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Numerous techniques are available for estimat- 

ing population characteristics from data from sim- 

ple random samples, but relatively few have been 

adapted for application to complex samples. Meth- 

ods based on resampling will be discussed as means 

for estimating population characteristics, stan- 

dard errors, and confidence intervals. The resam- 

pling methods considered here are various versions 

of the bootstrap. 

I. Estimation of (possibly complicated) character- 

istics from a complex probability sample 

We first observe that many population character- 

istics can be expressed as functionals of the pop- 

ulation cumulative distribution (cdf) F . 

Example IA: Mean and Variance. If the population 

consists of N real numbers X I .... ~X N , then the 

population cdf is given by F(t)=N- 7. I(X.<t) 

where I(-) is the indicator function a~d x-- Z N denotes 
summation as the index runs from I up to N. 

The population mean p is given by the functional 

U(F) = ftdF(t) and t{e population variance o~ is 

given by the functional g2(F) = f ( t -Ux)2dF(t ) .  
Example 2A: Correlation and bivariate regression. 

If the population consists of N pairs of real 

numbers (XI,Y I) ..... (XN,Y N) , then the population 

cdf is F(s,t) = N-Iz N I(Xi~s)I(Y'<t)i-- " The popu- 

lation correlation coefficient PXY is the nonlinear 

functional O(F) = (g ~ )--'/f(s-u )(t-U_ )dF(s t) 
X Y Y ' 

and the population regression coefficient 8 of 

Y on X is given by the functional 8(F) = p(F). 

o (F)/o (F) . Least squares theory shows that the 
Y X 

population regression coefficient may also be in- 

terpreted as minimizing 

(I) fig(y, z)dF(z) 

with y = (e,8) , z = (s,t) , and g(y,z)=(t-~-Bs) 2. 

Example 3A: Latent Distributions. The following 

latent trait model used for studying educational 

attainment of a group of individuals provides a 

more complicated example of a population character- 

istic of the form (I) . Each of N individuals 

i in the population is capable of providing a 

random vector X. in response to a questionnaire, 
l 

and an individual's probability distribution over 

alternative responses is governed by his latent 

trait, @. . The probability that individual i 
1 

with latent trait @. would choose response x is 

assumed to be ~(x,@ i)̀  . The latent trait of in- 
1 --I 

dividual i has distribution G. , and G = N • 

Z G. denotes the cdf of th~ latent trait in 

t~e x population. Although estimation of ~ is 

often of interest, here we will assume ~ to 

be known. 

Imagine the set of all responses x. , j=1 ..... 

MN that would occur if each individua~ answered 

the questionnaire independently and repeatedly a 

large number M of times. Ignoring "labeling," 

i.e., knowledge of which individual provides which 

responses, we see that the (marginal) probability 

of any response vector x is f~(x,@)dG(@) and 

the log-likelihood of the MN responses x I ..... XMN 

is ZMN log f~(xj,@)dG(@) or equivalently 

(2) flog {f~(x,8)dG(8)}dF(x) 

where F is the ecdf of the MN responses. Now 

l~t G be distribution G maximizing (2) ; since 

G need not be uniqu~ it may be necessary to as- 

sume that G and G lie in some family of dis- 

tributions (Lord, 1969). Consistency results for 

maximum likelihood estimators imply that under 

some conditions on ~ and G , G converges to 

the true cdf G . Thus, we can view the model- 

based concept of a latent distribution as a popu- 

lation characteristic if we are willing to (i) 

imagine a "superpopulation" of M responses from 

each individual, and (ii) to ignore labels (Rao, 

1971). 

The class of estimators we will consider are 
A 

based on the simple idea of estimating F by F , 

say, and then a functional @ (F) by @ (~) . For 

example, if the data were based on equal probabil- 

ity sampling, we might estimate F by F , the 

empirical cdf (ecdf) , and hence estimate the 
A 

moments of F by the moments of F . Thus, we 

would estimate the mean by the sample mean, the 

variance by the average squared deviation about 

the sample mean (i.e., biased estimator of vari- 

ance), correlation by the sample correlation, etc. 

