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1. INTRODUCTION

This paper collects a number of results on the
application of replication methods to complex
sample surveys. The topics considered vary in
scope somewhat between different sections, but
they are related by common concepts and defini-
tions. Section 2 summarizes interesting results
presented earlier by Efron and Stein (1981) and
later extended by Karlin and Rinott (1982), and
discusses their implications, with some addition-
al extensions, to the problem of complex samples
for some specific replication techniques, namely
half-sample and random group methods. The re-
sults employ an analysis of variance decomposi-
tion, which also motivates the introduction of
notions of linear and quadratic functionals 1in
the context of complex samples.

While the results of section 2 apply only to a
few familiar replication methods under limited
conditions, section 3 takes up a quite different
topic: the existence of replication methods (re-
sampling plans) to represent the variance of lin-
ear functionals 1in virtually any situation for
which a closed-form variance estimator exists for
such functionals. This existence theorem simply
draws the general conclusion anticipated by the
large and varied number of adaptations that re-
searchers have made to replication methods to fit
specific situations in the past. The wide class
of resampling plans introduced in section 3 may
include some with more desirable properties in
specific applications than ones now in general
use.

Section 4 addresses the issue of estimation of
bias through replication methods. Any of the
replication methods introduced in section 3, if
based on a design-unbiased estimator of variance,
may be used to produce a design-unbiased estima-
tor of a quadratic functional evaluated on the
finite population.

While sections 2 through 4 discuss properties
of replication for specific finite populations,
section 5 discusses asymptotic properties of rep-
lication for inference. The discussion centers
on the ciass of asymptotically normal estimators
studied earlier by Binder (1983) with respect to
linearization. Basically, replication offers an
asymptotically equivalent alternative, although
some conditions must be placed on the occurrence
of extreme deviations among replicates.

2. INEQUALITIES FOR THE EXPECTED VALUES OF
REPLICATION-BASED VARIANCE ESTIMATES

A frequent observation from empirical studies
has been the tendency for the jackknife estimate
of variance to overestimate the variance of non-
linear statistics on average. For a statistic
Sn{X1s-eXn), symmetric in its arguments and with
finite variance, Var Sy, for independent, iden-
tically distributed Xj, and its counterpart
Sn-1(X14+++.,%n-1) for samples of size n-1, Efron
and Stein (1981) reexpressed this tendency in the
form of the followinyg two inequalities:

(2.1)

E(Vary(Sp)) » ((n-1)/n) var S,y
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((n-1)/n) var Spo1 > Var S, ? (2.2)
which would imply
E(varg(Sp)) » Var S, ? (2.3)
where
0 2
VarJ(Sn) = ((n-l)/n)izl (S(i) - S(.)) (2.4)
with
S(i) = Sn=1{X1seeesXi-15Xi415-04Xn) (2.5)
n
S(.) = 3 5(1)/n {(2.6)
i=1
Theorem 1 of their paper establishes (2.1) for

any linear or non-linear statistic; this equation
relates the expected value of the jackknife esti-
mate of variance to the variance of the statistic
Sp.1 based on n-1 observations. In some sense,
it is natural to relate the jackknife estimate of
variance for a sample size n to the properties of
statistics for samples of size n-1, since (2.4),
(2.5) and (2.6) involve only Sn-1-

Equation (2.2) is shown with a question mark,
since, as Efron and Stein note in their paper,
exceptions occur. If (2.2) holds, (2.3) follows
immediately from (2.1). In addition, since the
inequality in (2.1) is strict except for linear
functionals (to be defined later in this section),
(2.3) may hold in some situations in which (2.2)
fails. Efron and Stein use an analysis of vari-
ance decomposition (a method originated by Hoeff-
ding (1948)) of the statistic S,_) to prove (2.1).
They write

W= E Sy (2.7)
Ai(xi) = E(Sp-11X§=xj) - w (2.8)
Bijr(Xisxit) = E(Spop|Xi=xj.Xjr=xj+)

