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1. INTRODUCTION 

This paper co l lec ts  a number of resul ts  on the 
appl icat ion of rep l i ca t ion  methods to complex 
sample surveys. The topics considered vary in 
scope somewhat between d i f f e ren t  sect ions, but 
they are related by common concepts and de f i n i -  
t i ons .  Section 2 summarizes in te res t ing  resul ts  
presented e a r l i e r  by Efron and Stein (1981) and 
la te r  extended by Karl in and Rinott  (1982), and 
discusses t h e i r  imp l ica t ions ,  with some addi t ion-  
al extensions, to the problem of complex samples 
for  some spec i f i c  rep l i ca t ion  techniques, namely 
hal f-sample and random group methods. The re- 
su l ts  employ an analysis of variance decomposi- 
t i on ,  which also motivates the in t roduct ion of 
notions of l inear  and quadratic funct ionals in 
the context of complex samples. 

While the resul ts  of section 2 apply only to a 
few fami l i a r  rep l i ca t ion  methods under l im i ted  
condi t ions,  section 3 takes up a qui te d i f f e ren t  
top ic :  the existence of rep l i ca t ion  methods ( re-  
sampling plans) to represent the variance of l i n -  
ear funct ionals in v i r t u a l l y  any s i tua t ion  for  
which a closed-form variance estimator ex is ts  for  
such func t iona ls .  This existence theorem simply 
draws the general conclusion ant ic ipated by the 
large and varied number of adaptations that re- 
searchers have made to rep l i ca t ion  methods to f i t  
spec i f i c  s i tua t ions  in the past. The wide class 
of resampling plans introduced in section 3 may 
include some with more desirable propert ies in 
spec i f ic  appl icat ions than ones now in general 
use. 

Section 4 addresses the issue of estimation of 
bias through rep l i ca t ion  methods. Any of the 
rep l i ca t ion  methods introduced in section 3, i f  
based on a design-unbiased estimator of variance, 
may be used to produce a design-unbiased estima- 
to r  of a quadratic funct ional evaluated on the 
f i n i t e  populat ion. 

While sections 2 through 4 discuss propert ies 
of rep l i ca t ion  for  spec i f ic  f i n i t e  populat ions, 
section 5 discusses asymptotic propert ies of rep- 
l i c a t i o n  for  inference. The discussion centers 
on the class of asymptot ical ly  normal estimators 
studied e a r l i e r  by Binder (1983) with respect to 
i inearizat iono. Bas ica l ly ,  rep l i ca t ion  of fers an 
asymptot ica l ly  equivalent a l t e rna t i ve ,  although 
some condit ions must be placed on the occurrence 
of extreme deviat ions among rep l ica tes .  

2. INE~ALITIES FOR THE EXPECTED VALUES OF 
REPLICATION-BASED VARIANCE ESTIMATES 

A frequent observation from empirical studies 
has been the tendency for  the jackkn i fe  estimate 
of variance to overestimate the variance of non- 
l inear  s t a t i s t i c s  on average. For a s t a t i s t i c  
Sn(X I . . . .  Xn), symmetric in i t s  arguments and with 
f i n i t e  variance, Var S n, for independent, iden- 
t i c a l l y  d is t r ibu ted  X i ,  and i t s  counterpart 
Sn_I(X I . . . . .  Xn_l) for samples of size n - I ,  Efron 
and Stein (1981) reexpressed th is  tendency in the 
form of the following two inequa]ities: 

E(Varj(Sn) ) ~ ( ( n - l ) / n )  Vat Sn_ I (2.1) 

( (n -1) /n)  Var Sn_ I ) Var S n ? 

which would imply 

(2.2) 

E(Varj(Sn)) ) Var S n ? (2.3) 

where 
n 

Vard(Sn) = ( ( n - l ) / n )  7. (S( i )  - S( . ) )  2 
i= l  

with 

(2.4) 

S(i ) : Sn_I(X 1 . . . . .  Xi_l,Xi+l . . . .  Xn) (2.5) 

n 
S(.)  : ~ S( i ) /n  (2.6) 

i= l  

Theorem 1 of t he i r  paper establ ishes (2.1) for 
any l inear  or non- l inear s t a t i s t i c ;  th is  equation 
relates the expected value of the jackkn i fe  es t i -  
mate of variance to the variance of the s t a t i s t i c  
Sn_ I based on n- i  observations. In some sense, 
i t  is natural to re la te  the jackkn i fe  estimate of 
variance for  a sample size n to the propert ies of 
s t a t i s t i c s  for  samples of size n - I ,  since (2 .4) ,  
(2.5) and (2.6) involve only Sn_ 1. 

