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I. INTRODUCTION

The relationship between the number of sampie
primary sampling units (PSUs) and between-PSU
variance 1s an important relationship to under-
stand when determining the optimal number of
sample PSUs for a survey. (for the surveys
considered here, PSUs are counties or contiguous
groups -of counties, except that minor civil
divisions form PSUs in some northeastern states.)
In this paper we begin with the reasons behind our
research and 1ts applicability. We describe the
methodology used, present both gualitative and
quantitative results, and discuss some of the
theoretical issues behind the research.

II. BACKGROUND

In the course of our redesign research for the
National Crime Survey (NCS), we surmised that
there should be some optimal number of sample PSUs
at which the opposing costs of field inefficien-
cies and between-PSU variance are in balance. To
determine this optimal number of sample PSUs, we
first needed to be able to predict the between-PSU
variance for designs other than the current
design.

We were not interested in predicting the
between-PSU variance for any possible design.
Surveys like NCS use stratified multi-stage
designs with constraints on stratum sizes. The
strata are constrained to be roughly equal in
size. In such designs, there is a strong link
between the number of sample PSUs and the size of
the nonself-representing (NSR) population. As the
number of sample PSUs decreases, fewer PSUs can be
self-representing {SR) which causes the population
in NSR areas to increase. Since between-PSU
variance is sensitive not only to the number of
sample PSUs but also to the size of the NSR
population, we theorized that, within a suitably
restricted class of stratifications, the between-
PSU variance, for the "best" design for a given
number of PSUs, should be approximately predicted
by some function f(N,m), where N is the size of
the NSR population and m is the number of NSR
strata. {(This assumes one sample PSU per NSR
stratum. )

We tried to derive the correct function
theoretically, but realized that this could be
done only by making dubious simplifying assump-
tions about the distribution of the characteris-
tics of interest in the population. The actual
relationship in a given situation depends
strongly on the characteristics of the PSUs being
stratified and the method of stratification used
to select the "best" design. Therefore, we
performed an empirical investigation. At first,
the study was directed almost exclusively at NCS,
but we later expanded it to cover a broader class
of stratification problems.

The results presented in this paper relate to
problems involving unblased estimators of the
prevalence of demographic characteristics based on
stratifted multi-stage designs where 1) the
stratifications are formed with a multivariate
method that does not depend on the number of NSR
strata or the NSR population (a detailed discus-
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sion of the method follows in Section III), 2)
there are 3 to 50 total PSUs per NSR stratum, 3)
one PSU is selected per stratum with probability
proportionate to size, and 4) the SR PSUs were no
smaller than 75 percent of the average NSR stratum
stze. If a problem does not meet all of these
conditions, we would not expect the relationship
to be the same as presented here. HWe are, in
fact, stretching our results to say that they
apply to the entire class described above.

Nevertheless, i1t was our aim to cover the entire

class and provide general guidance on estimating

between-PSU variances. The details of the
problems that we selected within this class are
described in the following section.

II1. METHODOLOGY
Our analysis was based on nine different

national sample PSU designs. They varied primarily
in their number of sample PSUs. One of the
designs, the 356 sample PSU design, was chosen
because we wanted a design with about the same
total number of sample PSUs as the current NCS
design. The range of the designs was quite exten-
sive. The smallest design consisted of 86 sample
PSUs, while the largest consisted of 1,015 sample
PSUs. The sample designs are presented in Table 1
along with the number of SR PSUs and NSR strata
for each design. As Table 1 shows, more designs
were chosen with 234 or more sample PSUs. There
are basically two reasons for this. First, most of
the more plausible sample designs are in that
range of possible designs. We wanted a suffi-
cient number of data points to be able to analyze
that range accurately. Secondly, we had a prior
interest in the behavior of the relationship as
the function f(N,m) approaches zero. S0, we
selected several designs with relatively large
numbers of strata.

