster sample situations. 

Suppose that the sampling of units is done 
with equal probabil i t ies and that of elements by 
simple random sample with replacement. 

Define Yijkh = 1 i f  the ( i , j , k ) - t h  element 

fa l ls  into the h-th response category and = 0 
otherwise. 

Table 3 
Notations for two-stage clustered sample data 

Population Sample 

1st-s tage A a c lus te rs  

2nd-stage * B. b. c lus te rs  .i 1 

element Mij mij elements 

Subscr ipts 
1st-stage i = 1 . . .  A i = 1 . . .  a 

2nd-stage* j = 1 . . .  B i j = i . . .  b i 

elements k = . i . . .  M .  k = i . . .  m .  
i j  IJ 

ce l l s  h = 1 . . .  r 

AB.  a b .  
a l l  counts- Y = Z ~l M. n = Z ~I m .  

i j i j  i j i j  
a b ~  

ce l l  counts" Yh nh= ~ ~,i i j y  
. j k i j kh  

ce l l  prop." ~h = Yh / Y Ph = nh / n 

ce l l  vector" ~ = ( ~ I " ' "  ~r ) P = ( P I " ' -  Pr ) 

* These are used fo r  elements in one-stage 
case. 

Suppose that  P(Yi jkh = i )  = ~h' and 

~h~h , i f  i ~ i ' ,  

E(Yi jKN'  Y i ' j ' k ' h ' )  a_ pNN' i f  i : i ' ,  j ~ j '  (2.8) 

shh' i f  i i ' ,  j = j ' ,  k~k' 

h i f  i i ' ,  j = j ' ,  k=k' 

where a is the p r o b a b i l i t y  when Y i j kh  = Y i j , k , h  ,= i 

occurs for  the various combinations of subsc r ip t s .  
Then, i t  can be shown tha t  

i 
E(p~)= n2(Y~h+ Fashh + (H-F)aphh+ (n 2- n - H ) ~ )  

(2.9) 
i + (H-F)a + (n 2 n- H)Xh~ h E ( Ph Ph' ) = n-2 ( Fa s hh' phh' - ' ' 

a b .  a 
where F = Zi j ~I mi j  (m i j  - I )  , and H = ~i bi (bi - I ) .  

We may use Model i twice f i r s t  for  the members 

in the segment and secondly fo r  those in the psu 
excluding those pairs al ready counted as a segment 
pa i r  so tha t  any one pa i r  can not be counted tw i ce .  

S p e c i f i c a l l y ,  w r i t e  the pai rwise p r o b a b i l i t y  
of the members in the psu as 

(Op~h + ( 1 -  0 ) ~  fo r  i = h' 
aphh, = v " (2.10) 

I ( 1  - ep)~h~ h, for h ~ h , 
. 

= where ep eplhh, ,  ep is an average of 
homogeneities for the members over all psu's and 
categor ies wi th 0 < 0 < I ,  and the pairwise 

p 

p r o b a b i l i t y  fo r  the members in the segment as 

i 
Os  h + (1-es)  fo h:h' 

ash h, = " (2.11) 

(1 - Os)~h~ h, for  h ~ h' , 

where 0 s = Osi jh h, 0 s is an average of 

homogeneities fo r  the members in the segment over 
< 1. a l l  segments and categor ies wi th 0 <_0 s _ 

Using these d e f i n i t i o n s  for  ash h, and aphh,, 

the variance and covariance of p is given by 

( 1 -  ~ ) F + e H - F) 
varl  (ph)_ h h (1 + e s - p - - ~  , 

Y Y Y (2.12) 

- ~  F + e  H-F_)  
c°v1(Ph'Ph' ) -  h~h ( I  + es p 

Y Y Y 
b2. Model 2 resu l t s  fo r  two-stage clustered 

sample data 
Model 2 given in (2.3) can also be appl ied to 

the f i r s t  and second stage c lus te rs  and we can 
wr i t e  the pairwise p r o b a b i l i t y  fo r  members in psu 
as 