Example IB. If ..... x denote a simple random 

Xlfrom t~e population ~f example ~-of--size n 

I, then the ecdf is given by ~(t) = n- 7. n I(xi<t) 

Thus, a functional estimator of the mean is 

x = U(F) = ftdF(t) = n- 7 x. and the functional 

estimator of the variancenis 1 

^2 --2 -I --2 
(3) OX = /(t-x) dF(t) = n 7. (x.-x) . 

n 1 

Example 2B. Let .(x1' yl ) ..... (x ,y ) denote a 
n n 

~ ~  sample of slze n from the population of 
^ --I 

example 2A. The ecdf is given by F(s,t) = n • 

7. I(x.<s) I(y <t) and a functional estimator of 
A t~e i-- . i-- . ^ ^ - I correlatlon coefflcient is p = p(F) = (~ o .) • 

-- -- ^ X Y 

ff(s-x)(t-y)dF(s,t) , which is the usual sample 

correlation. Similarly, a functional estimator of 
A 

the population regression coefficient is 8(F) , 

which is the usual least-squares estimator. One 

way to calculate 8(F) is as "POY/gX " An alter- 

native is to substitute F for F in (I) . 

Example 3B. Suppose a simple random sample of n 

individuals is taken from a population, and from 

individual i a response vector x. is obtained, 

i=I ..... n . To estimate the population distribu- 

tion of latent traits that maximizes (2), we sub- 
A 

stitute the ecdf F for F in (2) and choose G 

to maximize. 
A 

(4) f{logI~(x, @ )dG( @ ) }dF(x) . 

Bock and Aitkin (1981) and Mislevy (1983) provide 

techniques based on the EM-algorithm for perform- 

ing this maximization. 

Alternative estimators of F , such as kernel 

estimators or smoothed versions of F , lead to 

alternative estimators of population characteris- 

tics. Many common estimators cannot be expressed 

as functional estimators in which the function is 

a proper probability distribution. Thus (recall 

example 1B) to get the u~ual unbiased estimator 
A 

of vari@nce we would have to replace F in (3) by 

n(n-1)-" ~ , which is not a proper cdf . 

Now we consider unequal probability sampling 

with replacement. Suppose real values x ...... x 
! n 

are observed with known draw-by-draw selection 

probabilities nl ..... z from a population of size 
n 
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N . Then we might consider estimating F by the 

unbiased estimator ~ (t) = N- !7. I(x.<t).n-q . 

However, F need no~ be a p~op~r cd~--, i _ For exam- 

ple, if n=~ and ~1 = (cN) with c>I then 

Fu(t) = c>I for t<Xl . 

An alternative to is the ratio estimator 
U 

A A --I 

(5) FR(t ) = NFu(t)/7. ~ = 7. I(xi<t)w 
n i n i 

-1 -1 
where w. = ~ /7. z. . 

l 1 n 3 

Example 1C. Suppose x ..... x is an unequal 
pzobabil~y sample with I n replacement and draw-by- 

draw selection probabilities ~ ...... z . The 
• . i n ^ 

functlonal estlmator of the mean is using F 
-- ~ ' ~ U ' 

the u~biased estimator x = p(F ) = ItdF (t) = 
- ^ U  U U 

(nN) 7. x./~. . Using F_ we obtain the ratio 
1 1 _ I< ' A 

estimator of the mean, x R = P(FR) = 7.n xiw i 
which is biased. 