Equation (2.2) is shown with a question mark, 
since, as Efron and Stein note in t he i r  paper, 
exceptions occur. I f  (2.2) holds, (2.3) fol lows 
immediately from (2 .1) .  In addi t ion,  since the 
inequal i ty  in (2.1) is s t r i c t  except for l inear  
funct iona ls  (to be defined l a te r  in th is  sect ion) ,  
(2.3) may hold in some s i tuat ions in which (2.2) 
f a i l s .  Efron and Stein use an analysis of var i -  
ance decomposition (a method or ig inated by Hoeff- 
ding (1948)) of the s t a t i s t i c  Sn_ I to prove (2 .1) .  
They wri te 

: E Sn_ I (2.7) 

A i ( x i )  : E ( S n _ l l X i = x i ) -  (2.8) 

B i i , ( x i , x i , )  = E(Sn_ l lX i=x i ,X i ,=x i  ,) 

- A i ( x  i )  - A i , ( x  i , )  - (2.9) 

for  i ~ i ' ,  with higher-order terms defined in a 
s i fn i lar  manner, in the same fashion as the analy- 
sis of variance. (The next order term in th is  
decomposition s tar ts  with E(Sn_ l l X i = x i , x  i ,=x  i , ,  
Xi,,=xi,, ) and subtracts three l inear  terms (2 .8) ,  
three quadratic terms (2 .9) ,  and (2 .7) .  The 
highest order term begins with S n _ l ( X l , . . . X n _ l ! ,  
and subtracts a l l  terms of lower o rder . )  Cons=- 
quent ly,  Sn_ I can be completely decomposed as the 
sum of such terms. Except for ~, a l l  terms in 
th is  decomposition have mean zero and are uncor- 
re lated.  The or thogonal i ty  of terms permits use- 
ful  decomposition of the variance of expressions 
such as S(i~ - S ( i ' ~ -  which in turn leads to a 
relatively' s'imple, a'nd certainly elegant, proof 
of (2.1). 

Efron and Stein (1981) and Efron (1982) dis- 
cuss examples where (2.2) fa i ls ;  another i l lus-  
trat ion, more similar to typical problems encoun- 
tered in survey sampling, is to consider a posi- 
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t ive random variable X, and a random variable Y 
w.ith a conditional distr ibution given X=x having 
expected value rx and variance o2x 2. ~n this 
situation, the ratio estianate based on n inde- 
pendent selections from this population 

n n 
r n = (~ Yi)/(s X i) (2.10) 

i i 

is  an unbiased est imator for the population ra t io  
R. I f  the d i s t r i bu t i on  of X is non-degenerate, 
both (2.2) and (2.3) f a i l  for  n=2. For larger n, 
both may fa i l  depending upon circumstances, or 
(2.2) may fa i l  while (2.3) holds; the appendix 
discusses th is  example in more de ta i l .  

Although (2.3) may f a i l ,  another inequa l i ty  
re la t ing  the expected value of the jackkni fe  var- 
iance estimate to an estimate based on a l l  n ob- 
servations always holds, namely 

E(Varj(Sn)) > Var S(.) (2.11) 

(Theorem 2, Efron and Stein 1981). Comparing 
(2.3) with (2.11),  an in te res t ing  conclusion may 
be drawn; (2.3) f a i l s  only in appl icat ions in 
which the variance of S(.) is less than that of 
Sn. Thus, i t  is only in cases in which Sn is ,  in 
the" sense of variance, an i n f e r i o r  estimate to 
S( . )  that  (2.3) is in question 

Equations (2.1) and (2 .2 /  break the question 
of the performance of the jackkni fe  estimate of 
variance into i t s  proper t ies,  (2 .1) ,  re la t i ve  to 
s t a t i s t i c s  computed on the same sample size as 
the jackkn i fe  subsets, and the e f fec t  on the var- 
iance of the change in sample size, (2 .2) .  A 
s im i la r  approach may be taken to the random group 
method; based upon s l~ l i t t ing  n = rk observations 
into r groups of k each. FQr the case of l i d  
random variables 

E(VarRG(Sn)) = ( I / r )  Var S k (2.12) 

( l / r )  Vat S k ~ Var Srk ? (2.13) 

Here, the inequa l i ty  in (2.1) may be replaced by 
equal i ty  in (2..12), but the ef fect  of sample 
size modi f icat ion is perhaps more in question in 
(2.13).  These re la t ionships hold even i f  the 
Original sample design selects r sample cases, 
with replacement, from k s t ra ta ,  and the r random 
groups are formed by select ing one sample case 
without replacement from each of the k s t ra ta .  