I 
Pph,  h(1 - ) + h : h' 

dph h , (2.13) 

'/~/(n" l :~h}~h ~'~i-~---~-' }+ " - n "  ~ h ~ h' fo r  h ~ h' ~'Pphh 

where Pphh' is the pai rwise i n t r a - o r  i n t e r -  

c l u s t e r  homogeneity fo r  the members in the 
psu wi th cond i t i on ,  0 <- Pphh' < I ,  and that  fo r  

the members in the segment as 

~ Pshh ~h( l  - ~h ) + ~R for  h : h' 

dshh, (2.14) 

~'P shh'/"h-l~-~-h~-~h-' (1-= h' )+ = h = h' for h * h ' .  

where Pshh' is the pai rwise i n t e r -  or i n t r a -  

c l u s t e r  homogeneity fo r  the members in the 
segment wi th the cond i t ion  of 0 <-- Pshh' <- I .  

Using these p r o b a b i l i t i e s ,  we can wr i t e  the 
var iance and covariance of unbiased est imate p as 

( i  - ~ ) F +Pphh H-F] var2(Ph) - h h ( i  + Pshh ~ - 7  
Y 

(2.15) 

-IT IT 

h h (I+T (p _F + p H-F)) 
cov 2 (php h, )= hh' shh' phh' 

y Y Y 
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where Pshh and Pphh are the pairwise intra-cluster 
homogeneities in the psu's and segments, 
respectilvely; similarly, Pshh' and Pphh' are for 
the inter-cluster homogeneities; (2.12) differs 
from (2.15) only by Thh, shown in (2.5). 

c2. A design-based estimator for two-stage 
clustered sample data 

The units are selected with equal probabilities 
in each stage and elements by simple random sample. 
Then 

A 
- a 2 (I - ft ) $2hl + 1 ~ b i (I - f2i ) S2ih2 

V a r 3 ( Ph ) n 2 a n 2 i' 

a b. 
+ I ~. Z1 mi j (  I _ f 3 i j  ) S~i j  h (2.16) 

n 2 i j 

A i b i  Yi )2 , i where : ~ (bi  Y ih -  " h 
S-h A -  I i= l  A 

B B 
i Yi 2 = Z i Y - Z i mij h) , 

S~ih B i -  i j = l  (mij i j h  j Bi 

i ~ i J (Y i j kh_  Yi jh  )2 
S-ijh~ = M..-  I k=l 

]J 
Yi jh 

V i h ,  and Y i jh -  Mij " Yih = B i 

cov3(Ph,Ph, ) can be s i m i l a r l y  obta ined.  

I f  B i = B, b i = b, Mij = M, and mij = m, then 
N = ANM and n = abm and (2.16) reduces to a 
simpler form. 
An unbiased estimate of (2.16) is obtained from 
replacing the parameters with unbiased sample 
est imates" 

1 b. I m.. = _ ~lJy . 
Yih 5~ i ~ l Y i j  h, and Y i j h  mij  k i j kh  

The estmate of propor t ion and i t s  variance fo r  
one-stage c lus te r  can be obtained by replacing 
a by I ,  b by a, m by b, j by i ,  k by j ,  fz by I ,  
f2i by fz, f3i j  by f2i, and deleting the 

subscript i .  
3. VARIANCE ESTIMATORS FOR CLUSTERED AND WEIGHTED 

SAMPLE DATA 
Here we consider the weighted data instead. 

The individual weights are known and approximately 
the inverse of probability to include this person 
in the sample, often representing the post- 
strat i f ied group to which he belongs. 

Table 4 
Notations for one-stage weighted data 

Population Weighted data 

al l  counts" 
A 

Y = Z B  
i 

cel l  counts" Y h 

cel l  prop." ~h = Yh / Y 

a b. 
Y: Z Zlwi 

i j J 
a b. 