Due to cost considerations, the study was per
formed only in two of the nine geographic divi-
sions defined by the Office of Management and
Budget. The two divisions are the South Atlantic
Division and the West North Central Division. The
South Atlantic Division inctudes Florida, Georgia,
South Carolina, North Carolina, Virginia, West
Virginia, Maryland, Delaware and the District of
Columbia. The West North Central Division
includes North Dakota, South Dakota, Minnesota,
Nebraska, Iowa, Missouri and Kansas. In selecting
these two divisions, we considered the following:
1. The number of PSUs in each division should be

targe enough so that the stratification
problems would be fairly continuous in nature,
rather than very discrete, but not so large so
as to make the stratification costs of nine
designs prohibitive.

2. One division should be relatively more heterog-
eneous with respect to demographic characteris-
tics such as race, occupation, population size,
etc., and the other should be relatively more
homogeneous.

Based on the national sample design, the
characteristics of each design for the South
Atlantic and West North Central Divisions were
computed. In particular, the NSR population size




(N) and the number of strata to be formed (m) were
determined for each design in both divisions. As
stated in Section 11, we theorized that between-
PSYU variance should be some function of N and m.
Qur goal was to determine what transformation of
the function vartables N and m would result in
that function possessing a linear relationship
with between-PSU variance. In other words, what
1inear model "best" predicts the between-PSU
variance? Our preliminary work on this subject,
both theoretical and empirical, suggestgd three
candidate funct1fns of N and my; N/m, N°/m, and
(N/m)¢.  N/m, N°/m, and {N/m)® correspond to
average NSR stratum size, average NSR stratum size
times NSR population, and average NSR stratum size
squared, respectively. The values for these three
functions were computed for both geographic
divisions. The results are given in Table 2.

As stated earlier, the actual relationship of
between-PSU variance and the number of PSUs in a
given situation will depend on the heterogenetty
of the PSUs being stratified and the method of
stratification. In our study we performed a
multivariate stratification utilizing a modified
Friedman-Rubin algorithm (Shoemaker (1983}). This
modified algorithm was developed at the U.S.
Bureau of Census as a part of the demographic
surveys redesign research.

The modified version of the Friedman-Rubin
algorithm minimizes the between-PSU variance for
one sample PSU per stratum with probability
proportionate to size (PPS).

To express the between-PSU component of
variance mathematically, let us define,

m = the number of strata, th
n the number of PSUs in the h
H the total number of PSU{n th
hi the population of the 1 PSU in the h

h

stratum,

HoHnH

4
stratum, th
the population of the h
N = the total population,
hi the popu]at1gR with a certa{n characteris-
tic of the i PSU in the h™ stratum,
Uh the populatign with a certain characteris-
*  tic in the h™ stratum,
the total population with a certain
characteristic.
Then the between-PSU variance for estimated
populations with a certain characteristic is given
by the following formula:

m n P
h Phi 2
3 3 ——-( U, - U )
h=1 1=1 Ph. hi = “h.

Let the scaling factor for a characteristic J
equal Vl’ where VJ is the unstratified between-PSU

P stratum,

U
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variance for characteristic j as defined below.

1 n P
hi N 2
v, = —-—(—-—u -u)
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Formula (1) above, 1is in terms of one charac-
teristic. For multivariate stratifications the
criterion function that the modified Friedman-
Rubin algorithm minimizes is presented below.

Betvar =

C var
(2) b ——vgil, where C = number
=1

of characteristics.
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Beginning with an initial stratification the
algorithm iteratively transforms the strata to
reach a local minimum of the between-PSU variance.
This algorithm allows users to choose options. 1In
particular, the following options were chosen for
this study.

1. Size constraints: The user could assign the
minimum and/or maximum size of the stratum.
Inttially, we utilized this option by con-
straining the stratum size within the South
Atlantic Division. According to this constraint
a stratum was not permitted to vary more than
20 percent from the average NSR stratum size.
An early examination of between-PSU variances
indicated that the size constraints had neglig-
ible effect on our study. Therefore, the size
constraints were dropped in later analyses to
reduce costs.

2. Constraints on the iterative procedure: One
could Timit the number of iterations performed
to reduce the between-PSU variance. For our
study, a maximum 1imit of 10 iterations was
used. Convergence was almost always obtained.

3. Random clustering: According to this option,
the PSUs are placed randomly into strata.

4, Scaling of chacteristics: The program permit-
ted "preference factors"” which would give
greater importance to some characteristics. In
this research all characteristics were consi-
dered equally important.