Half-sample or balanced-repeated rep l i ca t ion  
is also a frequent choice for  complex sample 
surveys. Assume two sample observations, X i l  and 
Xi2, are drawn, with replacement, from each of 
k = n/2 s t ra ta .  One variance estimator in th is  
s i tua t ion  is based on computation of the s t a t i s -  
t i c  S k both for  an or ig ina l  half-sample of n/2 
observations and for  the complementary sample of 
the remaining n/2 observations, and computing 
t he i r  squared d i f ference;  th is  procedure is a 
special case of the random group method described 
by (2.12) and (2.13) with r=2. Of course, in 
appl icat ion th is  procedure is repeated for  random 
or balanced half-samples and the resu l t ing var i -  
ance estimates (each a single degree of freedom) 
averaged; th is  averaging does not af fect  (2.12) 
or (2.13).  

For other half-sample methods, however, the 

analysis of variance decomposition provides 
(2.12) as an inequa l i t y .  For each j = 1 . . . . .  J, 
le t  h ( ' , j )  be a mapping from {1 . . . . .  k} to {1 ,2} ,  

Skc(Xmlhu(le'dJ - t  )h)alf-sample.represents tneLet so that ) . . . .  Xkh(k~j 
s t a t i s t i  on the j 

J 
S(.) : 7. Sk(Xlh(1, j  ) . . . . .  X k h ( k , j ) ) / j  (2.14) 

j=1 

be the average of J half-sample estimates. I f  
the half-samples are constructed by independent 
random select ion,  with equal p robab i l i t y  from the 
set of a l l  2 K possible hal f-samples, then the 
variance estimator 

VarHs l (sn)  = 

( j - l )  - I  

sa t i s f i es  

J 
Z (Sk(Xlh(1,j) . . . . .  Xkh(k,j )) - S(.)) 2 

j=1 
(2.15) 

E(VarHSI(Sn)) ) (1/2) Vat (Sk) (2.16) 

which para l le ls  (2 .1) .  I f  S n is symmetric with 
respect to permutations of the order of X i l ,  Xi2 
wi th in each stratum i ,  i . e . ,  

Sn(XlI ,XI2 . . . . .  X i l ,X i2  . . . . .  Xkl,Xk2) = 

Sn(XlI ,XI2 . . . . .  X i2 ,X i l  . . . . .  Xkl ,Xk2) (2.17) 

for  a l l  i ,  then the a l te rna t i ve  variance es t i -  
mator 

VarHs 2 (S n) = 

j - i  
J 
}; {Sk (X lh ( l , j  ) . . . . .  Xkh(k , j ) )  - 

j=1 
Sn(Xll . . . . .  XK2)} 2 (2.18) 

also sa t i s f i es  (2.16) for any set of predeter- 
mined or random half-samples that do not depend 
upon the values of Xl l  . . . . .  Xk2 observed. Balanced 
and par t ia l l y -ba lanced half-sample rep l i ca t ion  
sa t i s fy  these condi t ions,  as well as independent 
random select ion of hal f  samples. Proofs of 
these resul ts  using the ANOVA decomposition 
( (2 .7 ) - (2 .9 )  e tc . )  are presented in the appendix. 

None of the preceding resul ts requires the 
observations X to be univar ia te random var iables;  
indeed, these random variables may represent mul- 
t i v a r i a t e  weighted resul ts  from addi t ional  stages 
of sampling. Selection with replacement is re- 
quired, however, in order to give the necessary 
independence. 

These resul ts  show that half-sample rep l ica-  
t i on ,  using (2.15) or (2.18),  general ly tends to 
produce overestimates of variance in the sense of 
expectat ion, although exceptions to (2.13) may 
lead in turn to exceptions to th is  ru le.  I f  the 
inequality (2.13) is quite strong, that is, i f  
Var S k considerably exceeds k Var Sn, then the 
replication methods can be expected to produce a 
similarly substantial overestimate. 

The analysis of variance decomposition (2.7) - 
(2.9) serves to introduce important concepts dis- 
cussed in the l i terature on replication methods. 
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One such ~ot ion in the context of simple random 
sampling from an i n f i n i t e  population is to con- 
s ider the empirical d i s t r i b u t i o n  funct ion,  the 
non-parametric estimate of the population d i s t r i -  
bution funct ion given by the d i s t r i b u t i o n  func- 
t ion derived from the p robab i l i t y  measure with 
mass I /n  at each of the n sample points• S is a 
funct ional  s t a t i s t i c  i f  i t  is solely a funct ion 
of the empirical d i s t r i b u t i o n  funct ion,  independ- 
ent of n. The sample mean and median are two ex- 
amples of funct ional  s t a t i s t i c s .  

Again in the context of simple random samples, 
a funct ional  s t a t i s t i c  is a l inear  funct ional  
s t a t i s t i c  i f  only the l inear  term (2.8) in i t s  
analysis of variance decomposition is nondegener- 
ate, i .e. 