= Aj(x3) = Ajr(xy0) - n (2.9)

for i # i', with higher-order terms defined in a
similar manner, in the same fashion as the analy-
sis of variance. (The next order term in this
decomposition starts with E(Sp_1[X;=xj,Xj1=x31,
Xju=xj") and subtracts three linear terms (2.8),
three quadratic terms (2.9), and (2.7). The
highest order term begins with Sn_l(xl,...xn_l),
and subtracts all terms of lower order.) Conse-
quently, S,_1 can be completely decomposed as the
sum of such terms. Except for yu, all terms in
this decomposition have mean zero and are uncor-
related. The orthogonality of terms permits use-
ful decomposition of the variance of expressions
such as S¢jy - Sgqvy, which in turn leads to a
relatively simple, and certainly eleyant, proof
of (2.1).

Efron and Stein (1981) and Efron (1982) dis-
cuss examples where (2.2) fails; another illus-
tration, more similar to typical problems encoun-
tered in survey sampling, is to consider a posi-



tive random variable X, and a random variable Y
with a conditional distribution gigen X=x having
expected value rx and variance g2x2 In this

situation, the ratio estimate based on n inde-
pendent selections from this population
n n
ra = (2 Y3)/(c X3) (2.10)

is an unbiased estimator for the population ratio
R. If the distribution of X is non-degenerate,
both (2.2) and (2.3) fail for n=2. For larger n,
both may fail depending upon circumstances, or
(2.2) may fail while (2.3) holds; the appendix
discusses this example in more detail.

Although (2.3) may fail, another inequality
relating the expected value of the jackknife var-
iance estimate to an estimate based on all n ob-
servations always holds, namely

E(vary(Sy)) » Vvar S(+) (2.11)
(Theorem 2, Efron and Stein 1981). Comparing
(2.3) with (2.11), an interesting conclusion may

be drawn: (2.3) fails only 1in applications in
which the variance of S(.) is less than that of
Spn. Thus, it is only in cases in which S, is, in

the sense of variance, an inferior estimate to
S¢.y that (2.3) is in question.

gquations (2.1) and (2.2) break the question
of the performance of the jackknife estimate of
variance into its properties, (2.1), relative to
statistics computed on the same sample size as
the jackknife subsets, and the effect on the var-
jance of the change in sample size, (2.2). A
similar approach may be taken to the random group
method, based upon splitting n = rk observations

into r groups of k each. Far the case of iid
random variables
E(Vargg(Sp)) = (1/r) var Sy (2.12)
(1/r) var S > Vvar Srk ? (2.13)

Here, the inequality in (2.1) may be replaced by
equality in (2.12), but the effect of sample
size modification is perhaps more in question in
(2.13). These relationships hold even if the
original sample design selects r sample cases,
with replacement, from k strata, and the r random
groups are formed by selecting one sample case
without replacement from each of the k strata.

Half-sample or balanced-repeated replication
is also a frequent choice for complex sample
surveys. Assume two sample observations, Xj1 and
Xi2, are drawn, with replacement, from each of
k.= n/2 strata. One variance estimator in this
situation is based on computation of the statis-
tic S both for an original half-sample of n/2
observations and for the complementary sample of
the remaining n/2 observations, and computing
their squared difference; this procedure s a
special case of the random group method described
by (2.12) and (2.13) with r=2. Of course, in
application this procedure is repeated for random
or balanced half-samples and the resulting vari-
ance estimates (each a single degree of freedom)

averaged; this averaging does not affect (2.12)
or (2.13).
For other half-sample methods, however, the
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analysis of variance decomposition provides
(2.12) as an inequality. For each j = 1l,...,d,
let h(-,j) be a mapping from {1,...,k} to {1,2},
so that Sk(Xin(1,j)»+-+sXkh(k,j)) represents tne
statistic computed on the j-tﬁ half-sample. Let

S(0) =

{13 o O <Y
[

Sk(th(l,j)""’th(k,J))/J (2.14)

J

be the average of J half-sample estimates. If
the half-samples are constructed by independent
random selection, with equal probability from the
set of all 2% possible half-samples, then the
variance estimator