The set of characteristics whose Betvar is
being minimized is referred to as the "strati-
fiers”, The stratifiers for the nine designs were
chosen from the list of 1980 redesign stratifiers
for the NCS and the Current Population Survey
(CPS). Stratifications were performed using CPS
stratifiers in addition to NCS stratifiers to
enable us to generalize our results to the larger
class of stratifications described in Section II.

Small sets of items that were considered to be
correlated with the items to be estimated by NCS
or CPS were used to evaluate the stratifications.
These sets of items are referred to as the
"evaluators”. The stratifiers could not be used
as evaluators because these {tems were used by the
Friedman-Rubin algorithm to form the strata; the
estimated variances on these items would be
serjously negatively biased. Some evaluators are
1970 decennial census sample estimates while the
others are estimates from the Uniform Crime
Reports (UCR), which are not subject to sampling
error. Thus, formula (1) ¥s biased for the 1970
decennial census evaluators because they were
calculated using sample estimates at the PSU
tevel, but not for the UCR evaluators. Based on a
small study, the relative bias on these estimates
is not believed to have a significant effect on
our results. The results of this small study of
the relative bias are included in the Appendix of
the full paper.

In the South Atlantic Division two sets of
stratifications were produced; one based on the
NCS stratifiers and the other based on the CPS
stratifiers. In this division, the evaluators for
the NCS stratification were the UCR items. The
evaluators for the CPS stratification were the
1970 decennial census sample estimates and some of
the UCR jtems. In the West North Central Divi-
sfon, only one set of stratifications was produc-
ed; it was based on NCS stratifiers. The stratifi-
cations were evaluated using the same items as



used with the CPS stratifiers in the South
Atlantic Division.

Within each set of stratifications, three
stratifications were performed for each of the
nine designs, each with a different random start.
Then the between-PSU variances for the correspond-
ing set of evaluators for each stratification were
calculated using equation (2). Note, three
replications were performed for each design
because we did not have any prior knowledge as to.

the variability of between-PSU variance of the -

evaluators.
IV. RESULTS

In practice, one would like to select the
stratification with the minimum value of Betvar.
Hence, if we could have taken sufficient random
starts for each design, using the minimum value of
the between-PSU variance would have been the
appropriate approach. However, since cost restric-
tions required a small number of random starts, we
would have had to deal with the distribution of
the minimum observation, which would have compli-
cated the analysis. Also, 1t was observed
{earlier 1in the analysis) that the graph of
minimum value of the between-PSU variances had the
same form as the average value of the three
stratifications. Therefore, we decided to use the
average between-PSU variance in our analysis.

A. Graphs

Our initial analysis of the data was to graph
the average of the between-PSU variances of both
the initial random stratifications and the locally
optimal unconstrained stratifications for one of
the evaluation items. As stated in the previous
section, the constrained stratification was
negligibly different from the unconstrained
stratification, so the constrained stratification
was dropped from the analysis. The item chosen
for display was the UCR - Number of Reported
Crimes (except assault and burglary). The graphs
for this item were typical of what we observed
with all of the items. This item was chosen
because it is correlated with NCS characteristics
of interest. The purpose of examining these
graphs was to visualize the relationship between
the functions and between-PSU variances. Qur goal
was to determine which single function, if any,
was the "best" linear predictor of between-PSU
variance.

Let us first examine Figures la~-c. The graphs
are based on between-PSU variances for the UCR
item from the South Atlantic Division stratifica-
tions using NCS stratifiers. The X-axes for the
graphs are: la) Average NSR Stratum Size, 1b)
Average NSR Stratum Size Times NSR Population, and
lc) Average NSR Stratum Size Squared. The Y-axis
of the graphs is based on between-PSU variances.
The between-PSU variances have been standardized
in order to make the graphs easier to interpret.
The standardization was accomplished by dividing
each variance by the between-PSU variance of the
random stratification for the 356 sample PSU
design. This design was chosen because of fits
close relationship with the current NCS design.
This standardization method does not affect the
Took of the graphs, only the units of the Y-axis,
Also, for each of the nine designs, the average
value of the between-PSU variances of the three
stratifications was used in the graphs. As
expected, between-PSU variance increases as the
value for the functions f(N,m) increases. The

difference between the random stratification line
and the unconstrained stratification 1ine is the
reduction in between-PSU variance from the
modified Friedman-Rubin algorithm, compared to a
random stratification.