Sn(x I . . . . .  Xn) : ~ + ~ A i ( x i )  (2.19) 
i 

S im i l a r l y ,  quadrat ic funct ional  s t a t i s t i c s  are 
those whose decomposition includes only terms 
through the quadrat ic expectat ions (2 .9) ,  

Sn(x I . . . . .  Xn) : ~ + ~ Ai(x i )  + 
i 

B i i ,  (x i ,x i , ) (2.20) 
i < i '  

(These de f i n i t i ons  and t he i r  appl icat ions are 
discussed by Efron (1982) and other general re f -  
erences on rep l i ca t i on  methods.) 

General izat ion of these concepts to the con- 
tex t  of complex samples appears to favor a d i f -  
ferent approach, however. For example, for sim- 
ple random samples, the meaning of the sample 
size n is unambiguous, whereas the number of 
uni ts in the population is often unknown for  
mul t i -s tage sample designs. Instead, one may 
consider for  a f i n i t e  population the mul t i var -  
ia te cumulative frequency func t ion .  The Horwitz- 
Thompson est imator formed by placing mass equal 
to the inverse p robab i l i t y  of select ion for  each 
sample case provides the f i n i t e  population equi- 
valent of the empirical d i s t r i b u t i o n  funct ion.  
Functional s t a t i s t i c s  in th is  context are those 
that depend only on th is  estimated cumulative 
frequency funct ion.  Examples in survey estima- 
t ion are numerous, inc luding typ ica l  estimates 
of means, proport ions,  ra t ios ,  etc.  

Linear funct ional  s t a t i s t i c s  in the context 
of complex samples are those that  are l inear  
mappings from the space of cumulative frequency 
funct ions to R n (to cover mu l t i va r i a te  vers ions) .  
S im i l a r l y ,  quadrat ic funct ional  s t a t i s t i c s  in 
th is  context are l i near  funct ional  s t a t i s t i c s  
augmented by terms B(x i , x  i ' )  a r is ing frown a h i -  
l i near  operator B(X,X) on the space of cumulative 
frequency funct ions,  using X redundantly as both 
arguments (e.g.  Liu and Thompson 1983). Conse- 
quent ly,  l inear  and quadrat ic funct ionals  have 
essen t ia l l y  the same form as (2.19) and (2.20) ,  
respect ive ly ,  but with terms not necessari ly de- 
r ived from the i r  ANOVA decomposition based upon 
the complex sample design. 

3. GENERAL RESAMPLING PLANS FOR COMPLEX DESIGNS 

Most variance estimators for  l i near  funct ional  
s t a t i s t i c s  from complex samples take the form 

Var(S) : >] bl (~; ajk 
j k 

Xk)2 (3.1) 

where X k represents the l i near  funct ional  evalu- 
ated on the frequency d i s t r i b u t i o n  placing mass 
equal to the inverse p robab i l i t y  of select ion for  
sample observation k from sample s, and the fac- 
tors_bj  and a~,. may depend on s but not X = 

• jr,, ,~ 

{Xk }I (The evaluation of the linear function- 
al for  the ent i re  sample is thus I 'X. _, where I 
represents a column vector of l ' s . )  Such var i -  
ance estimators may be wr i t ten  

Vat(S) = XTCs x (3.2) 

for  a symmetric matr ix C s determined by the ajk 
and b j .  

For a given sample s and symmetric matr ix C~s, 
a ..resampling plan corresponding to C s is a family 
of random variables dr* and of non-negative ran- 

dom variables .e (r)* = {pk (r)*} such that, for 
any x, 

E*{dr* ( ITx(p ( r ) * )  - ITx) 2} = ~xTCs x ~  (3.3) 

where x(~ ( r ) * )  = {XkPk(r )* } .  The expectation E* 
is over the p robab i l i t y  d i s t r i b u t i o n  of the ran- 
dom var iables Pk*" Efron (1982) discusses re- 
sampling plans for simple random samples, a l -  
though not necessari ly conforming to (3 .3) .  

Theorem i For any symmetric matr ix C s, there 

ex is t  corresponding resampling plans dr*,  p ( r ) , .  
Furthermore, a plan may be chosen so that 

E*(pk( r ) * )  = 1 and E* (d r * (pk ( r ) - z ) )  = 0 for a l l  
k. I f  Cs is pos i t i ve  semi -de f in i te ,  there e;Kists 
a plan such that  dr* is constant. 