Yh=~ ~ lw i j  Y i jh  
1 j 

^ 

= yh / Y ~h 

cel l  vector" , = ( ~ 1 " "  ~r ). ~ = ( ~ I " ' "  ~r ) 

Let the weight be the inverse of i t s  se lect ion 
p robab i l i t y  { i j  fo r  the ( i , j ) - t h  element. Denote 

i t s  weight by w i j  = i /  { i  j "  I t  can be shown that  

the variance and covariance of ~ are given by 

var(2h):, i a b i b i 
h ( l -~h)? w i j  i j w i j  ' ihh 

i i j e j  

cov(~h ' ~h , ) :  1_ ~h~h' ? ]w2.. (3.1) 
i l j  

a b. )] 
+ Z ~I wijwij'(Gihh'-~h~h' 

i j@J 

a l ' .  Model I results for oen-stage clustered and 
weighted sample data 

Replacing 6ihh' with Model i shown in (2.1), 

(3.1) reduces to 

__(~T h) = ~h (1 - ~h ) Ghh vat I 
Y Y 

cov z (~'h,~h,) = - ~Th" h Ghh, ' 
Y Y 

a b. a b. 

where ghh, = ~ Oihh ' ~lj~j,wi jwi J' + ~i ~lj W2"lj" 

When the sampling of units is done with equal 
probabilities and that of the elements by simple 
random sample, wij = ~ i / a b i .  Under this 
p a r t i c u l a r  survey plan, we can express Ghh, as 

(3.2) 

a A 2 2 
ehh, = ~ . . . . .  Bi (Oihh,(b i - 1 ) +  1) .  (3.3) 

i a2b. 
1 

b l ' .  Model 2 r e s u l t s  f o r  o n e - s t a g e  c l u s t e r e d  and 
weighted sample data 

Replacing 6ihh, with Model 2 shown in (2.3), 

(3.1) reduces to 
~h(1 - Xh ) Ghh , 

vat2 (ph) = 
Y Y 

-~h~h Ghh, , 
cov2 (ph,Ph,) - 

Y Y 
a b. 

where Ghh = ~. Pihh' ~'Jej,] w ijwij,+ 

(3.4) 

a b. 
T /~w 2 

i j i j '  

a b. a b. 
Ghh' = Thh' ~ Pihh' ~l w w + ~ ~l w2 

1 j~j,  i j  i j '  i J i j '  

and Thh, is given in (2 .5 ) .  Ghh and Ghh, can be 
reduced to simpler froms as done in (3 .3 ) .  
c l ' .  A d e s i g n - b a s e d  e s t i m a t o r  f o r  o n e - s t a g e  

c l u s t e r e d  and e s t i m a t e d  da ta  
In the fo l low ing  developments, we use the 

notat ions given in Tables 2 and 4 and no model 
assumptions are made. 

When uni ts  are selected with equal p r o b a b i l i t i e s  
and elements by simple random sample, wi j= ABi/ab i . 
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Then, an unbiased est imate for  populat ion 
propor t ion is given by 

a B i b. 
A ~ m ~i Y i j h  

^ a i b. j 
~h 1 

A 
~B 
i i 

for h = 1, . . . ,  r, with 

(3.5) 

^ - 1 - f l  S2hl + I A B 2 ( I  ) 
var3(~h) ~ 1 - f 2 i  S~i h 

aB 2 aAB 2 i b. 
(3.6) 

where f l  = a / A, f2 i  = b i / B i '  

A B. 
~ (Yih-  ?h )2 ~ l (Y i j h -  ?ih )2 
i = _ J , 

A - I  B - I 
i 

B. Yih i A 
Yih = J~1 Yi jh '  fib - Bi , and Yh =-A ~i vim " 

The unbiased estimate of (3.6) can be obtained from 
replacing the parameters with sample est imates" 

S 2 
lh 

Yih - 

a ^ b .  