It can be seen that the shape of the uncon-
strained stratification line for Figures la and 1b
are generally the same, with graph 1b being
slightly more linear. Given a linear model,
Tinearity 1s directly related to predictability.
The more linear the graph of a function is, the
better :the function 1s as a linear predictor of
between-PSU variance. The unconstrained stratifi-
cation 1ine for Figure lc is clearly not linear.
While a regression 1ine for each of the functions
seems to possess a y-intercept around zero, the
y-intercept of the average NSR stratum size times
NSR population functions appears to be the closest
to zero. This is important because in theory the
origin should lie on the graph. The random
stratification lines indicate the same general
resuits, with graph 1b appearing the most 1inear.
However, they are subject to more variability than
the unconstrained stratifications and should be
referred to with this in mind. Based on Figures
la-¢ both the average NSR stratum size and the
average NSR stratum size times NSR population are
close to being linearly related to between-PSU
variance. Hence, they are good linear predictors
of between-PSU variance.

The shape of the graphs for each of the
functions for the other various combinations of
evaluators, survey stratifiers, and geographic
divisions are generally very similar to Figures
la-c. Thus, 1t seems reasonable to conclude that
the relationship between the number of sample PSUs
and between-PSU variance does apply to the class
of stratifications as described in Section II. Our
general conclusion is that both the average NSR
stratum size and average NSR stratum size times
NSR population are reasonable linear predictors
of between-PSU variance, with the average NSR
stratum size times NSR population appearing to be
a slightly better predictor. As a linear predic-
tor, the average NSR stratum size squared did not
seem to be an appropriate function for predicting
between-PSU variances. In the following paragraphs
we present a more quantitative approach to
analyzing the data.

B. Quantitative Analysis

After examining the graphs, we wanted to
perform a more quantitative analysis of the shape
of the curves. Our approach was to perform
regressions using a least-squares method.

One of the assumptions when performing a least-
squares regression is that the variance of the
dependent variable is the same for any value of
the independent variables. This assumption of
homoscedasticity seemed to be violated upon
examination of the data, so a weighted least-
squares regression procedure seemed appropriate.
In addition, we believed that two sources of error
needed to be considered for our experimental
design. The model is given below:

YU=A+BX1 +°‘1+E1j’
where o, ~ N(O,ri), 44" N(O,ai), and the {ai}
and {Eij} are both mutually independent.



The sum A + BXy represents the theoretical line
corresponding to f(N,m). The €43 represents ‘the
varifation in the observations diie to choosing a
random start for the stratification. However, not
all of the variation of the observations from the
theoretical line can be explained by the eyy.
Consider the particular group of PSUs being
stratified for a design as one of infinitely many
unique groups that could have been stratified. In
other words, the particular group of PSUs are part
of some "superpopulation”. The a4 represents the
deviation from the theoretical line at the it
design for the group of PSUs that was actually
chosen from the "superpopulation". However, we
have only one observation of a3 for each design.
With only one observation it was impossible to
estimate 4§, the variance of a4, directly. So,
we developed an ad hoc procedure, namely an
jiterative weighted least-squares procedure, to
estimate the "best” regression line.

The procedure first involves performing an
unweighted Tleast-squares regression on the
observed averages. From this regression line, the
average of the squared residuals was computed for
each design. The inverses of these values were
the weights to be applied to the data. A weighted
least-squares regression using these weights was
performed to compute a new regression line. Based
on this new regression 1ine a new set of weights
was computed. This process was continued until
the regression coefficients converged to within
certain limits.