Proof Let ~I . . . . .  ~M be an enumeration of the 
noF1zero eigenvalues of C s, including m u l t i p l i c i -  

t i es ,  and le t  ~ ( i )  . . . . .  ~(M) be a corresponding 
set of orthonormal eigenvectors. For any x, 

M 
xTCsx~ . . = 7 ~m (~(m)Tx)2. (3.4) 

m=l 
Let 

M 
X+ : ~ IXml (3.5) 

m=l 

Define the random variables p ( r ) ,  and dr* by 
J 

p ( r ) ,  = 1 + v(m) (3.6) 

dr * = X+-i ~m/Ixml (3.7) 

wi th probabi I i ty I Xml/(2 X+) and 

p ( r ) ,  : i -  ~(m) (3.8) 

dr * = ~+-1 ~m/llm I (3.9) 

with p robab i l i t y  l>,ml/(2 ~+). Then (3.3) and the 
other condit ions of the theorem are s a t i s f i e d .  

Although other researchers have derived resam- 
pl ing plans for most pract ica l  s i tua t ions ,  the 
theorem emphasizes the existence of resampling 
plans under a l l  s i tuat ions in which the variance 
est imator takes the form (3 .2) ,  estab l ish ing the 
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general i ty  of rep l i ca t ion .  Other approaches to 
the construct ion of resampling plans may be tak- 
en, besides the one given in the proof. 

The index r in the plan implies the computa- 
t ion of the resampled s t a t i s t i c s  for mul t ip le  
rep l ica tes,  which may be generated through inde- 
pendent select ions,  but not necessari ly so. The 
jackkni fe  and balanced repeated rep l ica t ion  may 
be viewed as resampling plans with spec i f ic  de- 
pendencies across r, where the p robab i l i t y  d is-  
t r i bu t i on  P* may be induced simply by permutation 
of r .  A general izat ion of th is  notion of balanc- 
ing is given by the fo l lowing theorem. 

Theorem 2 Under the tondi t ions of Theorem I ,  
there exists a completely balanced resampling 
plan of order 2M, where M is the rank of C s, in 
the sense that 

2M 
.- = * ( l T x ( p ( r ) * )  - lTx)2 x TCsX (2M)-i 7. d r, 

r=l . . . . . .  
(3.10) 

I f  C s is posi t ive semi-def in i te ,  there exists a 
plan such that dr* is constant. 

Proof Using the same de f in i t i ons  as the proof 
of Theorem i ,  le t  

>̀max : max {Ixml} (3.11) 

1/2 (m) p(2m-l ) ,  = ! + ~'ml/2/>`max ~. (3.12) 

p(2m), I ~m1/2/ 1/2 (m) 
= - >̀max ~ (3.13) 

• - 1  

d2m-l* = d2m* = >'max >`m/J~mJ (3.14) 

The index r may then be defined as a random per- 
mutation of the index 2m-i or 2m in (3.12)-  
(3.14).  This constructed resampling plan sa t is -  
f ies the statement of the theorem 

I t  should be noted that ~ITx(~ ( r ) * ) ~  in (3.3) 
represents the evaluation of the l inear  funct ion-  
al for the resampled d i s t r i bu t i on  based on re- 
weighting each sample case k by the factor  

pk ( r ) * .  For general funct ional s t a t i s t i c s ,  Sg, 
an implied variance est imator is 

R 

Var(Sg) : I/R z dr* (Sg(p(r )* ) -Sg)2 (3.15) 
r=l 

where Sq(p ( r ) )  again represents the evaluation 
of Sg o~ the resampled cumulative frequency dis-  
t r i bu t i on  funct ion formed by alt, ening the weight 
for  each case k by the factor  pk t r ) * .  Natura l ly ,  
propert ies of th is  approach for general funct ion-  
als would depend upon the speci f ic  f i n i t e  popula- 
t i on ,  the spec i f ic  resampling plan, and the sam- 
ple design. 

4. BIAS REDUCTION WITH GENERAL RESAMPLING PLANS 

Bias reduction provided an i n i t i a l  impetus for  
development of rep l i ca t ion  methods, and th is  
property has been e x p l i c i t l y  recognized for the 
jackkn i fe ,  half-sample, and bootstrap. The f o l -  
lowing theorem simply generalizes th is  aspect of 
rep l i ca t ion  for the resampling plans defined in 
the preceding sect ion, using methods ea r l i e r  in- 
corporated in the formulat ion of the jackkni fed 
chi-square test  (Fay 1980, 1984). 

Theorem 3 Suppose there is a C s such that 
(-3.2) is an unbiased estimate over the d i s t r i bu -  
t ion of s of the design-based variance for a l l  
lin a dr* r~ , r  funct iona ls ,  and that for each s 

is a corresponding resampling plan s a t i s -  
W 

( r ) , (  ( r ) ,  1)} = 0 and fying (3.3) with E {d k Pk " 

E*(Pk ( r ) * )  = I for a l l  k. Then, i f  Sq is any 
quadratic funct iona l ,  

Sq' : Sq - dr(Sq(p ( r ) )  _ Sq) (4.1) 

is an unbiased estimate of Sq evaluated for the 
cumulative frequency function of the f i n i t e  pop- 
u la t ion .  