VarHSl(Sn) =
-1 J 2
(J-1) .El (Sk(xlh(l,j)""’th(k,j)) - S(.))
) (2.15)
satisfies
E(Varys1(Sp)) > (1/2) var (S) (2.16)

which parallels (2.1). If S, is symmetric with
respect to permutations of the order of Xj1, Xi2
within each stratum i, i.e.,

Sn(X115X125 <5 K51 K525 0005 Kk1 0 Xk2) =

Sn(xll’X12”"’X12’X11""’Xkl’xk2) (2.17)

for all 1, then the alternative variance esti-
mator
Varyga(Sp) =
-1 J
J .Zl {Sk(th(l’J),...,th(k’J)) -
J:
Sp(Xyqseeertyp))? (2.18)

also satisfies (2.16) for any set of predeter-
mined or random half-samples that do not depend
upon the values of Xjj,...,Xcp observed. Balanced
and partially-balanced half-sample replication
satisfy these conditions, as well as independent
random selection of half samples. Proofs of
these results wusing the ANOVA  decomposition
((2.7)-(2.9) etc.) are presented in the appendix.

None of the preceding results requires the
observations X to be univariate random variables;
indeed, these random variables may represent mul-
tivariate weighted results from additional stages
of sampling. Selection with replacement is re-
quired, however, 1in order to give the necessary
independence.

These results show that half-sample replica-
tion, using (2.15) or (2.18), generally tends to
produce overestimates of variance in the sense of
expectation, although exceptions to (2.13) may
Tead in turn to exceptions to this rule. If the
inequality (2.13) is quite strong, that is, if
Var Sy considerably exceeds k Var S,, then the
replication methods can be expected to produce a
similarly substantial overestimate.

The analysis of variance decomposition (2.7) -
(2.9) serves to introduce important concepts dis-
cussed in the literature on replication methods.



One such motion in the context of simple random
sampling from an infinite population is to con-
sider the empirical distribution function, the
non-parametric estimate of the population distri-
bution function given by the distribution func-
tion derived from the probability measure with
mass 1/n at each of the n sample points. S is a
functional statistic if it is solely a function
of the empirical distribution function, independ-
ent of n. The sample mean and median are two ex-
amples of functional statistics.

Again in the context of simple random samples,
a functional statistic 1is a Jlinear functional
statistic if only the linear term (2.8) in its
analysis of variance decomposition is nondegener-
ate, i.e.

5 Aj(xj) (2.19)

1'

Sn(Xl,-..,Xn) = u +

Similarly, quadratic functional statistics are
those whose decomposition incliudes only terms
through the quadratic expectations (2.9),

Sp(X]seeesXn) = w *+ I A(x§) +

i
I Bii'(xi’xil) (2.20)
i<i!

are
ref-

(These definitions and their applications
discussed by Efron (1982) and other general
erences on replication methods.)
Generalization of these concepts to the
text of complex samples appears to favor a dif-
ferent approach, however. For example, for sim-
ple random samples, the meaning of the sample

con-

size n is unambiguous, whereas the number of
units in the population is often unknown for
multi-stage sample designs. Instead, one may

consider for a finite population the multivar-
jate cumulative frequency function. The Horwitz-
Thompson estimator formed by placing mass equal
to the inverse probability of setection for each
sample case provides the finite population equi-
valent of the empirical distribution function.
Functional statistics in this context are those
that depend only on this estimated cumulative
frequency function. Examples in survey estima-
tion are numerous, including typical estimates
of means, proportions, ratios, etc.

Linear functional statistics 1in the context
of complex samples are those that are linear
mappings from the space of cumulative frequency
functions to R (to cover multivariate versions).
Similarly, quadratic functional statistics in
this context are linear functional statistics
augmented by terms B(xj,x;') arising from a bi-
linear operator B(X,X) on the space of cumulative
frequency functions, using X redundantly as both
arguments (e.g. Liu and Thompson 1983). Conse-
quently, linear and quadratic functionals have
essentially the same form as (2.19) and (2.20),
respectively, but with terms not necessarily de-
rived from their ANOVA decomposition based upon
the complex sample design.