For our analysis, the dependent variable was
the average of the between-PSU variances of the
unconstratned stratifications for each design and
the independent variables were the average NSR
stratum size, average NSR stratum size times NSR
population, and average NSR stratum size squared.
Let us examine the results of the regressions
under several models for UCR item from the South
Atlantic Division stratifications using NCS
stratifiers. Figures la-c correspond to this
case. The regression results are given in Column
1 of Table 3 under Two Parameter Models. For
compactness of presentation, we present only the
proportion of the total variance {r<) explained
by each model.

The r2 for all three models was high. The
mode] with the average NSR stratum size times NSR
popultation (N /my gave the highest value of rl.
These results seem to agree with our general
observations of Figures la-c. However, these are
two parameter models, with a constant and one
independent variable. In keeping with our objec-
tives we really needed to determine which one
parameter model 1s "best", that is, gives the
highest r¢ value. Note, the regression line from a
one parameter model is forced to pass through the
origin. The results are presented in Column 1 of
Table 3 under One Parameter Models. As before,
the highest value of ré belonged to the model with
thg average NSR stratum size times NSR population

/m} as the independent variable. Notice the
very small reduction in ré when the constant term
was dropped from the NZ/m model, while the
reductions in r¢ for the other models were
relatively much larger. C(learly, the loss in
assuming the "best" regression 1ins passes through
the origin is minimized with the N</m model.

The results from the stratifications for the
other combinations of geographic divisions and

262

Table 3.

survey stratifiers are given in Columns 2-5 of
The results were generally the same.
The vatue of ré for the N¢/m two parameter model
was the highest for each combination. In addi-
tion, r2 for the N2/m one parameter model was
still the highest, along with having the smallest
reduction in r¢ due to dropping the constant term.
Conseguently, we believe that the average NSR
stratum size times NSR population to be the "best®
of these three linear predictors of between-PSU
variance.

One of the reviewers suggested another possible
model which involved a l1og transformation. The
model had several advantages over the one we used.
Unfortuneately, we did not have did not have time
to pursue a more detailed study of this model.

V. DISSCUSSION: SOME SIMPLE THEORETICAL EXAMPLES

In Figure 1 it seems that the between-PSU
variance increases linearly with either the
average NSR stratum size or the average NSR
stratum size times NSR population. To try to
understand the implications of this relationship,
we considered some simple idealized models for the
population to see what functions f{N,m) are found
for models corresponding to totally ineffective
stratifications and to very effective stratifica-
tions.

In these examples, the universe is assumed to
contain J NSR PSUs all having the same population.
The PSUs actual numbers (Ug) with a certain
characteristic of interest are uniformily spaced
over an interval by defining Uj = 3, J =
1,2,...,J. These PSUs will be divided into H
strata, of which H-L have K PSUs and L have K+1
PSUs, so that J = (H-L)K + L(K+1) = HK + L. The
examples will differ regarding how the strata are
formed. Note that here H takes the place of m,
and N is proportional to J. First expressions for
the between-PSU variance under the two models will
be derived.

Example 1 (Ineffective Stratification)

In this example, the strata are formed by
selecting a simple random sample of either K or
K+1 PSUs without replacement. (After the first
stratum is selected, the second is selected from
the remaining PSUs, etc.)

Conditional on the particular division into
strata, the between-PSU variance, corresponding
to (1), is

H-L X

= 1 -
(3) Varg = hzl 121 g (KUg - U )2
H K+1 1
YLl o5y TRy LUy - U 0%

where Upj 1s the number with the characteristic
of interest in the 1th PSU 1n the hth stratum, and
Up., 1s the total for stratum h. Taking the
expectation over all possible divisions into

strata,
L L L Jz-1¢ 4
[K *H K(T J-L)] 1 (J—-T)-J=

ing the f 1 Uhy :
using the fact that € - 121 Uy - ‘“K) is

equal to the variance of a random value UJ

(4) E Varg =



selected at random without replacement from

2
(1,...,J), namely QT%l (J%T_) and that J = HK+L.

