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I .  INTRODUCTION 
The relationship between the number of sample 

primary sampling units (PSUs) and between-PSU 
variance is an important relationship to under- 
stand when determining the optimal number of 
sample PSUs for a survey. (For the surveys 
considered here, PSUs are counties or contiguous 
groups o f  counties, except that minor c i v i l  
divisions form PSUs in some northeastern states.) 
In this paper we begin with the reasons behind our 
research and i ts  applicability. We describe the 
methodology used, present both quali tat ive and 
quantitative results, and discuss some of the 
theoretical issues behind the research. 
I I .  BACKGROUND 

In the course of our redesign research for the 
National Crime Survey (NCS), we surmised that 
there should be some optimal number of sample PSUs 
at which the opposing costs of f ield inefficien- 
cies and between-PSU variance are in balance. To 
determine this optimal number of sample PSUs, we 
f i r s t  needed to be able to predict the between-PSU 
variance for designs other than the current 
des i gn. 

We were not interested in predicting the 
between-PSU variance for any possible design. 
Surveys l ike NCS use s t ra t i f i ed  multi-stage 
designs with constraints on stratum sizes. The 
strata are constrained to be roughly equal in 
size. In such designs, there is a strong link 
between the number of sample PSUs and the size of 
the nonself-representing (NSR) population. As the 
number of sample PSUs decreases, fewer PSUs can be 
self-representing (SR) which causes the population 
in NSR areas to increase. Since between-PSU 
variance is sensitive not only to the number of 
sample PSUs but also to the size of the NSR 
population, we theorized that, within a suitably 
restr icted class of stratif ications, the between- 
PSU variance, for the "best" design for a given 
number of PSUs, should be approximately predicted 
by some function f(N,m), where N is the size of 
the NSR population and m is the number of NSR 
strata. (This assumes one sample PSU per NSR 
stratum. ) 

We tr ied to derive the correct function 
theoret ical ly ,  but realized that this could be 
done only by making dubious simplifying assump- 
tions about the distribution of the characteris- 
t ics of interest in the population. The actual 
relationship in a given situation depends 
strongly on the characteristics of the PSUs being 
s t ra t i f i ed  and the method of stratif ication used 
to select the "best" design. Therefore, we 
performed an empirical investigation. At f i r s t ,  
the study was directed almost exclusively at NCS, 
but we later expanded i t  to cover a broader class 
of stratif ication problems. 

The results presented in this paper relate to 
problems involving unbiased estimators of the 
prevalence of demographic characteristics based on 
s t ra t i f i ed  multi-stage designs where I) the 
s t ra t i f i ca t ions  are formed with a multivariate 
method that does not depend on the number of NSR 
strata or the NSR population (a detailed discus- 

sion of the method follows in Section I I I ) ,  2) 
there are 3 to 50 total PSUs per NSR stratum, 3) 
one PSU is selected per stratum with probability 
proportionate to size, and 4) the SR PSUs were no 
smaller than 75 percent of the average NSR stratum 
size. I f  a problem does not meet al l  of these 
conditions, we would not expect the relationship 
to be the same as presented here. We are, in 
fact,  s tretchin9 our results to say that they 
apply to the entire class described above. 
Nevertheless, i t  was our aim to cover the entire 
class and provide general guidance on estimating 
between-PSU variances. The details of the 
problems that we selected within this class are 
described in the following section. 
I I  I .  HETI.K)IX)LOGY 

Our analysis was based on nine di f ferent 
national sample PSU designs. They varied primarily 
in their number of sample PSUs. One of the 
designs, the 356 sample PSU design, was chosen 
because we wanted a design with about the same 
total number of sample PSUs as the current NCS 
design. The range of the designs was quite exten- 
sive. The smallest design consisted of 86 sample 
PSUs, while the largest consisted of 1,015 sample 
PSUs. The sample designs are presented in Table I 
along with the number of SR PSUs and NSR strata 
for each design. As Table 1 shows, more designs 
were chosen with 234 or more sample PSUs. There 
are basically two reasons for this. First, most of 
the more plausible sample designs are in that 
range of possible designs. We wanted a suffi- 
cient number of data points to be able to analyze 
that range accurately. Secondly, we had a prior 
interest in the behavior of the relationship as 
the function f(N,m) approaches zero. So, we 
selected several designs with re la t ive ly  large 
numbers of strata. 