3. GENERAL RESAMPLING PLANS FOR COMPLEX DESIGNS

Most variance estimators for linear functional
statistics from complex samples take the form

497

= v 2
Var(S) L bj (E ajk Xk)

(3.1)
where X, represents the linear functional evalu-
ated on the frequency distribution placing mass
equal to the inverse probability of selection for
sample observation k from sample s, and the fac-
torsTbj and a;, may depend on s but not X =

(The evaluation of the 1ineﬁr function-

X,

{Xk} .
al for the entire sample is thus 1'%, where ]

represents a column vector of 1's.) Such vari-
ance estimators may be written
Var(s) = X'ceX (3.2)

for a symmetric matrix Cg determined by the ajy
and b "
J* .
For a given sample s and symmetric matrix (g,
a resampling plan corresponding to C¢ is a family
of random variables dp* and of non-negative ran-

dom variables g(r)* = {pk(r)*} such that, for
any x, '
*

E g (1Tx(p( M%) - 1709
where 5(Q(r *) = {xkpk(r)*}. The expectation E*
is over the probability distribution of the ran-
dom variables py*. Efron (1982) discusses re-
sampling plans for simple random samples, al-
though not necessarily conforming to (3.3).

Theorem 1 For any symmetric matrix Cg, there

x = e (3.3)
)

exist corresponding resampling plans d.*, p(r)*.
Furthermore, a plan may be chosen so that

E*(pk(r)*) = 1 and E*(dr*(pk(r)-l)) = 0 for all
k. If Cg is positive semi-definite, there exists
a plan such that dp* is constant.

Proof Let X1,...,A\y be an enumeration of the
nonzero eigenvalues of Cg, including multiplici-~

ties, and let g(l),...,v(M) be a corresponding

set of orthonormal eigénvectors. For any x,
M
e = 3y (vIWT2 (3.4)
m=1 ’
Let
M
e =T gl (3.5)
m=1
Define the random variables p(r)* and dp.* by
Q(r)* = 1+ Y(m) (3.6)
-1
de* = A A/ gl (3.7)
with probability |apl/(2 A;) and
B(r)* = 1- y(m) (3.8)
-1
de* = AT g/ Mgl (3.9)

with probability [An|/(2 A3+). Then (3.3) and the
other conditions of the theorem are satisfied.

Although other researchers have derived resam-
pling plans for most practical situations, the
theorem emphasizes the existence of resampling
plans under all situations in which the variance
estimator takes the form (3.2), establishing the



generality of replication. Other approaches to
the construction of resampling plans may be tak-
en, besides the one given in the proof.

The index r in the plan implies the computa-
tion of the resampled statistics for multiple
replicates, which may be generated through inde-
pendent selections, but not necessarily so. The
Jackknife and balanced repeated replication may
be viewed as resampling plans with specific de-
pendencies across r, where the probability dis-
tribution P* may be induced simply by permutation
of r. A generalization of this notion of balanc-
ing is given by the following theorem.

Theorem 2 Under the conditions of Theorem 1,
there exists a completely balanced resampling

plan of order 2M, where M is the rank of Cgs n
the sense that

xlege = (27!
(3.10)

If Cg is positive semi-definite, there exists a
plan such that dp* is constant.

Proof Using the same definitions as the proof
of Theorem 1, let

Amax = max {|ip|} (3.11)
B(Zm—l)* =1« Aml/z/*maxl/z B(m) (3.12)
E(Zm)* = 1 - Aml/z/xmaxl/z Y(m) (3.13)
don-1* = don® = Apaxt A/ gl (3.14)
The index r may then be defined as a random per-
mutation of the index 2m-1 or 2m in (3.12)-
(3.14). This constructed resampling plan satis-

fies the statement of the theorem.

