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Introduction

The model most commonly used in capture-recap-
ture estimation of population sizes assumes
that individuals are missed or captured in each
source independently of all other individuals
in the population. However, this assumption may
be inadequate for some studies: certain research
designs would lead naturally to clustering of
misses in the enumeration of a population. This
paper will develop a model that will describe
the clustering of misses, it will describe biases
inherent in the traditional dual system estimator
when the model involving clustering holds, and
finally, the paper will outline the use of the EM
algorithm to estimate the total population
size.
Modeling Misses in Each Enumeration

The traditional capture-recapture model
assumes that each person in the population
has a probability, p1, of being captured in
the first source (the census), and a probability,
p2, of being captured in the second source
(the PES), that the captures are independent
between sources, and that captures are in-
dependent between individuals within sources
(i.e. no clustering of individuals). There
has been extensive work on relaxing the assump-
tion that captures are independent between
sources, but the only successful treatments of
this problem have been for capture-recapture
studies involving three or more data sources.
A review of the methodology for multiple sys-
tems that are correlated can be found in
Bishop, Fienberg, and Holland (1975). For the
assumption that captures are independent
between individuals within sources, there has
been relatively littlie work done on relaxing
this assumption. The reason is that if captures
are correlated (implying in this setting clus-
tered misses within enumerated households),
the distributions for the number of misses are
no longer binomial. The binomial distribution
would only be appropriate for the sums of in-
dependent Bernoulli events, and we've lost the
independence of the events if we allow captures
to be clustered within enumerated housing units.

In the model involving clustering, there are
two capture events for each source. There
is the event of a household being captured in
the first source, with probability hy, and
conditional on the household being captured,
each person in the household being captured
with probability pi. For example, in the
census a listing is made of all housing units
on a block in an address register, and then
within each enumerated housing unit a roster
is made of all persons in the housing unit
on a census questionnaire. Either the housing
unit can be left off the address register
(with probability 1-h1), or a person can
be left off the census questionnaire (with
probaility 1-p1). The same events can be
described for source two. The data available
for analysis in this model are much more ex-
tensive and much more complex than the simple
set of data used in the traditional capture-
-recapture model. The observed data can be
expressed in a three - dimensional table
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with entries mjix as in Table 2.

The first co%umn and row of the table are
counts of housing units observed in only the
first or only the second sources respectively,
distributed by observed household size (0,

1, 2, « « ., with zero signifying a vacant house-
hold). The cell in the upper left corner of

this table is empty, the out - out cell. This
cell represents housing units missed in both
enumerations, and all persons in the housing
units who were missed.

The remainder of the table is three-dimen-
sional, with entries being counts of housing
units enumerated (captured) in both sources.
The counts, denoted by mjjk are counts of
households, not persons, But households dis-
playing the the characteristics denoted by
the subscripts. The subscripts for mjjk can be
interpreted as:

i = the number of persons who match in

both households.

j = the number of persons observed in the
first source.

k = the number of persons observed in the
second source.

As an example, mg22 would be the count of

households for which we observed two persons
in the census and two persons in the PES, but
none of the people matched between the two
households. By implication we can say (in the
absence of matching errors) that there are
at least four persons in each of the households
in the mgop count, since there are at least two
persons in each of the data sources, but none
of the persons match. Note that there may be
additional people missed by both sources, so
we can only say that there are at least four
persons in each household, but there may be
five or more persons with some unobserved.
This implies that there are a series of un-
observed variables that together comprise
the mjjk. These would be counts of households
of specific sizes, in which only some or all
of the persons are enumerated at each visit.
We can denote these variables as Xjjks, where
the subscripts i, j, and k have the same
meaning as in the M jk » and the subscript s
denotes the true but unknown household size.
The mjjk are then seen to be the sum of the
Xijks over s, or

Mijk = 2 (2)

Based on the description given previously, the
probability for any household of true size s
being enumerated twice and having a specific
(i,j,k) distribution is:

( s ) i j=1 k=i s-j-k+i
h1 hp (i j-1 k-1) p1ls Pl2s P2ls P22s (3)

where hy and hp are the capture probabilities
for households in source one and source
two respectively,

the portion in parentheses is a combina-



toric describing the ways s persons can
be captured twice or only once in either
source, and Piks being the probability
for each person in a household of

size s of being observed:

P11s is the probability of a person
being observed both on source
one and source two

is the probability of a person
being observed in source one but
but not in source two

P12s

is the probability of a person
being observed in source two
but not in source one

P21s

is the probability of a person
being missed in both sources.

pP22s

There is some evidence that the Pjks vary over
s from editing operations in the census. Large
families in highly urban, low SES areas have
problems in some cases defining exactly who is
a household member at a particular time. When
several related families Tive near each other,
it may also be hard to determine where a
particular person should be counted. As a
consequence, people in these settings are
more Tikely to be missed in the census. How-
ever, it is also true that other variables
are likely to be important to stratification
of the estimates and are likely to be as
important as household size.

We can define

(4)

Plis * P21s (5)

as the marginal probabilities of capture for
source one and source two respectively. If

Plis = Pl+s * Peis (6)

the captures in the two sources are independ-
ent conditional on the households being cap-
tured in both data sources.

Finally, we need to consider the distribu-
tion of households of size s. To describe
the distribution of households, we have a
parameter set R consisting of parameters
(Rg, Ry, R2, ...) which are the propor-
tions of households in the total population
of size zero, one, two, etc.. The distribution
of captured household sizes would then be
multiple hypergeometric. To complete the
model specification, we have a parameter Ny,
which is the true number of households in
the population, and we note that

Pl+s = Pl1s *+ P12s

P+1s =

IRs = 1.0 (7)
s=0
Ny ZSRs = Np (8)
s=0
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where Np in the true number of people in the
population. As an approximation, we assume
the distribution of captured household sizes
is multinomial with the aforementioned parameters.
The remainder of this paper evaluates the bias
in the traditional dual system estimator when
the above model holds, and methods of estimation
for this model.
Biases in the Traditional Dual System Estimates
To evaluate the bias in the traditional dual
system estimates, we will take a Taylor Series
expansion of the dual system estimator presented
in (1) above, and, taking expected values, retain
the first order term in the expansion as an
approximation to the true expected value of the
estimator.
A1l the data that is needed for estimation
is found in table 2 presented above in the
mjjk. To complete the notation started in the
previous section, Tet m j,  be the number of
households observed in tﬂe first source observed
to be of size j that were missed in the second
source, and m_ y be the number of households
in the second source observed to be of size k
that were missed in the first source. Then
using the totals as presented in table 1 for
dual system estimation, the totals can be
found as:

M=2z im‘ijk (9)
ijk
Ny =2 jmijk + jm.j. (10)
ijk J
and (11)

No =.Z. kmjjk + Z km,
ijk k

The estimator for the population size, Np, is
given by equation (1). From the foregoing,
using the first term in the Taylor Series
Expansion, we get:

N XN | E(NE(N
E| 1 2] . ( 1) ( 2) s (12)
_M_ T EM
and so
E(Z gmige + £ dm 5 )E(T kmjjc + g km )
E(Np) . gk S g Tk k
= EC T 1m1jk)
ijk

(13)

Wittes (1970) shows that second and higher order
terms in the Taylor Series Expansion are of

order O(N"l) and can be discarded for large popu-
lations. We can evaluate each of these terms

by using the fact that the mjjk are simply sums
of the unobserved X;j. o for w%ich we know the
distributions. Starting with the denominator:

E( Zimjj) = I iE(mijk) = 3z £ 1E(X{jks)
ijk ijk sijk
( s Y i jei kei s-j-k+i
= Nyhphy ZRs?ki(i J-1 k-1) p11s P12s P21s P22s
s 1]