Due to cost considerations, the study was per 
formed only in two of the nine geographic divi- 
sions defined by the Office of Management and 
Budget. The two divisions are the South Atlantic 
Division and the West North Central Division. The 
South Atlantic Division includes Florida, Georgia, 
South Carolina, North Carolina, Virginia, West 
Virginia, Maryland, Delaware and the District of 
Columbia. The West North Central Division 
includes North Dakota, South Dakota, Minnesota, 
Nebraska, Iowa, Missouri and Kansas. In selecting 
these two divisions, we considered the following: 
I. The number of PSUs in each division should be 

large enough so that the s t ra t i f i ca t ion  
problems would be fa i r ly  continuous in nature, 
rather than very discrete, but not so large so 
as to make the s t ra t i f i ca t ion  costs of nine 
designs prohibitive. 

2. One division should be relatively more heterog- 
eneous with respect to demographic characteris- 
tics such as race, occupation, population size, 
etc.,  and the other should be relatively more 
homogeneous. 
Based on the national sample design, the 

characteristics of each design for the South 
Atlantic and West North Central Divisions were 
computed. In particular, the NSR population size 
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(N) and the number of strata to be formed (m) were 
determined for each design in both divisions. As 
stated in Section I I ,  we theorized that between- 
PSU variance should be some function of N and m. 
Our goal was to determine what transformation of 
the function variables N and m would result in 
that function possessing a l inear relationship 
with between-PSU variance. In other words, what 
linear model "best" predicts the between-PSU 
variance? Our preliminary work on this subject, 
both theoretical and empirical, suggested three 
candidate functi~ons of N and n~ N/m, N=/m, and 
(N/m) . N/m, N=/m, and (N/m) = correspond to 
average NSR stratum size, average NSR stratum size 
times NSR population, and average NSR stratum size 
squared, respectively. The values for these three 
functions were computed for both geographic 
divisions. The results are given in Table 2. 

As stated ear l ie r ,  the actual relationship of 
between-PSU variance and the number of PSUs in a 
given sltuation w i l l  depend on the heterogeneity 
of the PSUs being s t ra t i f i ed  and the method of 
s t ra t i f i ca t i on .  In our study we performed a 
mult ivariate st rat i f icat ion ut i l iz ing a modified 
Friedman-Rubin algorithm (Shoemaker (1983)). This 
modified algorithm was developed at the U.S. 
Bureau of Census as a part of the demographic 
surveys redesign research. 

The modified version of the Frledman-Rubin 
algorithm minlmizes the between-PSU variance for 
one sample PSU per stratum with probabi l i ty 
proportionate to size (PPS). 

To express the between-PSU component of 
variance mathematically, let us define, 

m = the nunW)er of strata, 
= the nun~)er of PSUs in the h th stratum, 

nH = = the total number of PSU~ 
h th Phi = the population of the i v'' PSU in the 

stratum, 
PhN = the population of the h th stratum, 

= the total population, 
Uhi : the populati~B with a certa~B characteris- 

t ic of the i PSU in the h stratum, 
U h : the populati~B with a certain characteris- 

• t ic in the h stratum, 
U = the total population with a certain 

"" characteristic. 
Then the between-PSU variance for estimated 

populations with a certain characteristic is given 
by the following formula: 

(I) Var B = 
m n Phi Ph. )2 
Z Z h ( Uhi 

Let the scaling factor for a characteristic J 
1, equal ~ where Vj is the unstratified between-PSU 

variance for characteristic j as defined below. R (N vj = Z Z - u  )2 
h=l i= l  P~i Uhi "" 

Formula (1) above, is in terms of one charac- 
t e r i s t i c •  For mult ivariate s t ra t i f i ca t ions the 
cr i ter ion function that the modified Friedman- 
Rubin algorithm minimizes is presented below. 