It should be noted that ;T5(E(r)*) in (3.3)
represents the evaluation of the linear function-
al for the resampled distribution based on re-

weighting each sample case k by the factor
pk(r)*. For general functional statistics, Sg,
an implied variance estimator is
R 2
Var(sg) = 1/R 1 d(5y(plM*)-5)2  (3.15)
r=1 -

where S (g(r)) again represents the evaluation
of Sg oh the resampled cumulative frequency dis-
tribution function formed by a1&er1ng the weight
for each case k by the factor Pk r)*. Naturally,
properties of this approach for general function-
als would depend upon the specific finite popula-
tion, the specific resampling plan, and the sam-
ple design.

4. BIAS REDUCTION WITH GENERAL RESAMPLING PLANS

Bias reduction provided an initial impetus for
development of replication methods, and this
property has been explicitly recognized for the
jackknife, half-sample, and bootstrap. The fol-
Towing theorem simply generalizes this aspect of
replication for the resampling plans defined in
the preceding section, using methods earlier in-
corporated in the formulation of the jackknifed
chi-square test (Fay 1980, 1984).

498

Theorem 3 Suppose there is a C; such that
(3.2) is an unbiased estimate over the distribu-
tion of s of the design-based variance for all
12nfar functionals, and that for each s, d.*,
P M* is a corresponding resampling plan satis-

fying (3.3) with E(d " *(p (% - 1)} = 0 and
E*(p {")*) = 1 for all k. Then, if Sq is any
quadratic functional,
) — (I‘) _
S¢' = Sq - dn(Sq(ptT) - Sg) (4.1)

is an unbiased estimate of S; evaluated for the
cumulative frequency function of the finite pop-
ulation,

The proof is given in the appendix.

Naturally, in application (4.1) would typical-
ly be averaged over a series of replicates r=1,
.++,R. The problem of estimation of quadratic
functionals for finite populations has recently
been treated by Liu and Thompson (1983), who con-
sider the Horwitz-Thompson estimator based on the
joint inclusion probabilities. An advantage to
(4.1), however, is its immediate extension to
functionals that are locally approximated by
quadratic functionals, where "(4.1) may yield bias
reduction in place of bias removal.

5. ASYMPTOTIC RESULTS FOR IMPLICITLY DEFINED
ESTIMATORS

‘Binder (1983) considered the question of estj-
mation of the asymptotic variance for asymptoti-
cally normal estimators of population parameters,

8g, defined as the solution to an equation of
the form
N
W(e) = % u(Zg,8) - v(e) = 0 {(5.1)
3 e " K A <

where 7, represents the data for unit k in the
population of size N, For this class, the true
8y representing the solution to (5.1) for the
population may be estimated from a sample of size
n through estimation of W(g) by

A

W(e) =

T owe ulZy,8) - v(sg) (5.2)
LA

where w, represents the design-based weight for
sample unit k, and defining § as the solution of

W) = o (5.3)

As examples of this class of estimators, he dis-
cussed generalized Tinear models, which include
linear and logistic regression, and log-linear
models in general. This formulation obviously
covers most maximum likelihood estimators, where
the derivative of the log-likelihood for the pop-
ulation in (5.1) is estimated through (5.2).
More generally, many M-estimators are also of
this form. Thus, this class encompasses most
analytic statistics of interest.

Binder's results include conditions under
which the estimator § from (5.3) is asymptotical-
ly normal and the asymptotic variance may be es-
timated by a Taylor series (linearization) method
appropriate to the form of (5.2). He considers a
sequence of populations of size Ny, t=1,2,3,...,



where the population value from (5.1), W (9), is quirement that they apply in a neighborhood of

defined for all geo, the parameter space. Ex- 6y, serves to guarantee consistency of 3. The
cept for slight notational changes and general- global nature of these conditions could be re-
ization, his conditions are: moved by, adding conditions assuring the consist-

Cond]t10n 1. ency of e.

. -1 i The following theorem states conditions under
im N 75 W (0) = 2(8) (5.4) which a generalized replication approach gives
Lo the same outcome as Corrollary 2.

Theorem 4 Under conditions 1-11, suppose that
exists for all geo. in a neighborhood N(8y) of 8y, for each t=1,2,...

Condition 2.” g(8) is a one-to-one function,

there exists a resampling plan, d, x(t ), B(r,t)*

so that g'l(.) exists.