= Ny hphp ZRgspygs (14)
S
ECZ gmig) = 2 E(migk) = 22 JE(X{jks)
ijk ijk sJ

( s y i j=1 k-1 s-j-k+i
Nghihz IR X (i 3-1 k-1) p11s P12s P21s P22s
S

L]

|~ ( s ) i -1 k=i s-j-k+i
= NyhphoIRs| £ (J-1) (1 J-1 k-1)p115P125P21sP22s
s |ijk
( s ) i j-1 kei o s-j-k#i
+ I 9(i j-i k-1) p11s P12s P21s P22s
ijk )
= Ny hihg ZRS(Splzl + sp11s)
S
= Ny hihp ZRSSP1+5 (15)
S

For the observed variables m_;_ and m_ i there
are corresponding underlying unobservable
variables Xjg and Xxs such that

mj, = T Xjs (16)
J
and
Mok = I Xss (17)
k
. R $-J
with  Xjq (j)p1+s(1-p1+s) (18)
k s-k
and st Y (E)p+1s(1-9+15) (19)

Using these relationships, we get
E(Sjm.j.) = I jE(m‘j.) = I jE(XjS)

s~J

J
Nyhy(1-hp) IRg Z j(j)P1+s(1—P1+s)
S J

NHh1(1-h2) ERgSpl+s
S

(20)
Combining (15) and (20) we get
E( Zjmjjx + ZJm,j,) = Nyhy IRgspias
ijk J S 21)
Similarly, for the second source we get
E(1§Lkmijk 2 km_ k) = Nz ZRssPs1s (22)

Substituting (14),(21), and (22) into (13) we
get the approximation to the expected value
of Np to be:

(Nyhy ERgSP1+s) (Nyha TRsSP41s)

E(Np) (Nuh1h2 ZRssp1ls)
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N _TRSSPl+s ZRgspi1s
= H

ZRssP11s

(23)

Recalling from (8) that the true value of Np
can be expressed as

Np = NH Z:RsS,

it can be seen that the expected value in (23)
will not equal the true value except in
providential circumstances. Bias can be
defined as:

“IRgsp14s ZRgspays R
- SS

E(Np) - Np = Ny

IRsSP11s -
(24)
The difference in brackets is the average
perceived household size minus the true
average household size (persons per household).
A bias results if the average household size
differs from what is observed as a result of
the capture process.

Several special cases of interest can be
examined to consider where and how biases
can enter the estimates. In the case where
P1ls = P1+sP+1s, independence of captures
within households of size s for all s, there
is no obvious expansion or simplification to
determine the direction of the bias. In
fact, the bias could still be positive or
negative depending on the relationship (relative
sizes) between the Rg, p14g, and piig.
Another special case is that in which all of
the capture probabilities are equal across
different sized households. Equation (23)
reduces to

P1+.P+1,

E(Np) = Ny ZRgs (25)

— P11._

From (25), the bias in Ny is now seen to be
only a function of corre?ation bias, whereas
in (23) biases could arise from correlation
between the sources, heterogeneity among the
capture probabilities, or both. The size and
direction of the bias can be determined from
the size and direction of the correlation.
Note that this model explicitly assumes that
household captures are independent. If the
correlation bias is positive, i.e.

Plls = P1+.P+1, * 2

then (25) demonstrates that the population size
will be underestimated.

Finally, the simplest model of all sets
P11s=p11,, implying total independence between
sources within households. From (25) it can
be seen that Np is an unbiased estimator

of Np, at least to a first order term. This
result says that even though there may be
severe clustering of person misses, as long
as the captures are independent between and
within households between the two sources,



then the dual system estimator is stilil un-
biased. This is the same type of assumption
currently used in the traditional dual system
estimator.

Three examples are presented to give an
appreciation for the extent of the bias
possible in the estimates when the capture
probabilities are heterogeneous, but there
is no correlation bias within households
(i.e. P11s = Pl+sP+1g). Table 2 presents
examples which retain the same distribution
of household sizes for all three examples,
and permutations of the capture probabilities.

The examples serve to show that the hetero-
geneity can lead to an underestimate of the
true population size or an overestimate of the
true population size. Though the differences
lTook small for average household size, differ-
ences between estimates of total population
can be quite large. For example, for a state
with about two million households, the tradi-
tional dual system estimator would underestimate
the population by about 58,000 persons, This
could have effects on allocations of revenue
sharing monies, block grant funding, and other
federal allocation programs if different
states exhibit different patterns of within
household captures.