To estimate the population %<arian~e we could 
^z z ^ 

use the_functional estimatQr 0 = o (F) = 7. 
2w. = 7. 7. " 2 RX R n (x {x.-x.) w.w. . This estimator 

islbi~sed,R 1 butn _ nthw bials ~an ~e3removed by multiply- 

ing 0RX by (Tn~ i ) ZN-Zn-](n- I )-] or equiValently by 

-1^ 
calculating ~2(n(n-1) FU) . Kish (1964, 1965), 

developed a different unbiased estimator of vari- 

ance. Kish's approach is based on unbiasedness 

rather than functional estimation to develop esti- 

mators of other population characteristics. 

Example 2C. Suppose (Xl, yl ) ..... ( y ' y ) is an un- 
n n 

e-~al pr~ability sample selected wlth replacement 

and draw-by-draw selection probabilities z ...... ~ . 

Then the ratio ~st~mate of the populatio Icdf is n 

F~(s,t) = (7. ~- )- "7. I(x.<s) I(y.<t)n -~ . A 

functional estimate o9 P is the probability- 

inverse weighted~ ^ -]G°r r elation_ _c°efficient^ PR = 

P(F R) = (~RX~RX) ll(s-x )(t-YR)dFR(S,t) = 

(xi-xR)(yi-YR)~-l/(ORXORY) . Similarly, a func- 7. 
tional estimate o~ the population regression coef- 

ficient is 

/ '  . . . . . .  (x I /  
= ~ = = 7. -x R) (Yi-YR)n (6) 6 R 6(m R) PR~Ry/ORx n i i 

7. ( - -  2 ,n . -  1 
n xi-xR) 1 

which is the "weighted least squares" estimate. Ob- 

serve that the weighting in (6) has nothing to do 

with heteroscedasticity. Rather, the weights en- 

ter as they do because the population regression 

coefficient is a special kind of functional, viz., 

8 is the solution to (I). To estimate 8 with 

a functional statistic we minimize (I) with our 

estimate ~ substituted for 2 F , i.e., minimize 

llg(~,z)dFR(Z) = 7. (yi-~-6xi) w i • 

Example 3C. Suppose an unequal probability sample 

of n individuals is taken from a population, and 

from each individual i a response vector x. 
1 

and a draw-by-draw selection probability ~. are 

observed, i=I ..... n . Instead of choosing IG to 

maximize (4), we choose G to maximize 
A 

I log {l~(x,0)dG(O)}dFR(X) with FR(X) the 
weighted ecdf of response vectors. 

Suppose now that we want to estimate the popu- 

lation cdf F from an unequal probability sample 

of size n drawn without replacement with over- 

all selection probabilities P. Thus in a popu- 
1 " 

lation of size N we have n = 7. P. . The 
N l 

estimator (5) can still be applied if we set 

= P./n . 
i l 

There are two natural ways to estimate the pop- 

ulation cdf F from a stratified sample: the 

"separate" ratio estimator and the "combined" 

ratio estimator. Assume there are L strata, N h 

sampling units in stratum h with draw-by-draw 

selection probabilities Zhi such that I = 7. N Zhi' 
n 

and n h observations from stratum h drawn with 

replacement. Defining the stratum weights as 
A _ 

W h = Nh/7. L N k , the "estimated" weights as W h - 

1 7nh~k ~ 7n h ~h /TL , and FRh as the estimator 

(5) computed for stratum h , we may estimate F 
A 

by the separate ratio estimator 7LWhFRh or by 

the combined ratio estimator 7.LWhFRh . If L 

is large and the n. are small then the combined 
h 

ratio estimator may be better. 

To estimate F from a multistage sample we 

may simply apply the estimator (5) to the ulti- 

mate sampling units. If the sample is a strati- 

fied multistage sample, we may apply the separate 

ratio estimator or the combined ratio estimator 

to the ultimate sampling units within each stra- 

tum. 
A 

II. Motivation for F R for Samples Drawn with 

Replacement 

To develop estimators for the population cdf 

when the data come from a complex sample, we will 

be guided by the ecdf for simple random samples. 