Conditions 3 and 4. There exists a gg, an in- r=1,2,...R¢, giving reweighted W(o )(p{Tthe) for
terior point of g, such that all g in N%SO , and that, as tsw, L
alepg) = 0. (5.5)
M) = ¢ ST RYRCRILN i
. . . . \ sup N¢ “uW(e)(p )-W(e)n ——s0 (5.11)
Condition 5, (A generalization of Binder's for- r<Ry AR v
muTation) There exists a sequence hy, t=1,2,3,... 8eN(8p)
with hgse and v ” .
o1 .4 D Suppose also _that Var,. W(g) is the estimated
he Ng™0 (W(9) - Wy(8)) ———> N(Q,0(g))  (5.6) variance for W(g) of the form (3.15) and that, in
for positive-definite covariance matrix ¢(g) for N(8g) » htth 2Varr ﬁ(e) consistently estimates
all g in a ne1ghborhood of gg. ~ i

Cond1t10n 6. @(g) is tota”y d1ffer‘ent1ab]e ( ) 1f e(p(r t)) are pep]jcate estimates based
in a neighborhood of gg. T .

Condition 7. nW(0)(p{™ )y, and if var. § is of the form

. -1 4.0 - . ~ .
Tim Nt (ﬁﬂiﬁl) = (3 (9))! = J(gp) (3.15), then htz Var. 6 may replace (5.9) in the
8260, t> 28 28/ 18=80 ;
. . (5.7) statement of Corrollary 2 (Binder 1983).
in probability. Comment on proof Condition 7 implies, for any

Condition 8. J(8y)e(8y)d(¢ 0) is of full rank. § >0, there exists ane > 0, and T, such that

Condition 9. &(6) is a continuous function .
of B. T PLINE "2 Jeglt > 83 < & 5.12

Condition 10. 3g(8)/3s 1is a continuous func- tile gge) 2 (%) J ( )
tion of g. R ] -

Condition 11.  ¢(g), assumed to exist under for all g with 1g - 6yl < e, t>T. With the ex-
the sample design, gives a consistent estimator ception of the set “described by (5.12) and an
for o(8). ] L additional set of arbitrarily small probability,

Lemna 1 (Binder 1983)  The distribution of the expression, (3.15), for Var. 8 may be ex-
he(T-8g) Ts asymptotically equivalent to the dis- panded with the methods used in the proof of
tribution of Lemma 1; (5.11) bounds the contribution of all

-1 -1 ) terms except for another set of arbitrarily small

Dy = =J977(8g) hg Ny~ W(8g) (5.8) probability.

. . The conditions of the theorem are often easier

Corroliary 1 £B1nder 1983) The asymptotic dis- to check in practice than they might at first
tribution o (8-89) is the normal Tlaw with seem. Note that the scaling factor hy does not

-1 T appear in (5.11).
mean 0 and variance matrix ¢~ (60)9( 6g)d "(9g) - For fixed g, (5.1) is a linear functional mod-

Corrollary 2 (Binder 1983) Let"Fy be the dis- ified by v(g), which is constant for fixed g.
tribution function for h¢(§-8g), based on the Thus, although § itself, is typically non-linear,
t-th sample and let Gt be the distribution func- resampling plans for w(e) in N(eg) generally
tion of a multivariate normal distribution with would exist. i -
mean zero and variance matrix

A A A A APPENDIX
he? var(®) = 37Ho)e(e3(e)T (5.9) —

A.l Example of Ratio Estimation from Section 2

where j(é) = Nt'l (é)/ae. Then, by virtue of
conditions 9 to 11 Section 2 1ntroducss an example with E(Y|X=x)
rx, Var(Y|X=x) as a counterexample to

lim sup |Fy - G¢f = 0O (5.10) (2.3) when n=2 and an illustration when (2.2)
trw may fail. For r, defined by (2.10},
These results establish the asymptotic infer- n
ential validity of wusing (5.9) for confidence var(r.}) = n (xlz/( T )2) (A.1)
statements about 8g. n i=1 .
The stringent hature of the global nature of
conditions 1 and 2, as opposed to a simpler re- E(vary(ry)) = ((n-1)/n) Var(r,_;) +
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n-2

2 2
Xy - X2 5 X
((n-1)%/2n) € : =1 (A.2)
n- n-g °
(= X2z x;+x)?
i=1 i=1

where no second term in (A.2) appears for n=2.
The form of (A.2) is consistent with (2.1), but
the author has not derived general simplifying
conditions under which {2.3) fails except through
direct computation of (A.1) and (A.2).