(2) Betvar = 
C VarB, j 

- V ' where C : number 
J:1 J 

of charac te r i s t i cs .  

Beginning with an i n i t i a l  strat i f icat ion the 
algorithm i te ra t i ve ly  transforms the strata to 
reach a local minimum of the between-PSU variance. 
This algorithm allows users to choose options. In 
part icular,  the following options were chosen for 
this study. 
I .  Size constraints: The user could assign the 

minimum and/or maximum size of the stratum. 
I n i t i a l l y ,  we u t i l i zed this option by con- 
straining the stratum size within the South 
Atlantic Division. According to this constraint 
a stratum was not permitted to vary more than 
20 percent from the average NSR stratum size. 
An early examination of between-PSU variances 
indicated that the size constraints had neglig- 
ible effect on our study. Therefore, the size 
constraints were dropped in later analyses to 
reduce costs. 

2. Constraints on the iterative procedure: One 
could l im i t  the number of iterations perforn~d 
to reduce the between-PSU variance. For our 
study, a maximum l im i t  of 10 i terat ions was 
used. Convergence was almost always obtained. 

3. Random clustering: According to this option, 
the PSUs are placed randomly into strata. 

4. Scaling of chacteristics: The program permit- 
ted "preference factors" which would give 
greater in~)ortance to some characteristics. In 
this research al] characteristics were consi- 
dered equally important. 
The set of characteristics whose Betvar is 

being minimized is referred to as the "strat i -  
f iers". The strat l f iers for the nine designs were 
chosen from the l i s t  of 1980 redesign strat i f iers 
for the NCS and the Current Population Survey 
(CPS). St rat i f icat ions were performed using CPS 
s t ra t i f i e r s  in addition to NCS s t ra t i f i e r s  to 
enable us to generalize our results to the larger 
class of stratifications described in Section II .  

Small sets of items that were considered to be 
correlated with the items to be estimated by NCS 
or CPS were used to evaluate the stratifications. 
These sets of items are referred to as the 
"evaluators". The strat i f iers could not be used 
as evaluators because these items were used by the 
Friedman-Rubin algorithm to form the strata; the 
estimated variances on these items would be 
seriously negatively biased. Sonm evaluators are 
1970 decennial census san~)le estimates while the 
others are estimates from the Uniform Crime 
Reports (UCR), which are not subject to sampling 
error. Thus, formula (I) i---s biased for the 1970 
decennial census evaluators because they were 
calculated using sample estimates at the PSU 
level, but not for the UCR evaluators. Based on a 
small study, the relative bias on these estimates 
is not believed to have a significant effect on 
our results. The results of this small study of 
the relative bias are included in the Appendix of 
the fu l l  paper. 

In the South At lant ic Division two sets of 
s t ra t i f i ca t ions  were produced; one based on the 
NCS s t ra t i f i e r s  and the other based on the CPS 
s t ra t i f i e rs .  In this division, the evaluators for 
the NCS s t ra t i f i ca t ion  were the UCR items. The 
evaluators for the CPS s t ra t i f i ca t i on  were the 
1970 decennial census sample estimates and some of 
the UCR items. In the West North Central Divi- 
sion, only one set of stratifications was produc- 
ed; i t  was based on NCS strat i f lers. The s t ra t i f i -  
cations were evaluated using the same items as 
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used with the CPS s t ra t i f i e rs  in the South 
Atlantic Division. 

Within each set of s t ra t i f i ca t ions ,  three 
s t ra t i f i ca t ions were performed for each of the 
nlne designs, each with a different random start. 
Then the between-PSU variances for the correspond- 
ing set of evaluators for each stratif ication were 
calculated using equation (2). Note ,  three 
replications were performed for each design 
because we did not have any prior knowledge as to, 

difference between the random stratification line 
and the unconstrained stratif ication line is the 
reduction in between-PSU variance from the 
modified Friedman-Rubin algorithm, compared to a 
random stratification. 