Estimation

The way the model is formulated, it Tends
itself quite naturally to estimation of the
parameter values using the EM algorithm. The
EM algorithm is a two step iterative algorithm
which generates maximum likelihood estimates
of population parameters. The first step of
each iteration is used to generate expected
values of unobserved variables, conditional
on the data actually observed. In this
problem, this would mean generating expected
values E(Xjjks|mjjk) to substitute in place
of the values of Xjjks which are never observed.
The second step of each iteration is to reesti-
mate the population parameters using maximum
likelihood techniques and the estimates of the
unobserved variables from the first step (known
as the complete data).

For this problem, the conditional expected
values of the variables in the first step of
the (t+1)St iteration are calculated as:

t+1
E(XjjksImijk) =

)

t( S t i t j*i t k=i t S-j—k+i
mijk Rg (1 d-1 k-1) p11s P12s P21s P22s
t(_ S, ) t i t J-1 ¢ k=i ¢ s-j-k+i
IRs(1 J-1 k-1) p11s P12s P21s P22s
s (26)
t(s) tJ ( t )S-j
mi. Rg(Z) P 1-p
E(Cotn ) = e el I s (27)

t t J t 8-

ERS(E) p1+s (]—p1+s)
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t t k t s-k
m Rg(3) P+t (]'P+1 )
E(XﬁZ}m k) - ks k S S (28)
- t K t S~k

t
iRs(i) p+ls (]-p+1s)

For the second step of the iteration, the
M step, estimates of the parameter values
are calculated as maximum likelihood estimates
of the parameters as if the Xjjks were known.
The calculation of the MLE's draws upon the com-
plete data likelihood and theory already esta-
blished for the product-multinomial distribution
(Bishop, Fienberg and Holland (1975)). To ob-
tain the complete data 1ikelihood, we start
with equations (3), (18), and (19), which are
the probabilities of persons being captured
or not captured within captured households.
We then recognize that, since household
events are independent between households,
the products iXjjkss JXjjkss kXijkss
ijs, and kXp¢ are total counts of persons
who have particular characteristics (e.g.
iXjjks 1s the total number of persons matched
in a household observed to have j persons in
the first capture, k persons in the second
capture, and s persons actually in the household).
An intuitive approach to the derivation
can be seen by simply examining the guantities
being estimated. Equation (30) attempts to
estimate py4+g, the proportion of cases in
households of size s who are captured in the
first capture effort, regardless of their
status in the second capture. This can be seen
by examination, where the numerator is the
(estimated) number of persons captured in
the first sampling for househoids of true size
s, while the denominator is the total of all
persons in households of size s.

. .Xt .Xt
t 2 JXijks * I JXjs
P1+g = Jik J (30)
t t
T sXijks + I sXjs
ijk j
K KX
t I KAjjks * I Kigg
Prys = igk k (31)
N K
z sKijk1 * I sKjs
ik Y koo
Xt Xt + Xt
t L Ajks T T Ajs t T Kks
Re = djk Vo3 (32)
t t t
7 Xijks t £ Xjs + L Xks
ijks is ks

To estimate p11s we only have data available
from the Xjsks, and not the row (Xjg) or

column (sti variables involving only one
capture. Yet to make full use of data in

the table, the denominator of the ratio must

use the data from the Xjg and X¢q. One could
establish a three dimensional table which is

only partially complete and iterate to a solution
for the p11gs P1+gs and pyqg at each step



of the EM algorithm, as recommended in Bishop,
Fienberg, and Holland (1975), but this is
unnecessary. An equivalent procedure is to
allocate the m,j, and m,  to variables
Xijks using the proportions calculated in the
previous iterate of the algorithm. This is
done in the same way as E(Xjjks|mjjk) for
variables Yjjks and Zjjks, w%ere Yjiks is the set
of variables which are the proportional allocation
of the calculated X;g, as if the households
had been observed twice and Zjjks bears the
same relationship to Xks.