To generalize the ecdf to complex samples we 

will use a simple idea: rather than make the es- 

timation procedure more complex, we will simplify 

the sample and then use the ecdf . 

To "simplify" a sample we modify the original 

sampling procedure so that no clustering and 

stratification effects are present and so that 

every element in the population has equal chance 

of being in the sample. Although we usually can- 

not completely simplify a complex sample drawn 

with replacement, we can come close if we resam- 

ple (subsample) the given sample so that 

(I) stratification and clustering are ignored, 

and 

(2) an element's probability of appearing in the 

simplified sample (subsample) at any draw 

is inversely proportional to the original 

draw-by-draw selection probability. 

Note that the simplified sample is a subsample 

of the original sample, and it is drawn with re- 

placement. Thus, the subsampling may lose some 

information. If we have data to spare, this in- 

efficiency may be tolerable, as when we pull a 

small subsample from the large data set to per- 

form preliminary analyses. Since in most cases 

we will not want to lose information, two alter- 

native methods of preserving information are pre- 

sented in section III. One is based on the "ex- 

pected subsample" and the other is based on the 

expected value of the functional estimator, with 

expectation referring to the subsampling when the 

original sample is held fixed. For linear func- 

tionals the methods give essentially the same 

results. 

Let x I ..... Xn be an unequal probability sam- 

ple drawn with replacement and draw-by-draw selec- 

tin probabilities Zl ..... ~ , and define w. = 
~?~/7. ~ as . a simplified sample of n 3 before T~en n 
slze m say x , .... x , is constructed by sam- 

' m 
pling m times lwith replacement from x I ..... x n 
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using selection probabilities w ...... w . The 
I ^ :5 -I 

ecdf ~f the simplified sample is F (t~ = m • 

7. I(x. <t) . However, a better estimator than F S 
m 1- 

AS 
is the conditional expectation of F given the 

original sample: this estimator is equal to ~ . 

III. Computational Considerations R 

In many cases (including stratified cluster sam- 

ples with unequal seleciton probabilities) we may 
A 

use F to estimate the population cdf F , and 

to estimate a population characteristic 8(F) we 

may use 8(F ) . We will assAume that we can readi- 

ly calculateKthe estimate 8(F) for F the ecdf 

of a simple random sample. However, we might not 
A 

be able to so readily compute 8(F ). For example, 
R 

we might have software for computing ordinary 

least squares regression estimates (example 2B) 

but not weighted least squares estimates (example 

2C). 
If we choose a simplified sample and calculate 

the ecdf F then we can compute 8 (~S) , but 

some information may be lost. Two ways around 

this problem will now be presented. 

Instead of using the simplified sample, we can 

use the "expected value" of the simplified sample, 

i.e., the "blowup" sample; Gross ( 1980), Rao and 
..... x is the original W~ (1984). Thus, if x I n 

with-replacement sample with draw-by-draw selec- 

tion.probabilities ~ ...... ~ , and w. = ~--/ 
7.11.--I 1 n _ _ 1 1 • , then we choose m so that k. = mw. is 

l T~key n ~nteger (or approximately an integer; an 
(1948)), and let the blowup sample consist of k. 

1 

copies of x. , i=I, .... n . ^~bserve thatAthe 

ecdf of thelblowup sample, F , equals F . 

Thus, the estimate @ (F-) which we can ca{culate, 

equals @(F ) . The possible drawback to this ap- 

proach is t~at m may need to be quite large. 

An alternative approach is a bootstrap method 

for performing a stochastic numerical integration. 

We repeatedly and independently simplify the orig- 

inal sample a number B o~btimes, yielding anti- 
^ ^SD. 

m~{es @I = @(F ) for F the ecdf of the 
D 

b-- simplified sample, b =I ..... B . Then we 

choos~ the average or the median of @1 ..... @B ' 
say @ , to,estimate @(F) . If we use the aver- 

age, ~hen @ is a random approximation ~o 
~,~ ~ -I 

E( 8(F )loriginal sample) 2S @(FR) + O(m ) . If 
the cost of computing @(F ) increases rapidly 

with sample size m , then this bootstrap/stochas- 

tic numerical integration method may be less expen- 

sive than using the blowup sample. 