I t  can be seen that the shape of the uncon- 
strained stratification llne for Figures la and Ib 
are generally the same, with graph lb being 
s l igh t ly  more linear. Given a linear model, 

the va r iab i l i t y  of between-PSU variance of the 
evaluators. 
IV. RESULTS 

In practice, one would l ike to select the 
s t ra t i f i ca t ion  with the minimum value of Betvar. 
Hence, i f  we could have taken sufficient random 
starts for each design, using the minimum value of 
the between-PSU variance would have been the 
appropriate approach. However, since cost restric- 
tions required a small number of random starts, we 
would have had to deal with the distribution of 
the minimum observation, which would have compli- 
cated the analysis. Also, i t  was observed 
(ear l ier in the analysis) that the graph of 
minimum value of the between-PSU variances had the 
same form as the average value of the three 
strat i f icat ions. Therefore, we decided to use the 
average between-PSU variance in our analysis. 

A. Graphs 
Our i n i t i a l  analysis of the data was to graph 

the average of the between-PSU variances of both 
the in i t ia l  random stratifications and the locally 
optimal unconstrained stratifications for one of 
the evaluation items. As stated in the previous 
section, the constrained s t ra t i f i ca t ion  was 
negligibly di f ferent f rom the unconstrained 
s t ra t i f icat ion,  so the constrained stratif ication 
was dropped from the analysis. The item chosen 
for display was the UCR - Number of Reported 
Crimes (except assault and burglary). The graphs 
for this item were typical of what we observed 
with al l  of the items. This item was chosen 
because i t  is correlated with NCS characteristics 
of interest. The purpose of examining these 
graphs was to visualize the relationship between 
the functions and between-PSU variances. Our goal 
was to determine which single function, i f  any, 
was the "best" l inear predictor of between-PSU 
variance. 

Let us f i r s t  examine Figures la-c. The graphs 
are based on between-PSU variances for the UCR 
item from the South Atlantic Division stratif ica- 
tions using NCS strat i f iers. The X-axes for the 
graphs are" la) Average NSR Stratum Size, lb) 
Average NSR Stratum Size Times NSR Population, and 
lc) Average NSR Stratum Size Squared. The Y-axis 
of the graphs is based on between-PSU variances. 
The between-PSU variances have been standardized 
in order to make the graphs easier to interpret. 
The standardization was accomplished by dividing 
each variance by the between-PSU variance of the 
random s t ra t i f i ca t ion  for the 356 sample PSU 
design. This design was chosen because of i ts 
close relationship with the current NCS design. 
This standardization method does not affect the 
look of the graphs, only the units oTthe Y-axis. 
Also, for each of the nine designs, the average 
value of the between-PSU variances of the three 
s t ra t i f i ca t ions was used in the graphs. As 
expected, between-PSU variance increases as the 
value for the functions f(N,m) increases. The 

l inear i ty  is direct ly related to predictability. 
The more linear the graph of a function is, the 
better :the function is as a linear predictor of 
between-PSU variance. The unconstrained s t ra t i f i -  
cation line for Figure lc is clearly not linear. 
While a regression llne for each of the functions 
seems to possess a y-intercept around zero, the 
y-intercept of the average NSR stratum size times 
NSR population functions appears to be the closest 
to zero. This is important because in theory the 
origin should l ie  on the graph. The random 
s t ra t i f i ca t ion  lines indicate the same general 
results, with graph Ib appearing the most linear. 
However, they are subject to more variabil i ty than 
the unconstrained strat i f icat ions and should be 
referred to with this in mind. Based on Figures 
la-c both the average NSR stratum size and the 
average NSR stratum size times NSR population are 
close to being l inear ly related to between-PSU 
variance. Hence, they are good linear predictors 
of between-PSU variance. 