A.2 Proof of Inequality (2.16)

The variance estimator (2.15) based upon inde-
pendent half-sample replications may be written

VarHSl = J

O@-1)T0 2 5 15 0an(1, )0+ Kkn(k,g)) -
3=1 j<j'

2

Sk(XIh(l’jl),...,th(k’jl))} (A.3)

There are J(J-1)/2 terms in the summation (A.3),
ea;h with the same expectation. For each 1,
h(i,j) = h{i,j') with probability 1/2 for j = i's
therefore, the contribution to the total (A.3) of
terms (Ai(Xih(i’j)) - Ai(xfh(i,j'))) is 1/2

Var (Aj(Xj)). Similarly, for i # i', the prob-
ability of {h(i,j) = h(i',j') and n(i',j) =
h(i',3')} is 1/4, so that the contribution to
(A.3) of terms {Bii'(xih(i,j)’xi'h(i',j)) -

Bii (Xin(i,50) X1 (17,50))12 is 3/4

var Bi+(Xj,Xij'). In general, for the m-th order
terms in the ANOVA decomposition, the contribu-
tion to (A.3) will be 1 - (1/2)™ times the var-
iance contribution to the decomposition of Sk»
Thus, (2.16) is established, with strict inequal-
ity whenever any terms in the decomposition of Sk
above the first order are non-degenerate.

To show (2.16) for the variance estimator
(2.18), which includes application to balanced
repeated replication, note that the expected val-
ue of the right-hand side of (2.18) is minimized,
over all symmetric statistics in the sense of
(2.17), by replacing sn(xll,...,xkz) by

S(.)(Xll,...,xkz) =

2-k ﬁ Sk(xlh(l,j)”"’th(k,j)) (A.4)

where summation in (A.4) is over all 2K possible
half-samples. Thus,

E(VaPHsz(Sn) b4
-1 J
E( J jzl{sk(xlh(l’j),...th(k’j) -
S(+)(X11seeesXyp)3?) (A.5)

The ANOVA decomposition may be used to reexpress
(A.4); for example, the first-order terms of the
decomposition of (A.4) are 1/2 Aj(Xij), the
second-order terms 1/4 Bii'(XijsXjrjr) for (i,3)

500

# (i',3"), etc. With this decomposition, the
right-hand side of (A.5) may be easily shown to
have the same expectation as (A.3), establishing
result (2.16) and providing a concidental demon-
stration of

E(VarH51(Sn)) (A.6)
for any predetermined half-sample plan on the
left-hand side of (A.6) and implementation of ran-
dom half-samples on the right-hand side.

E(VarHsz(Sn)) >

A.3 Proof of Theorem 3

It is sufficient to prove the result for a
quadratic functional of the form Bjj+ = byjicicCye,
where bjj' is a constant and ¢j, cj' represent
counts for cells or characteristics i and i', not
necessarily distinct, in the finite population.

Let X(i) and X(1|) denote weighted indicator var-
iables for characteristics i and i' based on sam-

ple s. Qver the sampling distribution of s,
ey (17X Tx(M)y)
bisr (cicit + cov(1Tx{H) 1 Tx(i)y) (A.7)

For a specific sample s,
£ (e op3 (LD (o)) (1T (p(Pey)

. - . L
by (1Tl )y = XD T xG) (ag)
using the specific assumptions in the statement
of the theorem. The unbiasedness of the variance
estimator for linear functionals impiies unbiased
ness in the corresponding covariance estimator on
the right-hand side of (A.8), and the theorem
follows by taking the expectation of (A.8) over s.
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