(B Yi - Yh)2 1 i i h ~ (Y i jh  - Yih )2 
= ' s2i2 -- J - ' 

a -  1 b . -  1 

Yh ^ 1 a 
Yih,  J}h - - , and Yih = - ~ BiYih," 
b. a a 1 

1 
^ 

and s i m i l a r l y  for  cov3(~h,~h, ) .  

a2'. Model I result  for two-stage clustered and 
weighted sample data 

The one-stage case previously discussed can 
easihleY be extended to two stage situation 

notations used in this section are shown 
in Tables 3 and 5. 

Let wij k = 1/~ij k be the weight for the 

( i , j , k ) - th  element, where ~ijk is the inclusion 

probability of this element in the sample. 

Table  5 
Notat ions for  two-stage weighted data 

Populat ion Weighted data 

AB.  a b . m .  
a l l  counts" Y = ~. ~1 Mij y -  ~ Y ,~ l J  w i 

i j i j k j k  

a b m  
cell counts- Yh Yh=~ ~i~iJwij Yijkh 

j k 
^ 

cell prop." ~h = Yh / Y ~h = yh / y 

cell vector" , =(IT I . . .  iTr) i =(~T 1 . . .  ~I r) 

The variance est imator  for  x is given by 
^ I [ a ~  m 

var(~h ) = ~h(Z _ ~h)y i ~ i j  w 2. y2 • ~ l j k  1 j K 
a b . m . .  

+ ( 6 ~ s , h , - ~ )  ~ ~ ~ J w  i kw i j ~ '  J i j k '  
a b . m . .  | 

+ (aiphh ' _ x~) ~. ~l ~ l j  Wi jkWi j ' k '  J i j ~ j  ' ~ '  

_ b i m 
cov(gh '~h ' )= ~ ~h~h' i j k Wijk 

(3.7) 

-l)w 2 l j  

a b .  m. 
+ (aishh ' _ ~h~h,) ? ~i ~ I j  wi i j ~ K '  j kWi jk '  

a b . m .  | 
+ (~iphh' -XhXh ')  ?. ~l ~ i j  Wi jkWi j ' k '  J i jCj  'me<' 

When ~ishh' and $iphh' are replaced by 
(2.10) and (2.11) ,  the Model I resu l t  of (3.7) 
is given by 

var1(~h) = h mi 2 + e ~lm (m i y2 . j w i j  s . j i j  j 

a b. m.. "~ 
+ Op 7 ~I ~Ij J i j~ j '  kck' wij wij ' 

^ ^ -~h Xh' ~ i i  mi w2 (3 .8 )  
c°vl (~h~h') -  y2 J j l j  

L' ] i • o + O s. j j i j j P i j , j '  ~e~' J J 

where ~)s = es i jhh '  and ~)p = ep ihh , .  
I f  Wijk= w, mij= m, and hi= b, (3.8) reduces to 

vat 1(~h ) :  ~h ( I  - ~h ) w(l+Os(m-1)+0 p m(b- l ) )  

Y (3.9) 
^ 

cov 1(~h,~h,)= - ~h ~h' w(l+Os(m-1)+Opm(b-l)) 

Y 
where w is the weight ing e f fec ts  and I + Os(m - i )  

+ Opm(b - i )  is the design e f fec t  from two-stage 

c lus te r  sample p lan.  When uni ts  are selected wi th 

equal probabilities, and the elements by simple 
random sample, we may write Wijk= ABiMjk/abimjk, 
which in turn gives a simple form of (3.7). 

b2'. Model 2 results for two-stage clustered and 
weighted sample data 

Replacing ~ishh' and 6iphh, with (2.13) and 
(2.14), respectively, (3.7) reduces to 