Example 2 (Effective Stratification)

In this example, the strata are formed by taking
consecutive strings of K or K+1 PSUs in increasing
order. Thus, the first stratum would consist of
the PSUs with UJ equal to 1,...,K, the second with
Uy equal to K+1,...,2K, and so forth for the other
strata. Here the strata are non-random, so £ Varg
= Varg. Using (3),

(5) Varg = 73l (K + §)2- (3KE(E) + 3K(E)? + (3)°)

+ Sikesees ok + 2) - il

A closer inspection of the expressions (4) and (5)
shows that the ineffective stratification fis
roughly a linear function of the average stratum

size a, while the effective stratificat1on example
is convex, varying basically as ( ) . Note that

for the case of one PSU in each stratum (K=1, H=d,
L=0), both (4) and (5) are equal to zero. For one
stratum consisting of J PSUs (K=J, H=1, L=0), both

{4) and (5) pass through the point J? J;ZI). Thus,

if the two functions (4) and (5) are graphed

K + h, the graphs will have the same

beginning and end points.
the two functions have a very different form.

J

As

J be held fixed at a very large value. i
jncreases, H and L become negligible compared to

against ﬂ

Between these points,
Let

J. Consequently, for Example 1,
~[d14d2-1
E Var = [H] VR (J 1) -J, in other words,
£ VarB increases roughly linearly with 5 [ once %

becomes large enough. For Example 2,
VarB = T%(%)3, which increases roughly proportion-

al to (%)3, ignoring terms containing % or g and

leaving out lower-order terms in K. (These lower
order terms cause the function to oscillate about
the basic cubic equation, as L goes from zero to
K-1 and back to zero. The amplitude of the

oscillation decreases as % increases.)

Based on these simple models, an ineffective
stratification would produce roughly a straight
Tine when plotting Varg vs the average NSR stratum
size while an effective stratification shouid
generally follow a convex (cubic) curve.

One important difference between our simple
models and the real situation shown in Figure 1 is
that the NSR population is fixed in our examples
while in the actual study it increases as 1/H
increases. One way to correct for this would be by
plotting Varg/(NSR Population) against the average
NSR stratum size, or alternatively by plotting
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Varg vs (average NSR stratum size)(NSR popula-
tion). Thus, the curve in Figure 1b would seem to
be the most comparable to the simple examples
considered here.

The straight lines for the random stratifica-
tions in Figure 1b are therefore what would be
expected for an ineffective stratification. The
Freidman-Rubin stratifications produce roughly
linear relationships, indicating that the strati-
fication is fairly ineffective over the range of
values shown on the X-axis. However, this strati-
fication cannot be totally ineffective because the
curve lies well below the curve for the random
stratification. In fact, extending the graph
indicates that the graph would begin to curve
upwards toward the line for the random stratifica-
tion; for H=1 the two curves meet.

The above discussion leads to the conclusion
that the stratifiers are useful for splitting the
population into a few large groups, but after that
the stratification does not do much better than a
random splitting.

This conclusion must be regarded as tentative
without further corroboration. Qur simple models
leave out the effect of variation in PSU size.
(This can be very important when size constraints
are used; however, these constraints were not a
major factor in this study and were omitted.) The
models also assume a very uniform distribution of
PSU means throughout the universe, with no natural
clusterings. The reality is probably very
different. The conclusion could be corroborated
by using the stratifiers to divide the population
into a few large groupings of PSUs and then
forming strata at random within these groups. The
discussion in this section suggests the conjecture
that the resulting Varg will be similar to that
from the full Friedman-Rubin stratification using
the same variables, for the same values of N and
m.
VI. CONCLUSION
Qur general conclusion, based on our qualita-
tive, quantitative, and theoretical research is
that the best linear predictor of between-PSU
variance is the average NSR stratum size times NSR
population (N /m) The graphs of the functions
indicated that (N /m) as the X-axis re§u1ted in
the most linear graphs. The value of r¢ was the
greatest when N2/m was the independent variable
for both the least-squares regression and the
iterative weighted least-squares regression. The
results, in Section IV, were the same for all the
various combinations of evaluation {1tems, survey
stratifiers, and geographic divisions that we
examined. These empirical results were further
substantiated by some theoretical examples in
Section V.

These results could be corroborated by examin-
ing stratifications in some other geographic
divisions based on different stratifiers with
different evaluators. In addition, alternative
models could be used to analyze the data, such as,
the log transformation model mentioned in Section
Iv.
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