Example ID. Suppose x ...... x is an unequal 
n 

probability sample dra~ 1 with replacement with 

draw-by-draw selection probabilities ~ I ..... ~ " 
Then application of x and ~ to the b~owu~ 

sample produces the estimators x_ and ~_ 
L 

Application of x and ~ to aKsimpli~ie~ sub- 

sample leads to statistics .,XLs and ~v S`~ having 
the properties that their expected val~es (over 

repeated subsamplings) are x R and ~_ . As the 

number B of subsamples used to compute x and 
^2S 
~_ _ increases, or as the size m of the su~sam- 

p~es increase, then xRS and oRX S converge to 

x R and oRX . 

Example 2D. Suppose (Xl, y ) .... (x ,y ) is an 
unequal ~obability sample I ' n drawn wi~h replacement 

with draw-by-draw selection probabilities 

z .... ~ . Applying the ordinary least squares 
c6 s; n estimator of the regression coefficient to 

the blowup sample yields the probability-inverse 

weighted regression estimator 8 R . To see that 

the stochastic numerical integration approach not 

yield ~ , suppose all z. are equal and consider 

estimating the slope of th~ population regression 

by OLS. If we choose subsamples of size m=2, cal- 

culate the OLS estimate of slope from each, and 

take the median of these over a large number B 

of subsamples, we get Theil's (1950) "nonparamet- 

tic" estimator of slope. 

IV. Estimation of Standard Errors 

Standard errors can be estimated by pseudo-rep- 

lication methods. Attention here is focused on 

the bootstrap. Before discussing how to bootstrap 

complex samples, we review the idea behind the 

bootstrap in simple random sampling with replace- 

ment. As usual, F denotes the population cdf 

and @(F) is a population characteristic. Let 

s denote an observed simple random sample of size 

n from F , let F be the ecdf of s , and 

let @(F) be the estimate of @(F) . To study 

the sampling distribution of @(F) over possible 

samples, we hold s fixed and: 
A 

I. Draw a subsample s* of size n from F , 
^ 

2. Calculate the ecdf of s* , F* , and also 
A 

@* = @ (F*) , 
3. Repeat steps I and 2 many times to generate an 

ecdf of @* . Then use the observed distribu- 

tion of @* - @(F) to make inferences about 

the unobserved distribution of @(F) - @(F) . 

The subsamples s* are called "bootstrap samples" 

and the ecdf of @* is the "bootstrap distri- 

bution." 

The bootstrap procedure extends in a generally 

straightforward way to complex samples (except 

for two special considerations to be discussed 

below). 

To show how to extend the bootstrap procedure 

to complex samples we first consider unequal prob- 

ability sampling (with replacement). Suppose real 

values x I ..... x are observed with known draw-by- 
n 

draw selection probabilities ~ .... ~ from a j, 

population of size N . To estimate t~e population 

cdf F use F given by (5) . Holding the sample 

fixed, choose~ootstrap samples from ~RbUt accord- 
ing to ~ ~ ~ ~he-me~ ~he net ef- 

fect is to draw the bootstrap sample by simple 

random sampling with replacement from the original 

sample! For example, suppose x I ..... x are all 
A .n 

distinct. Then sampling from F R asslgns x. 
1 

-I 
a selection probability of w. ~ n. , and sam- 

. . 1 1 
pling according to the orlglnal sampling scheme 

assigns x. a selection probability proportional 

to ~. . ~he product of these probabilities is 

constant for all x I ..... Xn , i.e., we use simple 

random sampling with replacement. 
.... x is an unequal Example 1E. Suppose x I , n 