The proof is given in the appendix. 
Natura l ly ,  in appl icat ion (4.1) would t yp i ca l -  

ly be averaged over a series of repl icates r= l ,  
. . . .  R. The problem of estimation of quadratic 
funct ionals for f i n i t e  populations has recently 
been treated by Liu and Thompson (1983), who con- 
sider the Horwitz-Thompson estimator based on the 
j o i n t  inclusion p robab i l i t i e s .  An advantage to 
(4 .1) ,  however, is i t s  immediate extension to 
funct ionals that are loca l l y  approximated by 
quadratic funct ionals ,  where "(4.1) may y ie ld  bias 
reduction in place of bias removal. 

5. ASYMPTOTIC RESULTS FOR IMPLICITLY DEFINED , 

ESTIMATORS 

B inder  (1983) considered the question of es t i -  
mation of the asymptotic variance for asymptoti- 
ca l l y  normal estimators of population parameters, 
~0, defined as the solut ion to an equation of 
the form 

N 

W(O) : S U(Zk,O) - v(e) : 0 (5 . I )  
k=l "~  ~ 

where Z k represents the data for uni t  k in the 
populatTon of size N. For th is  class, the true 
80 representing the solut ion to (5.1) for the 
population may be estimated from a sample of size 
n through estimation of W(8) by 

W(e) = s w k U(Zk,e) - v(g) (5.2) 

where w k represents the design-based weight for 
A 

sample uni t  k, and def in ing 0 as the solut ion of 

: 0 ( s 3 )  

As examples of th is  class of est imators, he dis-  
cussed generalized l inear  models, which include 
l inear  and l o g i s t i c  regression, and log - l i near  
models in general. This formulat ion obviously 
covers most maximum l i ke l ihood est imators,  where 
the der ivat ive of the log - l i ke l i hood  for  the pop- 
u lat ion in (5.1) is estimated through (5 .2) .  
More general ly,  many M-estimators are also of 
th is  form. Thus, th is  class encompasses most 
analy t ic  s t a t i s t i c s  of i n te res t .  

Binder's resul ts include condit ions under 
which the estimator ~ from (5.3) is asymptot ical-  
ly normal and the asymptotic variance may be es- 
timated by a Taylor series ( l i nea r i za t i on )  method 
appropriate to the form of (5 .2) .  He considers a 
sequence of populations of size Nt, t=1,2,3 . . . . .  
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where the population value from (5.1) ,  Wt(e), is 
defined for a i i  OcE), the parameter space. Ex- 
cept for s l igh t  notat ional changes and general- 
iza t ion,  his condit ions are" 

Condition I .  

l im Nt-I  Wt(P) : ~(e) (5.41 
t+~ 

exists for all O~C). 
Condition 2. "~ ~(e) is a one-to-one function, 

so that c~ -1(.) exists. 
Conditions 3 and 4. There exists a 90, an in- 

ter ior point of @, such that 

~ ( ~ 0 )  : O. ( 5 . 5 )  

Condition 5. (A general izat ion of Binder's for -  
mulation) There exists a sequence h t ,  t=1,2,3 . . . .  
with ht÷- and 

D /% 

h t mt -1 (W(e) - Wt(9)) ; N(O,c(e)) (5.6) 

for pos i t i ve -de f i n i t e  covariance matrix ¢(9) for  
al l  e in a neighborhood of 90" 

Condition 6. .Q(9) is t o t a l l y  d i f f e ren t i ab le  
in a neighborhood of ~0" 

Condition 7. 

lim Nt -I (@.W({))) : (@R(O))I : d(e O) 
0+0 ,t+~ ao ~, ao o=o 0 " " 

" ( 5 . 7 )  
in probabi I i ty .  

Condition 8. j.(eO)_¢(eO)J(E)O )T is of fu l l  rank. 
Condition 9 @(Oi is a continuous function 

of 9- 
Condition i0 .  a.~(9)/a ~ is a continuous func- 

t ion of 9. 
Condition I I .  ~(0), assumed to exist  under 

the sample design, glves a consistent estimator 
for ¢(~). 

Lemma i (Binder 1983) The d i s t r i bu t i on  of 
ht(~-eO ) - i s  asymptot ical ly equivalent to the d is-  
t r i bu t i on  of 

D t = -J - l (o0)  h t mt - I  W(BO) (5.8) 

Corro l lary I (Binder 1983) The asymptotic d is-  
t r i bu t i on  of lit(~-eO ) is the normal law with 

mean 0 and variance matrix J - l (eo)¢(90)J- l (80  ) T. 