505 



Xh(l - ~h )  [ b 
var2(~h): ~ ~i i j  2 + . . . .  Wij k 

y2 i j K 
a b ~. 1 a b m j ,  ] 

ps~ ~i "j WijkWijk ' + pp~, ~,i ~ i j  Wi jkWij 'k '  , 
i j ~:~:' i j~j'~:~< 

covp(~Th'~h ) ~ i mi - ,, J Z j 2 + ( 3  i0) , wij k • 
y2 i j K 

a ] ps~ i~ JwijkWijk,Thh,+p Z ~i ~ j WijkWij,k,Th h , 
i j K~K Pi j~j'~mm 

where Thh, is given in (2.5). I f  wij k are replaced 

by ABiMij / abimij , (3.10) can be simplified as done 
in (3.3). 

c2'. A design-based estimator for two-stage 
clustered and estimated data 

Kendall and Stuart (1968 Vol 3 p190) show 
the variance for quantitative data. 

I f  the sampling is done with equal 
probabilit ies for each stages and with simple 
random sample for elements, the weight can be 
expressed as 

wij k = #giMij/abimij- 
An unbiased estimate of population proportion 

is given by 
A aB i b m i _~ Mj~ j 

L Yijkh 
^ a i b i j mij k 
~h = with 

i -  h + A B (I- f2 ) = _ i i S~i h 
var3(~h) y2 a y2a i b i 

a b M 2. ( i  ) + A ZBL Z -f3 j 
y2 a i b. J m. 

I 1j (3.11) 
where Y is gi ven Table 5, 

1 A B 1 2. 
(Yi ?h )2 

2 
(Yi 

_ ~i _~ )2 
Slh-A-1 i=1 h- ' Szih Bi-1 j=l jh ih ' 

1 Mi 
J(Y i jkh-? i jh )2  S~ijh= M i j - i  k=l 

An unbiased estimate of (3.11) is obtained from 
replacing the parameters with unbiased estimates- 

a _ i  a 
_ 1 ~ (Bi Yih - ~  BiYih )2' S-h~ a -  1 i=1 a I 

b. b. 
_ - i i 2 s 2 _ I Z1 (MijYi jh_ ~ Mi j# i jh )  

2in b i -  i j= l  b i j 

1 
s~ijh = 

mij- 
1 b. 

Yih = b. ~lYi jh '  
1 j 

m 

~.iJ (Yijkh- Yijh )2 
1 k=l 

I m.  . 

- _ ~ T1jYijkh • and Yijh - mij 

Similarly, cov3(~h,~h,) can be obtained• 

I f  B i = B, b i = b, Mij = M, mij = m, (3.11) 
reduces to a simpler from. 

The estimate of proportion and its variance 
for one-stage cluster case can be obtained by 
setting A = a = i and replacing B i by A, b i by a, 

Mij by b i , f l  by 1, f2i by f l ,  f3 i j  by f2i ,  
j by i ,  k by j ,  and deleting i .  

Other sampling plans can easily be reflected in 
the variance form. Kendall and Stuart (1968, 
vol.3 p198) show a general form of such variance 
for quantitative data. 

4 COMMENTS 
All model-based variance estimators show a 

common form of variance and covariance, that is 
the variance of multinomial variates multiplied 
by the factor G. G is design effects for 
unweighted data. For clustered and weighted data, 
i t  combines the design effect v}ith that of weight• 
The four design-based estimators for proportions 
can be comparable with the corresponding model- 
based results when the latters are properly 
adjusted for particular features of design. 

Above results from the three approaches can also 
be compared with those from other methods, such as 
BRR, Jackknife, Bootstrap, Linear approximation, 
and Wi|liams method, through the simulation or 
other algebraic solutions. 

One of the two approaches may be used to test 
appropriateness for the use of a model. One is 
shown in (2.6) and the other may be accomplished 
by comparing the result from the model assumption 
to that arising from design-based (no-model) 
estimator. 

Further studies on these and other types of 
proportions are needed to fu l ly  understand the 
characteristics of these variances, including 
numerical examples as well as their asymptotic 
properties. 
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