The shape of the graphs for each of the 
functions for the other various combinations of 
evaluators, survey s t ra t i f i e r s ,  and geographic 
divisions are generally very similar to Figures 
la-c. Thus, i t  seems reasonable to conclude that 
the relationship between the number of sample PSUs 
and between-PSU variance does apply to the class 
of stratifications as described in Section II. Our 
general conclusion is that both the average NSR 
stratum size and average NSR stratum size times 
NSR population are reasonable linear predictors 
of between-PSU variance, with the average NSR 
stratum size times NSR population appearing to be 
a s l ight ly  better predictor. As a linear predic- 
tor,  the average NSR stratum size squared did not 
seem to be an appropriate function for predicting 
between-PSU variances. In the following paragraphs 
we present a more quantitative approach to 
analyzing the data. 

B. Quantitative Analysis 
After examining the graphs, we wanted to 

perform a more quantitative analysis of the shape 
of the curves. Our approach was to perform 
regressions using a least-squares method. 

One of the assumptions when performing a least- 
squares regression is that the variance of the 
dependent variable is the same for any value of 
the independent variables. This assumption of 
homoscedasticity seemed to be violated upon 
examination of the data, so a weighted least- 
squares regression procedure seemed appropriate. 
In addition, we believed that two sources of error 
needed to be considered for our experimental 
design. The model is given below: 

Yi j  : A + BX i + ei + ~ i j '  

where ~i ~ N(O,~), ~ij ~ N(O,o~), and the {e i} 

and {el j} are both mutually independent. 
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The sum A + BX i represents the theoretical line 
corresponding to f(N,m). The ci. i represents ~the 
variation in the observations d~e to choosing a 
random start for the stratif ication. However, not 
al l  of the variation of the observations from the 
theoretical l lne can be explained by the eiJng 
Consider the part icular  group of PSUs b 
s t ra t i f i ed  for a design as one of in f in i te ly  many 
unique groups that could have been stratif ied. In 
other words, the particular group of PSUs are part 
of some "superpopulation". The ei represents the 
deviation from the theoretical l lne at the i th 
design for the group of PSUs that was actually 
chosen from the "superpopulation". However, we 
have only one observation of ei for each design. 
With only one observation i t  was impossible to 
estimate ~ ,  the variance of e i ,  directly. So, 
we developed an ad hoc procedure, namely an 
i te ra t ive  weighted least-squares procedure, to 
estimate the "best" regression line. 

The procedure f i r s t  involves performing an 
unweighted least-squares regression on the 
observed averages. From this regression line, the 
average of the squared residuals was computed for 
each design. The inverses of these values were 
the weights to be applied to the data. A weighted 
least-squares regression using these weights was 
performed to compute a new regression line. Based 
on this new regression line a new set of weights 
was computed. This process was continued until 
the regression coeff icients converged to within 
certain limits. 

For our analysis, the dependent variable was 
the average of the between-PSU variances of the 
unconstrained stratifications for each design and 
the independent variables were the average NSR 
stratum size, average NSR stratum size times NSR 
population, and average NSR stratum size squared. 
Let us examine the results of the regressions 
under several models for UCR item from the South 
At lant ic Division s t ra t i f i ca t ions  using NCS 
s t r a t i f i e r s .  Figures la-c correspond to this 
case. The regression results are given in Column 
I of Table 3 under Two Parameter Models. For 
compactness of presentation, we present only the 
proportion of the total variance (r 2) explained 
by each model. 

The r 2 for al l  three models was high. The 
model with the average NSR stratum size times NSR 
population {N2/m) gave the highest value of r 2. 
These results seem to agree with our general 
observations of Figures la-c. However, these are 
two parameter models, with a constant and one 
independent variable. In keeping with our objec- 
tives we real ly needed to determine which one 
parameter model is "best", that is, gives the 
highest r 2 value. Note, the regression line from a 
one parameter model is forced to pass through the 
or igin.  The results are presented in Column I of 
Table 3 under One Parameter Models. As before, 
the highest value of r 2 belonged to the model with 
thR average NSR stratum size times NSR population 
(NL/m) as the independent variable. Notice the 
very small reduction in r 2 when the constant term 
was dropped from the N2/m model, while the 
reductions in r2 for the other models were 
re la t i ve ly  much larger. Clearly, the loss in 
assuming the "best" regression l in~ passes through 
the origin is minimized with the NC/m model. 