~ l i t y  sample drawn with replacement with 

draw-by-draw selection probabilities nl ..... ~n " 
Each bootstrap sample is obtained by simple ran- 

dom sampling with replacement from x .... x . 
I' ' n 

Let x. and ~. denote the particulart~alues 
of x.3and z.3 corresponding to the i draw 
of th~ l bootstrap sample, j=1 ..... n . Consider 

estimating the sampling variance of the ratio- - A 

estimator of the mean, x R = p(F R) . For each 
bootstrap sample form 

4, -1/ -I 
FR(t ) = Z I(x~<t)z~ Z ~* 

n l-- l ni 

and 
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-I -1 
__ * 9: 9: 9: 

X R = ~(FR) = 7.nX zi / 7'n~i " 

Repeating the bootstrap sampling procedure a large 

number, B , of times leads to an ecdf for x R . 

The variance of this ecdf , which is the bootstrap 
-- A 

estimator of variance of x R = U(F R) , tends (as 
B increases) to 

2 2 -- --2 2 1 
(7) X x w - 2x 7. _ _ + x X w. + O(n- ) 

n i i ~nXiWi R n i 

-I I 
with w. = ~ / 7. ~- . The ratio of (7) to the 

1 i n 3 

true variance of x R tends in probability to 1 

for large n . 

If the original sampling procedure is multi- 

stage, say primary sampling units (psu's) are se- 

lected with possibly unequal selection probabili- 

ties and with replacement, then the bootstrap sam- 

pling procedure focusses entirely on the primary 

selections. To bootstrap, draw a simple random 
sample of psu's with replacement form the original 

sample, and then select all ultimate sampling units 

within the chosen psu's. (The use of single-stage 

replication sampling from a multistage original 

sample is common to jackknifing and balanced re- 

peated replications (BRR) also, and is justified 

when the original primary selections are made with 

replacement. ) 
If the original sample was drawn by stratified 

sampling (possibly with unequal selection probabil- 

ities within strata), then the bootstrap sample 
is to be drawn by Stratified simple random sampling 

from the original sample. A special consideration 

arises in stratified sampling because the bootstrap 

estimator of variance of the sample mean (in a sim- 
ple random sample of size n) is biased,_@nd it be- 
comes unbiased if multiplied by n(n-1) . In 

stratified sampling with few observations per stra- 

tum and many strata these biases become important, 

and one way of coping with this is to decrease by I 

the size of the bootstrap samples drawn from each 

stratum. Rao and Wu (1984) discuss this and alter- 

native techniques. But, aside from this consider- 

ation, the across-strata allocation of the boot- 

strap sample should be the same as for the original 
sample. 

A second special consideration arises if the ori- 

ginal sample was drawn with replacement. If we use 

techniques described above to develop a bootstrap 

estimate of variance of the mean of a simple ran- 

dom sample, then we need to multiply that estimate 

by the finite population correction factor. For 

stratified simple random sampling without replace- 

ment and with varying sampling fractions across 

strata, multiplication by a single finite popula- 

tion correction (fpc) will not suffice. One way 

of coping with this is to differentially increase 

the sizes of the bootstrap samples drawn from the 

different strata. (This technique may also be 

used for estimating variances of nonlinear statis- 

tics in simple random sampling. ) For multistage 

samples we would focus on the sampling fractions 

for the psu's. For unequal probability sampling 

a sampling design need not have a unique fpc , 

but we could try to use the factor appropriate for 

simple random samples, 

(8) (N-n)/N-1) . 

This fpc performed well in limited empirical 

studies of unequal probability sampling (Cochran, 

1977, p. 130). Alternative fpc's may be derived 

from superpopulation models. For example, if we 

draw an unequal probability sample of size n from 

a population of size N without replacement and 

with overall selection probabilities P ..... P 

the superpopulation model of Brewer (19~3 p ~ "~0) 

leads to the fpc (N'-n)/(N'-I) with N- = nZNP i /N. 
This fpc is always between (8) and I. 