Corrol lar),  2 (Binder 1983) Let~Ft be the dis-  
t r i bu t i on  function for ht(9-eO) , based on the 
t - t h  sample and le t  G t be the d i s t r i bu t i on  func- 
t ion of a mul t i var ia te  normal d i s t r i bu t i on  with 
mean zero and variance matrix 

A /% 

ht2 Var(e) = J - l (  o) @( o ) j - l (  e) T (5.91 

where j(61 = Nt - I  aQ(9)/ae. Then, by v i r tue of 
condit ions 9 to I I  

l im sup I Ft - G t l  : 0 (5.10) 
t+~ 

These results establish the asymptotic infer- 
ential val id i ty of using (5.9) for confidence 
statements about 00. 

The stringent ~nature of the global nature of 
conditions 1 and 2, as opposed to a simpler re- 

quirement that they apply in a neighborhood of 
e O, serves to guarantee consistency of "~). The 
global nature of these conditions could'be re- 
moved by^adding conditions assuring the consist-  
ency of O. 

The fol lowing theorem states conditions under 
which a generalized rep l icat ion approach gives 
the same outcome as Corro l lary 2. 

Theorem 4 Under conditions I - I I ,  suppose that 
in a neighborhood N(BO) of e O, for each t = l , 2 , . . .  

there exists a resampling plan, dr*(t) ~(r,t). 
r=l ,2, . . .R , giving reweighted W(8)(~ ( r ' t ) * )  for 
all e in N~O), and that, as t÷®, 

P 
sup Nt- l l l~(e)(p(r ' t)*)-W(e)l l '^ ------~0 ( 5 . i i )  
r<R t 
e~ N(90) 

A 

Suppose also . that Vat r W(e) is the estimated 
variance for W(9) of the form (3.15) and that ,  in 

Nt-2V " N(eo), ht 2 ar r W(e) consistently estimates 

~(.0). I f  ~(p(r,t)) are replicate estimates based 

on W(e)(p(r't)), and i f  Var r 0 is of the form 

(3.151, then ht 2 Var r . may replace (5.9) in the 

statement of Corrollary 2 (Binder 19831. 
Comment on proof Condition 7 implies, for any 

> O, there exists an ~ > O, and T, such that 

P{llNt-law(o) - J(eo)ll > ~} < ~ (5.12) 
ae 

for al l  8 with lib - e 011 < ~, t>T. With the ex- 
ception of the set described by (5.121 and an 
addit ional set of a r b i t r a r i l y  small p robab i l i t y ,  
the expression, (3.15), for Var r 9 may be ex- 
panded with the methods used in the proof of 
Lemma I ;  (5.11) bounds the contr ibut ion of al l  
terms except for another set of a r b i t r a r i l y  small 
p robab i l i t y .  

The conditions of the theorem are often easier 
to check in practice than they might at f i r s t  
seem. Note that the scaling factor h t does not 
appear in (5.11).  

For f ixed e, (5.1) is a l inear  functional mod- 
i f i ed  by v(e),  which is constant for f ixed e. 
Thus, although ~ i t s e l f ,  is t yp i ca l l y  non-l inear" 

, .  , 

resampling plans for W(e) in N(.O0) generally 
would ex is t .  

APPENDIX 

A.1 Example of Ratio Estimation from Section 2 

Section 2 introduces an example with E(YIX=x) 
= rx, Var(YlX=x ) = o2x 2 as a counterexample to 
(2.3) when n=2 and an i l l u s t r a t i o n  when (2.2) 
may f a i l .  For r n defined by (2.10), 

n 
Var(rn) : n E(X12/( £ Xi )21 (A.1) 

i=1 

E(Varj(rn) ) : ( (n-1) /n)  Var(rn_l) + 
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n-2 
(X n - Xn_l )2 ~ Xi 2 

( (n - l )2 /2n )  E i=1 (a.2) 
n ' l  n-2 ' 2 

( ~ Xi )2 ( s X i + X n) 
i= l  i= l  

where no second term in (A.2) appears for n=2. 
The form of (A.2) is consistent with (2.1) ,  but 
the author has not derived general s imp l i fy ing  
condit ions under which (2.3) f a i l s  except through 
d i rec t  computation of (A.I)  and (A.2).  