The results from the st rat i f icat ions for the 
other combinations of geographic divisions and 

survey s t r a t i f i e r s  are given in Columns 2-5 of 
Table 3. The results were generally the same. 
The value of r 2 for the NL/m two parameter model 
was the highest for each combination. In addi- 
t ion, r 2 for the N2/m one parameter model was 
s t i l l  the highest, along with having the smallest 
reduction in r L due to dropping the constant term. 
Consequently, we believe that the average NSR 
stratum size times NSR population to be the "best" 
of these three l inear predictors of between-PSU 
variance. 

One of the reviewers suggested another possible 
model which involved a log transformation. The 
model had several advantages over the one we used. 
Unfortuneately, we did not have did not have time 
to pursue a more detailed study of this model. 
V. DISSCUSSION: ~ SIMPLE THEORETICAL EXAMPLES 

In Figure I i t  seems that the between-PSU 
variance increases l inear ly  with either the 
average NSR stratum size or the average NSR 
stratum size times NSR population. To try to 
understand the implications of this relationship, 
we considered some simple idealized models for the 
population to see what functions f(N,m) are found 
for models corresponding to total ly ineffective 
s t rat i f icat ions and to very effective strat i f ica- 
tions. 

I n these exampl es, the universe i s assumed to 
contain J NSR PSUs all having the same population. 
The PSUs actual numbers (Uj) with a certain 
characterist ic of interest are uniformily spaced 
over an interval by defining Ui = J, j = 
1 , 2 , . . . , J .  These PSUs wi l l  be divided into H 
strata, of which H-L have K PSUs and L have K+I 
PSUs, so that J = (H-L)K + L(K+I) = HK + L. The 
examples wil l  di f fer regarding how the strata are 
formed. Note that here H takes the place of m, 
and N is proportional to J. First expressions for 
the between-PSU variance under the two models wil l 
be derived. 
Example I (Ineffective Stratification) 

In this example, the strata are formed by 
selecting a simple random sample of either K or 
K+I PSUs without replacement. (After the f i r s t  
stratum is selected, the second is selected from 
the remaining PSUs, etc.) 

Conditional on the part icular  division into 
strata, the between-PSU variance, corresponding 
to (1), is 

H-L K 
(3) Var B : ~ ~ I (KUh i _ U )2 

h=l i =I h. 
H K+I 

I 
~- (K+I----T [(K+I)Uh - Uh ]2 

h=H-L+I i=I i . ' 

where Uhi is the number with the characteristic 
of interest in the i th PSU in the h th stratum, and 
Uh. is the total for stratum h. Taking the 
expectation over al l  possible divisions into 
strata, 

(4) E VarB = [K + L_ K ( ~  + L ) ]  J~1 ( J ) . j ,  

using the f a c t  t ha t  E i=1 Uhi is 

equal to the variance of a random value Uj 
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selected at random without replacement from 
2 

( l , . . . ,  J), namely d12 - - - !  (JJ-'~-) and that d : HK+L. 

Example 2 (Effective Stratification) 
In this example, the strata are fornmd by taking 
consecutive strings of K or K+I PSUs in increasing 
order. Thus, the f i r s t  stratum would consist of 
the PSUs with Uj equal to I , . . . ,K ,  the second with 

equal to K+I,...,2K, and so forth for the other 
s~rata. Here the strata are non-random, so E Var B 
= Vat B. Using (3), 

+ (§)K(3K'+ 6K + 2 ) -  (H)K']. 