V. Computational Issues. 

We will now consider some computational issues 

that arise in using the bootstrap to estimate stan- 

dard errors for an estimator that is calculated by 

stochastic numerical integration. If B1 subsam- 
ples are drawn each time the estimator is computed, 

and if B 2 bootstrap samples are used to calculate 

the boots£rap distribution, then a total of BIB 2 
subsamples are used. The amount of computation 

required could be excessive. To reduce the compu- 

tation needed to compute standard errors, one may 

compute the bootstrap distribution using BI=I even 

though a larger value was used to develop the para- 

meter estimate. The effect of doing this is to 

inflate the variance of the bootstrap distribution. 

However, it may be possible to estimate the infla- 

tion of the variance and adjust for it, based on 

the following rationale. 

Let E I and V 1 denote expectation and vari- 
ance computed with respect to the subsampling used 

in the stochastic numerical integration--recall, 

this subsampling "simplified" the original sample. 

Let s denote the original sample, s* a bootstrap 

sample from s , s~ a simplified sample from s , 

and s* a simplifie~ sample from^ s* , and denote 

~he ec~f's of these samples by F , ~* ' ~I ' and 
F* respectively. Let E and V denote expecta- 
J 

tlon and variance with respect to the original 

sampling procedure. The estimator derived by the 

stochastic numerical integration has the form 

E~(@(FA)Is)~~. , and what we wish to estimate is 

V~EI(@{~I)IS)) . The same monte-carlo that pro- 

vides an estimate ~f EI(@(F1)Is) can give us an 

estimate of VI(@(FI ) Is), say Vl (e^.g., let Vl 
be the observed variance of the -8(F I) values 

generated by the monte-carlo). 

Observe that, by the usual formula relating 
conditional and unconditional variances and expec- 

tations, 

(9) V(El(@(~l)IS)) = V(@(FI))-E(VI(@(FI)IS)) - 

The second term on the right hand side of (9) is 

estimated by v I . The first term on the right 
can be estimated by a kind of "two-stage bootstrap- 

ping." First draw the bootstrap sample s* from 

s , and then draw a simplified sample, s~ , from 

s and calculate the ecdf F* and then calculate 
_9:~ 1 _ 

@(F~) . Repeat this two-stage bootstrap sampling 

B_ times, and calculate the ecdf of @(F~) . We 

will refer to this ecdf as the "two-stage bootstrap 

distribution." The variance of the two-stage dis- 
A 

tribution v_ serves as an estimate of V(@(FA)) • 
' 2 ' ] 

Now subtractlng v~ from v yields an estimate of 
I 2 

the variance of the stochastic numerical lntegra- 
~ A 

tion estimator EI(8(F1)Is) 

A drawback of this method is the possibility 

that v I could exceed v 2 , giving a negative 

variance estimate. 
In principle, the subsampling leading to s I 

and s, can be replicated enough times to ensure 
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non-negative variance estimates, but if too many 

replications are needed the purpose of this two- 

stage approach--reducing computation expense--is 

sacrificed. 

VI. Confidence Intervals 
Various approaches may be used to develop confi- 

dence intervals from the bootstrap distribution, 

such as the percentile method and the modified per- 
centile method. Since these methods are described 

elsewhere, we won't discuss them here; see Efron 

(1982, 1981), and Tibshirani (1984). If the two- 

stage bootstrap distribution is used, the intervals 

will be too wide because the variance is too large 

by the amount E(VI(@(FI)IS)) . One untested 
approach is to rescale the two-stage bootstrap 

distribution to reduce its variance by a proportion 

Vl/V.. To accomplish this, we could try to rescale 
the intervals, or we could recalculate the two two- 

stage bootstrap distribution, with al~ bootstrap 

sample sizes multiplied by (1-v1/v1)- . 
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