Using these "raked" values, we should be
able to estimate the values as:

ot t t
t T 1(Xijks * Yijks * Zijks)

p11s = ijk (35)

t t t
.EKS(Xijks *+ Yijks * Zijks)
iJ

Obvious modifications can be made for the
MLE's of p1lss Pl+s, and p4+ls when restrictions
are put on the model, e.g. independence within
households or homogeneity across household
sizes.

The algorithm is completed by estimating
the total number of households using the
traditional dual system estimate:

Ny = (Zmjjk+Im j.) (Imjjk+Im, k)/ (Imjjk)  (36)
ijk J ijk K ijk
and
Np = Ny EsR (37)
s S

For models in which

P1ls = Pl4sP+ls (38)

or (39)

P11. = P1+.P+1.

both independence models, the EM algorithm
rapidly converges to a single correct solution
no matter what starting points are used for

the algorithm. The model described by the
restriction in (36) is independence within
household size groups, demonstrated earlier

to lead to biases because of the heterogenerity
of the capture probabilities. The interdepend-
ence of the values Rg,P14¢sP4+1g Makes it
impossible to directly estimate the population
size except through use of iterative procedures.
In the case of the restriction described in
(37) where all the capture probabilities are
equal for all household sizes, the EM algorithm
and the traditional dual system estimator both
give unbiased estimates of the population

size.

Unfortunately, estimates are not so easily
obtained for the full model involving no
restrictions on the pp1g, or the reduced model
where

P11s = P11, for all s. (40)
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When the restriction of independence is removed
from the model, there is too much indeterminancy
in the model for there to be a single solution.
The EM algorithm always converges, but to
different sets of final parameter values for
different starting points. Another way of look-
ing at the convergence of the EM algorithm is
that there is a ridge in the 1ikelihood of equal-
ly likely points that satisfy the algorithm.

The restriction of independence serves to
identify a single point on the ridge.
Conclusions and Future Research

The traditional dual system estimator does
well under a clustering model at estimating
the total population size if all of the assump-
tions about independence hold and capture
probabilites are homogeneous across household
size categories. If person misses are clustered
within households and within household capture
rates differ by households size, the traditional
dual system estimates can be bjased and a better
(unbiased) estimate can be produced using the
EM algorithm. Models which allow correlations
between within household misses show that
the traditional dual system estimator is biased,
but the parameters in these models are not
estimable.

The model developed above does not allow for
variation in the capture probabilities between
demographic or geographic subgroups. This can
be an especially difficult problem because
persons with differing characteristics can be
in the same household, and one if forced to model
the distribution of these person characteristics
for each housing unit of a particular size. This
should be the next step attempted in developing
a comprehensive model.
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Table 1: Observed Data For Household/Person Population Estimates
First Source
Housing Out In
Persons oo
0 1 2 3 4 5
Out {mj.}
S 0
e
c 1
0
n 2
d
In 3 {m, .} {mijk}
S
0 4
u
r 5
C .
e .
Table 2: Examples of Bias in Traditional Dual System Estimation When Person
Misses are Clustered by Household and Within Household
Captures are Independent
Household 0 Set 1 Set 2
Size (s) Plts P+ls Pl+s P+1s Pl+s P+1s
0 .05 - - - - - -
1 .15 .98 .98 .98 .68 .68 .68
2 .20 .95 .95 .95 .71 71 .71
3 .15 .92 .92 .92 J4 .74 74
4 .13 .89 .89 .89 7 J7 J7
5 .10 .86 .86 .86 .80 .80 .80
6 .07 .83 .83 .83 .83 .83 .83
7 .06 .80 .80 .80 .86 .86 .86
8 .04 .77 77 .77 .89 .89 .89
9 .03 .74 74 .74 .92 .92 .92
10 .01 .71 .71 .71 .95 .95 .95
11+ .01 .68 .68 .68 .98 .98 .98
I05SP1+s LO8gSp4]
sPLes s > = 3,631 3.691 3.628
20¢SP1+sP+ls  _|
I6ss = 3.660 3.660 3.660
Relative Bias 99.2% 100.9% 99.1%

(line

1/Vine 2)
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