A closer inspection of the expressions (4) and (5) 
shows that the ineffective s t ra t i f i ca t ion  is 
roughly a linear function of the average stratum 

, i  

d, while the effective stratification example size 
n 

is convex, varying basically as (-~)~. Note 
" i  

that 

for the case of one PSU in each stratum (K=I, H=j, 
L=O), both (4) and (5) are equal to zero• For one 
stratum consisting of J PSUs (K=J, H=I, L=O), both 

# I ~  " 1 %  

(4) and (5)pass through the point J ' (~-~).  Thus, 

i f  the two functions (4) and (5) are graphed 

: K + ~, the graphs will have the against same 
i T i i 

beginning and end points• Between these points, 
the two functions have a very different form. Let 

J be held fixed at a very large value As J • H 
increases, H and L become negligible compared to 
J. Consequently, for Example I ,  

E VarB ± [J ]  ~ (JJ-~-1) .d' in other words, 

E Var B increases roughly l inearly with J once -J H 

becomes large enough. For Example 2, 
= - ~ J 1 ~  VarB 12~HJ ' which increases roughly proportion- 

al to (-JH) 3, ignoring terms containing L or ~ and 

leaving out lower-order terms in K. (These lower 
order terms cause the function to oscillate about 
the basic cubic equation, as L goes from zero to 
K-I and back to zero. The amplitude of the 

oscillation decreases as ~ increases.) 

Based on these simple models, an ineffective 
s t ra t i f i ca t ion  would produce roughly a straight 
line when plotting Var B vs the average NSR stratum 
size while an effective s t ra t i f i ca t ion  should 
generally follow a convex (cubic) curve. 

One important difference between our simple 
models and the real situation shown in Figure 1 is 
that the NSR popu'lation is fixed in our examples 
while in the actual study i t  increases as 1/H 
increases. One way to correct for this would be by 
plotting VarB/(NSR Population) against the average 
NSR stratum size, or al ternat ively by plotting 

Var B vs (average NSR stratum size)(NSR popula- 
t ion).  Thus, the curve in Figure lb would seem to 
be the most comparable to the simple examples 
considered here. 

The straight lines for the random stratif ica- 
tions in Figure lb are therefore what would be 
expected for an ineffective stratification. The 
Freidman-Rubln s t ra t i f icat ions produce roughly 
linear relationships, indicating that the strati- 
f icat ion is f a i r l y  ineffective over the range of 
values shown on the X-axis. However, this strat i- 
fication cannot be total ly ineffective because the 
curve lies well below the curve for the random 
s t ra t i f i ca t ion .  In fact, extending the graph 
indicates that the graph would begin to curve 
upwards toward the line for the random stratif ica- 
tion; for H=I the two curves meet. 

The above discussion leads to the conclusion 
that the stratif iers are useful for splitting the 
population into a few large groups, but after that 
the strat i f icat ion does not do much better than a 
random spl i tting. 

This conclusion must be regarded as tentative 
without further corroboration. Our simple models 
leave out the effect of variation in PSU size. 
(This can be very in~ortant when size constraints 
are used; however, these constraints were not a 
major factor in this study and were omitted,) The 
models also assume a very uniform distribution of 
PSU means throughout the universe, with no natural 
clusterings. The rea l i ty  is probably very 
dif ferent.  The conclusion could be corroborated 
by using the stratif iers to divide the population 
into a few large groupings of PSUs and then 
forming strata at random within these groups. The 
discussion in this section suggests the conjecture 
that the resulting Var B wi l l  be similar to that 
from the ful l  Friedman-Rubin stratification using 
the same variables, for the same values of N and 
m. 
VI. CONCLUSION 

Our general conclusion, based on our qualita- 
t ive, quantitative, and theoretical research is 
that the best linear predictor of between-PSU 
variance is the average NSR stratum size times NSR 
population (N2/m)~ The graphs of the functions 
indicated that (NL/m) as the X-axis resulted in 
the most l inearAgraphs. The value of r L was the 
greatest when NZ/m was the independent variable 
for both the least-squares regression and the 
i terat ive weighted least-squares regression. The 
results, in Section IV, were the same for all the 
various combinations of evaluation items, survey 
s t ra t i f i e r s ,  and geographic divisions that we 
examined. These empirical results were further 
substantiated by some theoretical examples in 
Secti on V. 

These results could be corroborated by examin- 
ing s t rat i f icat ions in some other geographic 
divisions based on di f ferent s t ra t i f i e rs  with 
di f ferent evaluators. In addition, alternative 
models could be used to analyze the data, such as, 
the log transformation model mentioned in Section 
IV. 
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