A.2 Proof of Inequal i ty  (2.16) 

The variance estimator (2.15) based upon inde- 
pendent hal f-sample rep l ica t ions may be wr i t ten 

VarHs I = 

( a (a - l ) )  -1 
J 
~; z {Sk(Xlh ( l , j )  . . . . .  Xkh(k, j ) )  - 

j : l  j < j '  

S k ( X l h ( l , j ' ) ,  . . . .  Xkh(k,j ') )}2 (A.3) 

There are J( j -1) /2 terms in the summation (A.3), 
each with the same expectation. For each i ,  
h ( i , j )  = h ( i , j ' )  with probabil i ty 1/2 for j = j ' ;  
therefore the contribution to the total (A.3) of 
terms ( A i ( X i h ( i , j ) )  - A i ( X i h ( i , j , ) ) )  ~ is 1/2 

Var ( A i ( X i ) ) .  S im i la r l y ,  for i ~ i ' ,  the prob- 
ami l i t y  of { h ( i , j )  = h ( i ' , j ' )  and h ( i ' , j )  = 
h ( i ' , j ' ) }  is 1/4, so that the cont r ibut ion to 
(A.3) of terms { B i i , ( X i h ( i , j ) , X i , h ( i , , j ) )  _ 

B i i , ( X i h ( i , j , ) , X i , ( i , , j , ) ) }  2 is 3/4 

Vat B i , (X  i ,X i , ) .  In general, for the m-th order 
terms in the ANOVA decomposition, the contr ibu- 
t ion to (A.3) w i l l  be I - (1/2) m times the var- 
iance cont r ibut ion to the decomposition of Sk. 
Thus, (2.16) is establ ished, with s t r i c t  inequal- 
i t y  whenever any terms in the decomposition of S k 
above the f i r s t  order are non-degenerate. 

To show (2.16)  for the variance estimator 
(2.18),  which includes appl icat ion to balanced 
repeated rep l i ca t i on ,  note that the expected val-  
ue of the r ight-hand side of (2.18) is minimized, 
over a l l  symmetric s t a t i s t i c s  in the sense of 
(2.17),  by replacing Sn(X11 . . . . .  Xk2) by 

S ( . ) (X l l  . . . . .  Xk2 ) = 

2-k ~ SK(Xlh( I , j  ) . . . . .  Xkh~k j ) )  
h 

(A.4) 

where summation in (A.4) is over a l l  2 k possible 
half-samples. Thus, 

E(VarHS2(Sn) 

E( j -1  
J 
~ { S k ( X l h ( l , j ) , . . . X k h ( k , j  ) - 

j=1 
S( .)(XlZ . . . . .  XK2)} 2) (A.5) 

The ANOVA decomposition may be used to reexpress 
(A.4); for example, the f i r s t - o r d e r  terms of the 
decomposition of (A.4) are 1/2 A i ( X i j ) ,  the 
second-order terms 1/4 B i i , ( X i j , X i , j ,  ) TOt ( i , j )  

( i ' , j ' ) ,  etc.  With th is  decomposition, the 
r ight-hand side of (A.5)may be easi ly  shown to 
have the same expectation as (A.3), establ ish ing 
resul t  (2.16) and providing a concidental demon- 
s t ra t ion  of 

E(VarHS2(Sn)) ) E(VarHSI(Sn)) (A.6) 

for any predetermined half-sample plan on the 
lef t -hand side of (A.6) and implementation of ran- 
dom half-samples on the r ight-hand side. 

A.3 Proof of Theorem 3 

I t  is su f f i c i en t  to prove the resul t  for a 
quadratic funct ional of the form B i i ,  = b i i , c i c  i , ,  
where b i i ,  is a constant and c i ,  c i ,  represent 
counts for ce l ls  or charac ter is t i cs  i and i ' ,  not 
necessari ly d i s t i n c t ,  in the f i n i t e  populat ion. 

Let X ( i )  and X ( i ' )  denote weighted ind ica tor  var- 
iables for charac ter is t i cs  i and i '  based on sam- 
ple s. Over the sampling d i s t r i bu t i on  of s, 

E ( b i i , ( I T x ( i ) ) ( I T x ( i ' ) ) )  = 

b i i ,  (c ic i '  + C o v ( I T x ( i ) , I T x ( i ' ) ) )  (a.7) 

For a spec i f i c  sample s, 

* Tx( i)  (r)  Tx ( i ' )  ( r ) ,  E { d r * { b i i , ( 1  (p ) ) ( i  (p ))) - 

b i i , ( 1 T x ( i ) ) ( z T x ( i ' ) } }  = x(i)TCs x ( i ' )  (A.8) 

using the spec i f ic  assumptions in the statement 
of the theorem. The unbiasedness of the variance 
estimator for l inear  funct ionals implies unbiased- 
ness in the corresponding covariance estimator on 
the r ight-hand side of (A.8),  and the theorem 
fol lows by taking the expectation of (A.8) over s. 
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